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GMRES ACCELERATION ANALYSIS FOR A CONVECTION
DIFFUSION MODEL PROBLEM∗

JURJEN DUINTJER TEBBENS†

Abstract. When we apply the GMRES method [24] to linear systems arising from streamline
upwind Petrov-Galerkin (SUPG) discretization [15, 2, 19, 9, 11] of a convection-diffusion model
problem [6, 7, 8, 17, 18] on an N ×N grid, convergence curves display a slow decline during initial
iterations and suddenly become steeper around the Nth iteration. Whereas analysis of the initial
phase of convergence was successfully accomplished, theoretical description of the second period,
quantifying the observed convergence acceleration, has not been undertaken so far [18]. Exploiting
tools that were used in [17, 18] to explain the period of slow convergence, we propose to analyze the
phase that follows by considering a diagonal translation of the linear system. In this manner we can
separate components of the system matrix that change significantly around the Nth iteration from
the remaining components. We derive an upper residual bound that is based on this separation and
demonstrate its accuracy on numerical examples.
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1. Introduction. Partial differential equations represent problems of major im-
portance for scientific computations. Among them, convection diffusion problems
form a large class; their numerical solution has been intensively studied in the litera-
ture [19, 23, 25]. Depending on the diffusion coefficient, the differential operator can
become highly non-normal [22] and the discretized operators share the non-normality.
This has an influence on the choice and the behavior of solvers of the corresponding
systems of linear equations. We will analyze the behavior of the frequently used GM-
RES method [24] when it is applied to the non-normal linear system arising from a
specific convection diffusion problem with dominating convection.

Starting with an initial guess x0, the GMRES method determines approximations
xk to the solution, with the residual vectors rk = b−Axk satisfying

‖rk‖ = ‖pk(A)r0‖ = min
p∈Pk

‖p(A)r0‖ ,

where Pk denotes the set of polynomials of degree at most k with value one at the
origin. When the method is applied to a system that is far from normal, convergence
analysis based on spectral properties of the system matrix can be very misleading [1,
9, 18, 20, 22, 13, 14]. Instead, the field of values [5, 9, 12], Faber polynomials [16],
pseudospectra [22], numerical polynomial hulls [10] or simply physical observations [6]
have shown to be for many non-normal discretized differential operators more reliable
tools to explain the corresponding behavior of GMRES. None of these tools, however,
is able to fully explain convergence behavior for the general non-normal case and such
a tool is not expected to be found in the near future.

We analyze in this contribution a frequently considered model problem [9, 6, 7, 8,
11, 17, 18] with a non-normal linear system that yields distinct phases of convergence
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of the GMRES method. We treat individual phases and analyze their behavior. In
Section 2 we present the model problem, in Section 3 we analyze the initial phase of
convergence with the help of tools developed by Liesen and Strakoš in [17, 18] and
in the next section we show how we can extend the approach of [17, 18] in order
to understand the second phase of convergence. We demonstrate the results of the
analysis of the second phase with a numerical experiment in the last section, where
we also briefly mention a way to describe the possible third phase of convergence.

This contribution presents in a short form some results which will be described
with full proofs and analysis in [3].

2. The Model Problem. In [17, 18] Liesen and Strakoš considered, similarly
to [6, 7, 8, 9, 11], the following model problem

−ν∇2u+ w · ∇u = 0 in Ω = (0, 1)× (0, 1), u = g on ∂Ω,(2.1)

where ν is a scalar diffusion coefficient and w is the vector velocity field. Using the
SUPG discretization [15, 2, 19, 9, 11], the coefficient matrix for the discretized system
takes the form

Ã = νAd +Ac + δ̂As,

where Ad = 〈∇φj ,∇φi〉 represents the diffusion term, Ac = 〈w · ∇φj , φi〉 represents
the convection term, and As = 〈w · ∇φj , w · ∇φi〉 is a stabilization term added to
suppress nonphysical oscillations. Here φj , j = 1, 2, . . . , are the bilinear finite element
nodal basis functions for an N by N grid with spacing h = 1/(N+1) and 〈·, ·〉 denotes

the L2 inner product on Ω. The parameter δ̂ is chosen in what has been shown to be a
near optimal way for one dimensional problems and what appears to be a reasonable
way for higher dimensional problems as well [6, 7], namely,

