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ON QUALITY IMPROVEMENT OF TRIANGULAR MESHES
USING NODE RECONNECTION∗

PAVEL VÁCHAL† AND RAO V. GARIMELLA‡

Abstract. A novel algorithm for rezoning of computational meshes is proposed, based on
reconnection of nodes, without any repositioning. Since the ultimate objective is an efficient mesh
quality improvement method for ALE simulations, the physical behavior of the simulated problem is
taken into account. The proposed process minimizes the error of interpolation of a particular discrete
function, such as the mean value of some state variable, which characterizes the system under study.
A practical implementation of the method is suggested and its usability demonstrated by numerical
results.
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1. Introduction. The Arbitrary Lagrangian-Eulerian (ALE) algorithm, first
proposed in [1], is a very promising approach for simulations of complex physical pro-
cesses, for example in material science or fluid dynamics. The ALE methods consist of
three steps: The Lagrangian step, in which nodes move with the fluid, is followed by
the rezone step, where the deformed mesh is modified in order to keep good quality.
Finally, in the remapping step, the solution is conservatively interpolated from the
old mesh to the new, improved one. Here we focus on the mesh rezone step or in
other words the process of improving the mesh quality so that the next Lagrangian
step becomes possible. The remapping part is not discussed here. More on this topic
can be found e.g. in [2].

Two of the ways to rezone the mesh are by node repositioning and by node
reconnection. While the ultimate goal is to use a combination of node repositioning
and reconnection to effectively improve a mesh, we believe that to gain full control
about the rezoning process, one first has to understand and manage each of the
two techniques separately. Recently, we suggested a set of methods based on mesh
repositioning, without changes of connectivity [3]. Here we investigate rezoning by
pure node reconnection. Positions of nodes stay fixed and the mesh quality is being
improved by changing of the edges between them. For simplicity, we are working on
an unstructured triangular mesh, where the process can be simply described by a
sequence of edge “swaps”, i.e. replacements of a selected edge by another one. Node
reconnection for non-simplicial meshes is more complex and is not very well defined.

Experience shows that geometrical changes of the mesh should be closely related
to behavior of the simulated physical problem to achieve best results. We seek to
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meet this requirement by basing the rezoning procedure on the behavior of a selected
state variable in the domain, for example density in fluid dynamics or temperature
in plasma physics. This allows us to test our rezoning method in ALE simulations of
many phenomena, such as Rayleigh-Taylor instability or laser-plasma interactions.

The whole process will be first explained on a smooth general function. Then the
practical implementation will be described, utilizing a real state variable given by the
discrete set of its mean values over the cells. Finally, numerical results will reveal the
basic properties of the proposed method.
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Fig. 2.1. Definition of Edge swapping: A pair of cells sharing the original edge (a). New
triangles after swapping of the edge (b).

2. Swapping Algorithm. Our main goal is rezoning in a solution-sensitive
manner. We choose to achieve this by forming an objective function and minimizing
it using edge swapping:

• Loop through all interior edges. For each edge,
1. Compute the contributions of the two triangular cells sharing this edge

(i.e. triangles O1 and O2 in Fig. 2.1(a)) to the global objective function.
2. Imagine that the edge “swapped” as in Fig. 2.1(b), forming two new

triangles N1 and N2. Compute contributions of these new triangles to
the objective function.

3. Compare the values according to selected criterion.1 If the objective
function is reduced by swapping, then perform the swap, i.e. remove the
original edge and create the new one.

• Repeat for next edge, until the mesh stays unchanged during one whole loop.
In the practical implementation, we used the framework called MSTK [4] to repre-
sent and handle the mesh. This framework frees up application programmers from
worrying about the details of mesh data structures and allows them to focus on im-
plementing their high level application.

3. Objective Function. There is a wide set of mesh quality measures, most
of which are based purely on the element geometry (condition number for particular
vertices, average cell areas, etc.) As mentioned above, we suggest an approach which
also utilizes the physics of the simulated problem.

