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NUMERICAL ASPECTS OF A BACTERIA GROWTH MODEL

ROBERT STRAKA∗ AND ZDENĚK ČULÍK†

Abstract. We numerically investigate the bacteria growth model proposed by Mimura et al.
[6]. First the problem and the equations are introduced and the numerical method is described,
next several numerical results are presented. Finally the experimental convergence analysis for two
different parameter values is indicated, including the experimental order of convergence and L2, L∞
distance measured towards the finest mesh.
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1. Introduction. From biological experiments [5], it is known that colonies of
Bacillus Subtilis perform ability to create various patterns. The shape of such patterns
depend on two conditions only, the concentration of nutrient and agar1. When these
two conditions are varied, one can observe five qualitatively different types of pat-
terns, see Figure 1. C2 denote concentration of nutrient and C1 denote diffusion rate
in agar. Now when both C2 and C1 is low (pattern A - diffusion-limited aggregation-
like) we observe dendritic growth, increasing C2 the branches become thicker and the
colony has rough round envelope (pattern B), but when C1 is increased the colony
has a pattern similar to the dense-branching morphology (pattern E). In region C,
bacteria actively move and stop when performing cell-division, and repeat this again,
the result is concentric ring pattern. Keeping both C2 and C1 high, the colony is ho-
mogeneously spreading and exhibit the disk-like pattern D. This kind of growth was
used for the convergence analysis as will be shown in the second part of this paper.
Reaction–diffusion model. Numerical model proposed by Mimura et al. [6] was
used and will be described now. Assume that bacteria consist of two types the active
bacteria and the inactive ones. Let A(t, x, y) and I(t, x, y) be their densities respec-
tively and N(t, x, y) the density of nutrients at position (x, y) and time t. Time-
evolution is given by the system

At = ∇(dA∇A) + νg(N)A− a(A,N, I)A+ b(A,N, I)I,

Nt = dN∆N − g(N)A,

It = a(A,N, I)A− b(A,N, I),

where dA is mobility of the active bacteria, dN is diffusion rate of nutrients, νg(N)
is the growth rate of bacteria (ν > 0) and a(A,N, I), b(A,N, I) are the conversion
functions between the active and the inactive bacteria. We take dA, dN as constants
for soft agar (i.e. our case, pattern D, agar is soft and nutrients are high). A typical
form of growth rate function g(N) would be Michaelis-Menten kinetics [7], g(N) =
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175



176 R. STRAKA, Z. ČULÍK

Fig. 1. Morphological diagram for Bacillus Subtilis.

αN/(1 + βN) with positive α and β. In our computation we use g(N) = αN (the
Malthusian growth rate [7]). Essential part of model is specifying the conversion
functions a(A,N, I) and b(A,N, I). It is known that bacteria which become inactive,
never become active again, unless food is added artificially, so we neglect inactive-
active conversion and put b(A,N, I) ≡ 0. This reduces our system to

At = dA∆A+ ανNA− a(A,N)A,

Nt = dN∆N − αNA,(1)

It = a(A,N)A.

When the concentration of nutrients become lower, the activity of bacteria become
weaker, thus we take that a(A,N) is monotonically decreasing with N and with A,
since each bacterium seems to be less active when bacterial populations become sparse.
We use continuous form of a(A,N)

a(A,N) =
a0

(1 +A/a1)(1 +N/a2)
,

where a1, a2 and a0 are suitable positive constants. Now using dimensional analysis [7]

u = A, v = N, w = I,

d =
dA
dN

= C1, α = dN , ν = 1,

t∗ = dN · t, a∗(u, v) =
a(A,N)

dN
, v0 = C2,

we obtain from (1) following RD system for the densities of active and inactive bac-
teria u, w and the concentration of nutrients v (asterisks are dropped for algebraic
convenience)

ut = d∆u+ uv − a(u, v)u,

vt = ∆v − uv, x ∈ Ω, t > 0,(2)

wt = a(u, v)u,
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where d is ratio of the diffusion rates dA and dN . We consider (2) in a two-dimensional
bounded domain Ω with initial conditions

u(0, x) = u0(x) ≥ 0,

v(0, x) = v0, x ∈ Ω, t = 0,

w(0, x) = 0.