δ̂ =
δh

‖w‖ , where δ =
1

2

(
1− 1

Ph

)
,

and Ph ≡ h‖w‖/(2ν) is the mesh Peclet number.
For the special case of a vertical wind w = [0, 1]T and the vertical line ordering

(parallel with the wind direction) for equations and unknowns, the N 2 by N2 system
matrix AV takes the form

AV = AV (h, ν, δ) = νK ⊗M +M ⊗ ((ν + δh)K +G) ,(2.2)

see, e.g., [4, Section 1.1] and [9, pp. 1081 and 1089]. Here

M =
h

6
(S + 4I + ST ),(2.3)

K =
1

h
(−S + 2I − ST ),(2.4)

G =
1

2
(−S + ST ),(2.5)

where I is the identity and S = [e2, . . . , eN , 0] is the down shift matrix, are the N by
N mass, stiffness and gradient matrices of the one dimensional constant coefficient
convection diffusion equation discretized on a uniform mesh using linear elements.
The symmetric tridiagonal Toeplitz matrices M and K can be diagonalized by the
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Fig. 2.1. Entries |γj | (o), |γjτj | (+) and |γjζj | (*) of the blocks Tj from (2.7), j = 1, . . . , 35.
(a) ν = .005; (b) ν = .00005.

same matrix of eigenvectors [18]. Denoting this matrix with U we transform the
system matrix AV through

(U ⊗ I)AV (U ⊗ I) = ν(UKU)⊗M + (UMU)⊗ ((ν + δh)K +G) ≡ A.(2.6)

Elementary algebra shows that A is a block-diagonal matrix consisting of N nonsym-
metric tridiagonal Toeplitz blocks Tj , each of size N by N ,

A = diag(T1, . . . , TN ), Tj = γj (S + τjI + ζj S
T ), j = 1, . . . , N,(2.7)

for more details see [6], [7] and [18].
We consider two example problems, each with h = 1/36, which yields system

matrices of dimension 1225. In the first case ν = .005 and in the second ν = .00005,
giving mesh Peclet numbers of 2.778 and 277.8, respectively. In Fig. 2.1 the values
|γj |, |γjτj | and |γjζj |, j = 1, . . . , 35, are displayed. Fig. 2.2(a) shows the convergence
of the GMRES algorithm for each problem, using a zero initial guess and a right hand
side vector corresponding to the discontinuous inflow boundary conditions

u(x, 0) = u(1, y) = 1 for
1

2
≤ x ≤ 1 and 0 ≤ y < 1,(2.8)

u(x, y) = 0 elsewhere on ∂Ω,(2.9)

see [21] and [7, 8, 9]. Both curves display a period of slow convergence followed by
an acceleration of convergence speed. For a similar behavior with a different choice
of parameters see [18]. In the next section we analyze the initial phase.

3. The initial phase of convergence. We will briefly present the explanation
of slow initial convergence of GMRES for this model problem which was given by
Liesen and Strakoš in [18]. They exploit the block-diagonal structure (2.7) of the
system matrices arised from the discretization of the model problem. Partitioning the
right hand side b (resulting from the discontinuous inflow boundary conditions (2.8)
and (2.9)) according to the block-diagonal structure as

b = [b(1)T , . . . , b(N)T ]T ,(3.1)
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Fig. 2.2. (a) GMRES relative residual norms for ν = .005 (solid) and ν = .00005 (dashed); (b)
squared GMRES absolute residual norms for (2.7) with right hand side from (2.8) and (2.9) (solid)
and for each system (3.4), j = 1, . . . , 15, individually (dashed lines), ν = .005.

where all b(j) are column vectors of length N , we obtain the lower residual bound

‖rk‖2 = min
p∈Pk

‖p(A)b‖2 = min
p∈Pk

N∑

j=1

‖p(Tj)b(j)‖2(3.2)

≥
N∑

j=1

min
p∈Pk

‖p(Tj)b(j)‖2.(3.3)

Hence the GMRES residual norms for the model problem are bounded from below by
the residual norms generated by the individual block problems

Tjx
(j) = b(j), j = 1, 2, . . . , N.(3.4)

If GMRES converges slowly for at least one of the block problems, then the bound
implies that GMRES must converge slowly for the entire problem during the first N
iterations.