In the cells of the mesh, we construct a piecewise constant or piecewise linear
interpolation of discrete function ρ, which in some sense represents the physical system
we deal with. For example, ρ may be density in fluid dynamics. The quality of a
particular cell is then taken as an estimate of the L2 error of the discrete approximation
integrated over the cell. In other words, from the two possible mesh configurations, we
select that one, which allows better piecewise constant or piecewise linear interpolation

1We always compare two pairs of numbers, representing quality of the triangles before and after
swapping. We can for example demand the improvement of their average quality by some amount,
or require that the worse triangle after swapping is better than the worse triangle before. In the
current implementation, we use a combination of multiple criteria with various priorities.
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of the underlying function in the sense of least squares. How we estimate the L2 error
for the piecewise constant or piecewise linear reconstruction is described below.

Consider a smooth two-dimensional function f(x, y), defined on the domain of
the mesh. We focus on one particular triangle T with centroid (x0, y0). The Taylor
expansion at any point (x, y) of the triangle be

f (x, y) = f (x0, y0) + (x− x0)
∂f

∂x

∣∣∣∣x0
y0

+ (y − y0)
∂f

∂y

∣∣∣∣x0
y0

+O
(

(x− x0)2 , (y − y0)2
)

(3.1)
Ignoring terms of second order and higher, we can rewrite (3.1) as

f (x, y)− f (x0, y0) ≈ δx ∂f

∂x

∣∣∣∣x0
y0

+ δy
∂f

∂y

∣∣∣∣x0
y0

where δx denotes (x− x0) and δy equals to (y − y0). Note, that the left-hand term

is the difference of the function and its value in centroid.2 Let I
(0)
T be the integral of

square of the right-hand part over triangle T , i.e.

I
(0)
T =

∫∫

T

(
δx

∂f

∂x

∣∣∣∣x0
y0

+ δy
∂f

∂y

∣∣∣∣x0
y0

)2

dx dy (3.2)

We can see, that smaller values of I
(0)
Ti

for all mesh cells Ti mean better approximation
of function f by its piecewise constant reconstruction and in this sense we can use

I
(0)
T as a measure of mesh quality.

Taking into account also second-order terms of Taylor expansion, we have

f (x, y) = f (x0, y0) + δx
∂f

∂x

∣∣∣∣x0
y0

+ δy
∂f

∂y

∣∣∣∣x0
y0

+

+ δx δy
∂2f

∂x∂y

∣∣∣∣x0
y0

+
(δx)2

2

∂2f

∂x2

∣∣∣∣x0
y0

+
(δy)2

2

∂2f

∂y2

∣∣∣∣x0
y0

+O
(
δx3, δy3

)

Similarly as above, we can write

f (x, y)− f (x0, y0)− δx ∂f

∂x

∣∣∣∣x0
y0

− δy ∂f
∂y

∣∣∣∣x0
y0

≈

≈ δx δy ∂2f

∂x∂y

∣∣∣∣x0
y0

+
(δx)2

2

∂2f

∂x2

∣∣∣∣x0
y0

+
(δy)2

2

∂2f

∂y2

∣∣∣∣x0
y0

This time, taking square of the right-hand side and integrating it over triangle T , we
have

I
(1)
T =

∫∫

T

(
δx δy

∂2f

∂x∂y

∣∣∣∣x0
y0

+
(δx)2

2

∂2f

∂x2

∣∣∣∣x0
y0

+
(δy)2

2

∂2f

∂y2

∣∣∣∣x0
y0

)2

dx dy (3.3)

and decreasing values of I
(1)
T mean improving approximation by piecewise linear re-

construction.

2For constant and linear functions, value in centroid corresponds to mean value.
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There are two questions left: how to choose the function f and how to compute
its derivatives. The easiest way is to select an analytical function and compute its
values and derivatives anywhere we need it. However, in real applications, we want
to use a discrete function ρ, representing some physical quantity. Then we can take
first derivatives as slopes of some piecewise linear interpolation, for example Barth
reconstruction (see e.g. [5]). Other ways to compute the derivatives, particularly
Green’s Theorem and integration of forward differences, are described in the following
section.