The boundary conditions are

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

where n is the outward normal vector on ∂Ω. Note that d and v0 correspond to the
parameters C1 and C2 respectively (see nondimensionalization).
Discretization of (2). We propose a numerical scheme based on the method of lines
with spatially homogeneous finite-difference grid as in [2, 1]. The square domain Ω
is covered by an orthogonal mesh (N + 1 × N + 1 nodes) with the equidistant step
h = 1/N , denoting values of functions u, v, w in nodes (i, j) by the subscripts i, j
(i, j ∈ 0 . . .N). Consequently, we obtain the following system of ODEs:

dui,j
dt

= d
ui+1,j + ui,j+1 − 4ui,j + ui−1,j + ui,j−1

h2
+ ui,jvi,j − a(ui,j , vi,j)ui,j ,

dvi,j
dt

=
vi+1,j + vi,j+1 − 4vi,j + vi−1,j + vi,j−1

h2
− ui,jvi,j ,(3)

dwi,j
dt

= a(ui,j , vi,j)ui,j ,

where i, j ∈ 1 . . .N−1 for the first two equations and i, j ∈ 0 . . .N for the third equa-
tion. The boundary conditions implemented by reflection yield additional equations
for the first and second component (e.g. i = 0, j ∈ 1 . . .N − 1) [1]

du0,j

dt
= 2d

u1,j − u0,j

h2
+ d

u0,j+1 − 2u0,j + u0,j−1

h2
+ u0,jv0,j − a(u0,j , v0,j)u0,j ,

dv0,j

dt
= 2

v1,j − v0,j

h2
+
v0,j+1 − 2v0,j + v0,j−1

h2
− u0,jv0,j ,

and for corners of Ω we have (e.g. i = 0, j = 0)

du0,0

dt
= 2d

u1,0 − u0,0 + u0,1 − u0,0

h2
+ u0,0v0,0 − a(u0,0, v0,0)u0,0,

dv0,0

dt
= 2

v1,0 − v0,0 + v0,1 − v0,0

h2
− u0,0v0,0.

The above obtained system of ODEs is numerically treated by the Merson variant of
the Runge-Kutta method with the adaptive time-step control [4, 8]. Besides adap-
tivity, we observe that such an evolution numerical scheme uses a broad mesh-point
stencil to obtain nodal values of the solution at the subsequent time level. This fact
can contribute to a successful computation of the numerical solution, namely when
studying quantitative aspects of the model.
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Fig. 2. Results of numerical simulations for v0 = 0.1, d = 0.05, T = 5775, concentric ring pattern.

2. Results of simulations. Algorithms were implemented in FORTRAN90 and
C programming languages, in order to compare accuracy aspects, and compiled with
the Intel Fortran/C Compiler v8.0 for Linux. Numerical experiments were
computed on the computer with Intel Pentium III (Coppermine) 735MHz and
Red Hat Linux release 8.0 operating system, partially on HP-UX C8000 and com-
piled with HP Fortran f90 v2.8 and aCC: HP ANSI C++ B3910B A.03.30 with spe-
cial care of arithmetical accuracy of the compiled code (by exploring suitable flag setup
during compilation). The use of two different programming languages allowed to re-
duce implementation errors, to verify the same level of accuracy and to competitively
compare the CPU usage of both codes. It also opened new computational research
items in the given context.
Numerical experiments. Results of numerical experiments are presented in the
following figures. In Figures 2 and 3 there are patterns from the regions C and E, in
Figures 4 and 5 patterns from the regions A and B and finally Figure 6 shows pattern
from the region D. Parameters for the conversion function were set as follows [6]

a0 = 1, a1 =
1

2400
, a2 =

1

120
.