This is exactly what happens in our examples. In Fig. 2.2(b) the squared absolute
residual norms of the slowest converging block problems (3.4) (i.e. the blocks T1 till
T15) for the first problem with ν = 0.05 are represented by dashed lines. The solid
line displays the squared absolute residual norms for the original problem with the
system matrix (2.7) and the right hand side corresponding to (2.8) and (2.9). In the
second example, with ν = 0.0005, the curves are very similar and we do not show
them here.

Slow convergence of GMRES applied to a single block problem (3.4) with the
tridiagonal Toeplitz matrix Tj = γj (S + τjI + ζj S

T ) has been analyzed in [17, 18]
as follows. The analysis is based on the following identity for the kth residual vector

r
(j)
k of the jth block problem

(r
(j)
k )T

‖r(j)
k ‖2

= [1,−τj , . . . , (−τj)k][b(j), (S + ζjS
T )b(j), . . . , (S + ζjS

T )kb(j)]+ ,(3.5)
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where [X ]+ denotes the Moore-Penrose pseudoinverse of the matrix X and we assume
that [b(j), (S + ζjS

T )b(j), . . . , (S + ζjS
T )kb(j)] has full column rank, see [17, equation

(3.14)]. Note that the expression does not depend upon the scaling factor γj of the
Toeplitz block. Taking norms we obtain

‖r(j)
k ‖ =

∥∥∥[1,−τj , . . . , (−τj)k][b(j), (S + ζjS
T )b(j), . . . , (S + ζjS

T )kb(j)]+
∥∥∥
−1

≥
(

k∑

i=0

(−τj)2i

)− 1
2

σmin

(
[b(j), (S + ζjS

T )b(j), . . . , (S + ζjS
T )kb(j)]

)
.(3.6)

In order to bound (3.6) from below, we write

[b(j), (S + ζjS
T )b(j), . . . , (S + ζjS

T )kb(j)]

= [b(j), Sb(j), . . . , Skb(j)] + [0, ζjS
T b(j), . . . ,

(
(S + ζjS

T )k − Sk
)
b(j)]

≡ L(j)
k +M

(j)
k .(3.7)

When the first entry of the right hand side b(j) is nonzero, the matrix L
(j)
N−1 is lower

triangular and nonsingular. This is true for all block problems (3.4). Moreover, some

of the blocks satisfy ‖M (j)
N−1(L

(j)
N−1)−1‖ < 1. For these blocks and k = N − 1 we can

bound (3.6) by

(
N−1∑

i=0

(−τj)2i

)− 1
2

σmin

(
[b(j), (S + ζjS

T )b(j), . . . , (S + ζjS
T )N−1b(j)]

)

≥
(

1− ‖M (j)
N−1(L

(j)
N−1)−1‖

)(N−1∑

i=0

(−τj)2i

)− 1
2

σmin(L
(j)
N−1) ,(3.8)

see [17, 18]. Then the slow initial convergence of GMRES applied to the original
N2 ×N2 problem can be quantified by the large values of the lower bound (3.8) for
some dominating N ×N block problems.

The main limitation of this approach lies in the fact that it treats the individual
block problems separately. Although the lower bound (3.3) explains slow initial con-
vergence, an analysis of the acceleration at step N cannot be based on (3.3) because
for k = N all single block problems are solved and the bound (3.3) is zero. Moreover,
the phase of accelerated convergence needs to be described by an upper bound rather
than a lower bound, and the upper bound should couple the influence of the single
block problems on the rightmost minimization problem of (3.2).

4. Acceleration of convergence. For quantification of the acceleration of con-
vergence we will modify the tool presented in the preceding section. Liesen and Strakoš
analyze convergence by separating the influence of the diagonal from the influence of
the subdiagonals, see (3.6). Having done so, they decompose the matrix related to
subdiagonal entries into an easy to handle lower triangular matrix plus the remain-
der and concentrate on the triangular matrix, see (3.7) and (3.8). Here we will do
essentially the same.