4. Approximation of Derivatives. Now, let us suggest, how to compute the
derivatives of discrete function ρ. First we briefly mention a way based on Green’s
theorem and then we derive another approach, based on minimization of suitable
functional using Taylor expansion.
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Fig. 4.1. Approximation of first derivative using Green’s Theorem.

4.1. First-Order Derivatives from Green’s Formula. First approach fol-
lows [6] and uses the Green’s formulas

∂ρ

∂x
= lim

S→0

1

S

∫

∂S

ρ dy ,
∂ρ

∂y
= − lim

S→0

1

S

∫

∂S

ρ dx (4.1)

For a particular cell, we apply them on region Ω surrounded by a path through centers
of neighboring cells and edges as in Fig. 4.1. If the value of ρ is constant in each cell
(e.g. if ρ is given by its discrete mean values), then the first formula in (4.1) takes
the form

∂ρ

∂x

∣∣∣∣
T

=
1

VΩ

NT∑

k=1

ρCk
(
yEk+1

− yEk
)

(4.2)

where NT is number of cells neighboring to T (NT = 10 in Fig. 4.1) and the volume
VΩ can be computed similarly with Green’s formula

S =
1

2

∫

∂S

x dy − y dx
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applied to region Ω. The second formula in (4.1) is used in an analogous manner.
Problems with boundary cells are solved by surrounding the mesh by zero-volume
ghost cells.

4.2. Derivatives from Minimization of Taylor Terms. This approach is
based on the following idea: There is a discrete function ρ given by mean values ρ̄
in cells. In each cell, we want to construct an interpolation of order p (here p = 0
for constant or p = 1 for linear interpolation), which is given by Taylor expansion
up to the selected order. At this point, the derivatives are unknown. We omit all
expansion terms of order p + 2 and higher and compute the unknown derivatives
so, that the square of terms of order p + 1 is minimal. That means, we replace the
residual of Taylor expansion by the p+ 1-st terms, which we compute from integrals
over surrounding cells.

First we present an approach which is sufficient if only first derivatives are needed,
i.e. if p = 0. Then we make a straightforward extension to a case when p = 1 and
one needs also second derivatives. Besides our suggestion, there are of course many
other ways to approximate the derivatives.

4.2.1. First Derivatives. Let us define the functional

F
(
ρCx , ρ

C
y

)
=
∑

N∈ΩC


ρ̄N − 1

V N

∫

N

ρC(x, y) dx dy




2

, (4.3)

where V N is the volume of cell N , ΩC is the set of all cells neighboring to cell C and
ρC is the piecewise linear reconstruction

ρC = ρ̄C + ρCx
(
x− xC

)
+ ρCy

(
y − yC

)
(4.4)

in cell C with centroid (xC , yC). Value in centroid, denoted ρ̄C , is identical to mean
value for constant as well as linear functions. Derivatives ρCx and ρCy are unknown.
Subdividing the integral into small parts and introducing new symbols for these parts,
we get

F =
∑

N∈ΩC

(
ρ̄N − ρ̄C − ρCx I

CN
x + ρCy I

CN
y

V N

)2

, (4.5)

where

ICNx =

∫

N

(
x− xC

)
dx dy =

∫

N

x dx dy − V NxC

ICNy =

∫

N

(
y − yC

)
dx dy =

∫

N

y dx dy − V NyC .
(4.6)

We want to compute the derivatives ρCx and ρCy so, that our piecewise linear
reconstruction (4.4) is as close to the original function ρ as possible. To achieve this,
we minimize the functional F , i.e. we set its derivatives with respect to unknown
variables to zero, which gives the system

∂F
(
ρCx , ρ

C
y

)

∂ρCx
= 0 ,

∂F
(
ρCx , ρ

C
y

)