Initial condition for the active bacteria was in form

u0(x, y) = 0.4 exp(−R(x4 + y4)),

where R = 10−5 and additional random noise was added (σ = 0.2). Number of mesh
nodes was N = 501 and Ω = (−500, 500)× (−500, 500) . In each figure, values for d,
v0 and final time T are indicated2.
Convergence analysis. We have measured convergence of numerically obtained
results on several meshes compared to the finest mesh (N = 2001) on square domain
Ω = (−250, 250)× (−250, 250). The results are in following tables and figures, where
we have used parameters for disk-like pattern (Table 1, parameters v0 = 0.25, d =
0.25, T = 350, see also Figure 7) and pattern with round rough envelope (Table 2,
parameters v0 = 0.09, d = 0.15, T = 1400, see also Figure 8). The mesh size h was
decreased and L∞ and L2 norms were measured. SDoF stands for spatial degree of
freedom and the experimental order of convergence (EOC) is the exponent given by
the formula (see also [2, 3])

Error2/Error1 = (h2/h1)EOC.

2Labels u, uw and v in figures denote densities for active bacteria, active and inactive bacteria
and nutrients respectively.
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Fig. 3. Results of numerical simulations for v0 = 0.071, d = 0.12, T = 8600, dense branch
morphology-like pattern.

Fig. 4. Results of numerical simulations for v0 = 0.087, d = 0.05, T = 10000, diffuse–limited
aggregation-like pattern.

Fig. 5. Results of numerical simulations for v0 = 0.09, d = 0.1, T = 2485, pattern with round
rough envelope.

Fig. 6. Results of numerical simulations for v0 = 0.25, d = 0.25, T = 700, disk-like pattern.

3. Conclusion. We present qualitative results for bacteria growth model where
five types of patterns were obtained by the numerical simulations with suitable pa-
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rameter setting (see Figures 2, 3, 4, 5, 6). We also obtained quantitative results of
the pattern growth evaluated by means of measuring numerical convergence (see Ta-
bles 1, 2). In Figures 7, 8, we can observe the shape dependence on the mesh size and
influence of the orthogonality of the mesh structure. Such asymmetries of patterns
vanish as the mesh size h decreases. On the other hand, quantitative behaviour of
tree-like and dendritic bacteria patterns obtained by the presented model remain a
challenging task for the future.
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Mesh SDoF L∞(0, T ;L2) L∞(0, T ;L∞) EOC u EOC u
h N*N error of u error of u L2 L∞

2.0 63001 24.67872 0.23843 – –
1.667 90601 19.74641 0.22235 1.22429 0.3834
1.25 160801 12.85131 0.17905 1.49202 0.75221
1.0 251001 8.74512 0.13481 1.72512 1.27192

0.833 361201 6.28791 0.09921 1.80529 1.67806
0.713 491401 4.82112 0.08012 1.70761 1.37389
0.625 641601 3.55618 0.06070 2.28885 2.10691
0.556 811801 2.79808 0.04724 2.07349 2.14347
0.5 1002001 2.27929 0.04008 1.93169 1.54761

0.455 1212201 1.79743 0.03153 2.51836 2.54438
0.417 1442401 1.52109 0.02700 1.91399 1.77767
0.385 1692601 1.22657 0.02218 2.69544 2.46551

Mesh SDoF L∞(0, T ;L2) L∞(0, T ;L∞) EOC v EOC v
h N*N error of v error of v L2 L∞

2.0 63001 24.10103 0.23318 – –
1.667 90601 19.09298 0.21265 1.279 0.50588
1.25 160801 12.26536 0.16641 1.53723 0.85188
1.0 251001 8.29076 0.12326 1.75509 1.34495

0.833 361201 5.94117 0.09006 1.82373 1.71749
0.713 491401 4.54911 0.07256 1.71631 1.38901
0.625 641601 3.36055 0.05481 2.29885 2.12933
0.556 811801 2.63529 0.04257 2.07816 2.16146
0.5 1002001 2.14644 0.03615 1.93277 1.53854