Let for some properly chosen parameter τ the matrix C = A − τI denote a
diagonal translation of A = diag(T1, . . . , TN ), Tj = γj (S+ τjI + ζj S

T ), j = 1, . . . , N.
Then, similarly to (3.5), the GMRES residual vectors can, under the assumption that
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[b, Cb, . . . , Ckb] has full column rank, be written as

rTk = ‖rk‖2 [1,−τ, . . . , (−τ)k][b, Cb, . . . , Ckb]+,

for the proof see [3]. Taking norms gives

‖rk‖ =
∥∥[1,−τ, . . . , (−τ)k

]
[b, Cb, . . . , Ckb]+

∥∥−1
.(4.1)

Writing C = SL +D + SU , where

SL = diag (γ1S, . . . , γNS),(4.2)

D = diag ((γ1 τ1 − τ)I, . . . , (γN τN − τ)I)),(4.3)

SU = diag (γ1 ζ1S
T , . . . , γN ζNS

T ),(4.4)

we define, as in (3.7),

[b, Cb, . . . , Ckb] = [b, (SL +D + SU )b, . . . , (SL +D + SU )kb]

= [b, SLb, . . . , S
k
Lb] +

[
0, (D + SU )b, . . . , [(SL +D + SU )k − SkL]b

]

≡ Lk +Mk.(4.5)

With the partitioning (3.1) of b, the (i+1)st column of Lk has the following structure:

Lkei+1 = SiLb = [(γ1S)ib
(1)T

, . . . , (γNS)ib
(N)T

]T .

Every vector (γjS)ib
(j)

has i leading zero entries due to the application of the down
shift Si. Clearly, all the columns of Lk starting from the (N + 1)st column, must be
zero vectors. This represents the significant change at the Nth iteration which we
link to the acceleration of convergence.

We now formulate an upper bound that separates quantities related to the trans-
lation τI from those related to the remainder A− τI = C. Rewrite (4.1) as

‖rk‖ =
1

‖ [1,−τ, . . . , (−τ)k] [Lk +Mk]+‖ .(4.6)

If Lk +Mk has full column rank, then for any vector v of length k + 1,
∣∣ [1,−τ, . . . , (−τ)k ] v

∣∣ =
∣∣ [1,−τ, . . . , (−τ)k ] [Lk +Mk]+(Lk +Mk) v

∣∣
≤ ‖ [1,−τ, . . . , (−τ)k ] [Lk +Mk]+‖ ‖(Lk +Mk) v‖,

hence with (4.6)

‖rk‖ ≤ ‖(Lk +Mk) v‖
∣∣ [1,−τ, . . . , (−τ)k] v

∣∣−1
.

With the choice v = ek+1 we can exploit the fact that the last column of Lk must
vanish for k ≥ N . The resulting upper bound is

‖rk‖ ≤
‖(Lk +Mk)ek+1‖

|τ |k .(4.7)

Note that this upper bound is nothing but the bound we obtain by replacing the
residual polynomial with the scaled and translated kth power polynomial. Indeed,
using (4.5),

‖rk‖ = min
p∈Pk
p(0)=1

‖ p(A)b‖ ≤
∥∥∥∥∥

(
A− τI
−τ

)k
b

∥∥∥∥∥ =
‖Ckb‖
|τ |k =

‖(Lk +Mk)ek+1‖
|τ |k .

In the next section we show that this bound captures, for a proper choice of the
parameter τ , the sudden decrease of the residual norm at the Nth iteration.
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Fig. 5.1. (a) Norms of b(j), j = 1, . . . ,N , for ν = . 005 (solid); (b) GMRES residual norm re-

duction for ν = . 005 (solid) and the corresponding upper bounds from (4.7) with τ = (
∑N

j=1
γjτj)/N

(dotted) and τ = (γ1τ1 + γ2τ2)/2 (dash-dotted).

5. Numerical experiment. We consider the model problem from Section 2
with the specification of boundary conditions and parameters as in Fig. 2.2(a). We
concentrate in this section on the choice of the translation parameter τ , and try to
obtain a bound (4.7) that captures the change of convergence behavior and that is as
tight as possible. Please note from the preceding section that the more the parameter
τ reduces the influence of the matrix Mk in (4.5), the better is the chance that the
corresponding bounds will describe the acceleration of convergence. We will propose
several choices of the translation parameter τ , compute the resulting bounds (4.7)
and discuss their behavior.