∂ρCy
= 0. (4.7)
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The derivatives are

∂F

∂ρCx
= −2

∑

N∈ΩC

(
ρ̄N − ρ̄C − ρCx I

CN
x + ρCy I

CN
y

V N

)
ICNx
V N

∂F

∂ρCy
= −2

∑

N∈ΩC

(
ρ̄N − ρ̄C − ρCx I

CN
x + ρCy I

CN
y

V N

)
ICNy
V N

,

(4.8)

so that the system (4.7) becomes

∑

N∈ΩC

(
ρCx

ICNx
V N

ICNx
V N

+ ρCy
ICNx
V N

ICNy
V N

−
(
ρ̄N − ρ̄C

) ICNx
V N

)
= 0

∑

N∈ΩC

(
ρCx

ICNy
V N

ICNx
V N

+ ρCy
ICNy
V N

ICNy
V N

−
(
ρ̄N − ρ̄C

) ICNy
V N

)
= 0,

or, subdividing the sums,
(
aCx,x aCx,y
aCx,y aCy,y

)
·
(
ρCx
ρCy

)
=

(
bCx
bCy

)
, (4.9)

where

aCα,β =
∑

N∈ΩC

ICNα
V N

ICNβ
V N

, bCα =
∑

N∈ΩC

(
ρ̄N − ρ̄C

) ICNα
V N

(4.10)

for α, β ∈ {x, y}. The unknown values of derivatives ρCx and ρCy are then

(
ρCx
ρCy

)
=

1

D

(
aCy,yb

C
x − aCx,ybCy

aCx,xb
C
y − aCx,ybCx

)
, D = aCx,xa

C
y,y −

(
aCx,y

)2
. (4.11)

Before we proceed one order higher, let us remark, that - depending on the problem
we solve - it can be useful to preserve local bounds by restricting the slopes ρCx and
ρCy for example with Barth-Jasperson limiter. This is described in [7].

4.2.2. First and Second Derivatives at Once. We define the functional

G
(
ρCx , ρ

C
y , ρ

C
xy, ρ

C
xx, ρ

C
yy

)
=
∑

N∈ΩC


ρ̄N −

∫
N

ρC(x, y) dx dy

V N




2

(4.12)

where V N is the volume of cell N and ρC is the piecewise parabolic reconstruction

ρC =ρ̄C + ρCx (x − xC) + ρCy (y − yC)+

+ ρCxy(x − xC)(y − yC) +
1

2
ρCxx(x− xC)2 +

1

2
ρCyy(y − yC)2.

(4.13)

Subdividing the integral into small parts and introducing new symbols for these
parts, we get

G =
∑

N∈ΩC

(
RCN −

ρCx I
CN
x + ρCy I

CN
y + ρCxyI

CN
xy + 1

2ρ
C
xxI

CN
xx + 1

2ρ
C
yyI

CN
yy

V N

)2

, (4.14)
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where

ICNx =

∫

N

(
x− xC

)
dx dy , ICNxx =

∫

N

(
x− xC

)2
dx dy

ICNy =

∫

N

(
y − yC

)
dx dy , ICNyy =

∫

N

(
y − yC

)2
dx dy

ICNxy =

∫

N

(
x− xC

) (
y − yC

)
dx dy

(4.15)

and RCN is the difference of mean values RCN = ρ̄N − ρ̄C .

Our goal is now to compute the five unknown derivatives ρCx , ρCy , ρCxy, ρ
C
xx and

ρCyy so, that such piecewise parabolic reconstruction is as close to the original function
ρ as possible. To achieve this, we minimize the functional G, i.e. we set its derivatives
with respect to unknown variables to zero, which gives the system

∂G
(
ρCx , ρ

C
y , ρ

C
xy, ρ

C
xx, ρ

C
yy

)

∂ρCα
= 0 , α ∈ {x, y, xy, xx, yy} (4.16)