0.455 1212201 1.69201 0.02840 2.52248 2.55885
0.417 1442401 1.43216 0.02436 1.91177 1.75932
0.385 1692601 1.15457 0.01998 2.69853 2.48273

Mesh SDoF L∞(0, T ;L2) L∞(0, T ;L∞) EOC w EOC w
h N*N error of w error of w L2 L∞

2.0 63001 2.34153 0.01379 – –
1.667 90601 1.76969 0.01046 1.53742 1.51628
1.25 160801 1.08381 0.00683 1.7032 1.47952
1.0 251001 0.71987 0.00465 1.83366 1.72084

0.833 361201 0.51403 0.00326 1.84322 1.94448
0.713 491401 0.40059 0.00261 1.60293 1.43949
0.625 641601 0.29514 0.00195 2.31911 2.22018
0.556 811801 0.23341 0.00151 2.00578 2.17304
0.5 1002001 0.19417 0.00128 1.73395 1.53584

0.455 1212201 0.15418 0.00101 2.44512 2.55881
0.417 1442401 0.13354 0.00087 1.64788 1.74227
0.385 1692601 0.10929 0.00071 2.51017 2.43099

Table 1
Table of convergence errors and EOC coefficients for disk-like pattern.
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Fig. 7. Results of numerical simulations for v0 = 0.25, d = 0.25, T = 700 and different mesh
size N , compound u for disk-like pattern.
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Fig. 8. Results of numerical simulations for v0 = 0.09, d = 0.15, T = 1400 and different mesh
size N , compound u for pattern with round rought envelope.
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Mesh SDoF L∞(0, T ;L2) L∞(0, T ;L∞) EOC u EOC u
h N*N error of u error of u L2 L∞

2.0 63001 4.10622 0.05021 – –
1.667 90601 3.07952 0.04006 1.57989 1.23953
1.25 160801 1.78246 0.02722 1.89931 1.34231
1.0 251001 1.22904 0.01743 1.66601 1.99675

0.833 361201 0.95551 0.01386 1.37776 1.25506
0.713 491401 0.74504 0.01074 1.59955 1.63918
0.625 641601 0.53725 0.00854 2.48208 1.74240
0.556 811801 0.52373 0.00783 0.21784 0.73648
0.5 1002001 0.41752 0.00567 2.13505 3.04800

Mesh SDoF L∞(0, T ;L2) L∞(0, T ;L∞) EOC v EOC v
h N*N error of v error of v L2 L∞

2.0 63001 3.49169 0.04199 – –
1.667 90601 2.58035 0.03211 1.66077 1.47328
1.25 160801 1.47564 0.02119 1.94119 1.44426
1.0 251001 1.01498 0.01366 1.67707 1.96787

0.833 361201 0.78628 0.01076 1.39724 1.30663
0.713 491401 0.61315 0.00843 1.59884 1.56386
0.625 641601 0.44198 0.00663 2.48501 1.82121
0.556 811801 0.42842 0.00603 0.26637 0.81518
0.5 1002001 0.34343 0.00449 2.08276 2.78712

Mesh SDoF L∞(0, T ;L2) L∞(0, T ;L∞) EOC w EOC w
h N*N error of w error of w L2 L∞

2.0 63001 2.84203 0.02392 – –
1.667 90601 2.12037 0.01970 1.6084220 1.0667881
1.25 160801 1.26813 0.01414 1.7856134 1.1518897
1.0 251001 0.89162 0.01095 1.5786252 1.1470427

0.833 361201 0.69800 0.00907 1.3398770 1.0311038
0.713 491401 0.55540 0.00757 1.4691713 1.1576636
0.625 641601 0.40751 0.00634 2.3504215 1.3539341
0.556 811801 0.39702 0.00559 0.2229633 1.0751357
0.5 1002001 0.32255 0.00481 1.9565191 1.4166847

Table 2
Table of convergence errors and EOC coefficient for pattern with round rough envelope.