Let us start with the case ν = .005 (the solid curve in Fig. 2.2(a)). Then the values
γjτj , j = 1, . . . , 35, are remarkably close to each other, see Fig. 2.1(a). Moreover, the
norms of the vectors b(j) (see the solid line in Fig. 5.1(a)) show that b(1) and b(2) are
much larger in norm than the others.

Based on these observations, we concentrate on the contribution from the first
and the second block from (2.7), which dominate the initial stage of the minimization

problem (3.2), and take τ ≡ (γ1τ1+γ2τ2)
2 . Then (4.7) gives the upper bound repre-

sented by the dash-dotted curve in Figure 5.1(b). It captures very tightly the slow
initial decrease of the residual norm as well as the sudden acceleration of convergence.
However, after a few more steps, the slope of the upper bound does not fit due to the
differences between T1, T2 and Tj , 3 ≤ j ≤ N, which will show up after the influence
of the dominant blocks T1 and T2 is eliminated.

In order to get a bound that is less sensible to the differences in Tj , 1 ≤ j ≤ N,

we may try the average diagonal value, τ ≡ (
∑N

j=1 γjτj)/N . The resulting bound is
plotted as the dotted curve in Figure 5.1(b). It does not capture the sudden change
of convergence but the slope of the accelerated convergence is almost correct (though
the bound is not tight).

Both choices of τ make the entries of the matrix D in (4.3) tiny. Hence, as |γjζj | is
much smaller than one for j = 1, . . . , N , the matrix Lk is for k = 1, . . . , N much larger
in norm than Mk. Therefore the corresponding bounds start to decrease significantly
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around the Nth step when the newly formed columns of Lk are zero. The choice

τ = (γ1τ1+γ2τ2)
2 yields a tighter bound because it concentrates on the blocks T1 − τI

and T2−τI corresponding to the dominating entries b(1) and b(2) of the initial residual.
With the smaller scalar diffusion parameter ν = .00005, the acceleration of con-

vergence around the 35th iteration is less pronounced than with ν = .005, but it is
still present (see the dashed curve in Figure 2.2(a)). We observe a slight acceleration
at step 35, and a second, more significant acceleration later. The individual diagonal
values γjτj are not as close to each other as for ν = .005 (see Fig. 2.1(b)). On the
other hand, the elements of b with largest absolute value are again found in b(1) and
b(2), see the solid line in Fig. 5.2(a).

If we choose, as before, τ ≡ (γ1τ1 + γ2τ2)/2, we obtain the upper bound plotted
with a dash-dotted line in Figure 5.2(b) . The bound captures well the first accelera-
tion but not the second one. This observation is explained by the construction of the
bound.

In the remainder of this section we outline the construction of an upper bound
which captures the slope of the third phase of convergence for ν = .00005. It is based
on modification of (4.7).

In the first 60 steps, the dominance of the first two residual blocks r
(1)
0 , r

(2)
0 is

largely reduced, as shown in Fig. 5.2(a), which plots the values of ‖r(j)
60 ‖, j = 1, . . . , N,

(dashed line), where we have partitioned residual vectors according to (3.1). From the
60th iteration on, we therefore change the translation parameter and use the average
diagonal value τ ≡ (

∑35
j=21 γjτj)/15 of the 15 last blocks. This choice is motivated by

the size of the individual blocks r
(j)
60 . Thus we extend our upper bound as

‖rk‖ ≤
∥∥∥∥∥

(
2A− (γ1τ1 + γ2τ2)I

−(γ1τ1 + γ2τ2)

)k
r0

∥∥∥∥∥ ,(5.1)

for k ≤ 60, and

‖rk‖ ≤

∥∥∥∥∥∥

(
15A− (

∑35
j=21 γjτj)I

−(
∑35

j=21 γjτj)

)k−60

·
(

2A− (γ1τ1 + γ2τ2)I

−(γ1τ1 + γ2τ2)

)60

r0

∥∥∥∥∥∥
,(5.2)

for k > 60. The resulting upper bound is represented by the dashed line in Fig. 5.2(b).
It captures the slope of the accelerated convergence (though with delay).
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