The derivatives are

∂G

∂ρCα
= −2

∑

N∈ΩC

ICNα
V N

(
RCN −

ρCx I
CN
x + ρCy I

CN
y + ρCxyI

CN
xy + 1

2ρ
C
xxI

CN
xx + 1

2ρ
C
yyI

CN
yy

V N

)

for α ∈ {x, y, xy} and

∂G

∂ρCα
= −

∑

N∈ΩC

ICNα
V N

(
RCN −

ρCx I
CN
x + ρCy I

CN
y + ρCxyI

CN
xy + 1

2ρ
C
xxI

CN
xx + 1

2ρ
C
yyI

CN
yy

V N

)

for α ∈ {xx, yy}. As in the previous case, we subdivide the sums and the system
(4.16) becomes




aCx,x aCx,y aCx,xy aCx,xx aCx,yy
aCx,y aCy,y aCy,xy aCy,xx aCy,yy
aCx,xy aCy,xy aCxy,xy aCxy,xx aCxy,yy
aCx,xx aCy,xx aCxy,xx aCxx,xx aCxx,yy
aCx,yy aCy,yy aCxy,yy aCxx,yy aCyy,yy



·




ρCx
ρCy
ρCxy
1
2ρ
C
xx

1
2ρ
C
yy




=




bCx
bCy
bCxy
bCxx
bCyy



, (4.17)

where

aCα,β =
∑

N∈ΩC

ICNα
V N

ICNβ
V N

, bCα =
∑

N∈ΩC

(
ρ̄N − ρ̄C

) ICNα
V N

(4.18)

for α, β ∈ {x, y, xy, xx, yy}. The unknown values of derivatives ρCx , ρCy , ρCxy, ρ
C
xx

and ρCyy are then computed by solving linear system (4.17) in the usual way. Also,

similarly to the case of first derivatives, the integrals ICN can be further simplified
for practical computations.
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4.2.3. Remarks on Computation of Integrals. In practical computations, it
would be very time-consuming to use the integrals as they are defined in the left-hand
part of (4.6) and in (4.15). To estimate derivatives in each cell C, one would have to
integrate over all neighboring cells N ∈ ΩC . Furthermore, we always use the integrals
divided by cell volumes. For this reason, we introduce new integrals

JNx =
1

V N

∫

N

x dx dy , JNxx =
1

V N

∫

N

x2 dx dy

JNy =
1

V N

∫

N

y dx dy , JNyy =
1

V N

∫

N

y2 dx dy

JNxy =
1

V N

∫

N

xy dx dy

(4.19)

related to the integrals from (4.6) and (4.15) by

ICNx
V N

= JNx − xC ,
ICNxx
V N

= JNxx − 2xCJNx +
(
xC
)2

ICNy
V N

= JNy − yC ,
ICNyy
V N

= JNyy − 2yCJNy +
(
yC
)2

ICNxy
V N

= JNxy − xCJNy − yCJNx + xCyC .

(4.20)

Note, that the new integrals JNα , α ∈ {x, y, xy, xx, yy} depend only on values in
cell N , so that they can be computed only once for each cell and stored. Then, to
evaluate expression (4.10) or (4.18), we use only multiplication, addition and sub-
traction. Integrals JNα need to be recomputed only if the mesh is changed by node
reconnection (or by node repositioning, which is not applicable in our process).

Another advantage of storing such normalized integrals is the simplified treatment
of ghost cells. Imagine a cell degenerated into a 1D line segment. To compute JNα for
such cell, we simply take the 1D integral over this segment and divide it by length
of this line. Similarly, for a cell degenerated into a single point, we take JNx as the
x-value in this point, JNy as the y-value, etc., so that we avoid division by zero. In
the rest of the computation, we do not need to care whether the cell is degenerate or
not, since we use only the stored values of JNα .

5. Numerical Results. Let us now briefly present results of two numerical
tests. The first mesh subdivides the domain [− 1

2 ,
1
2 ] × [− 1

2 ,
1
2 ] into 32 triangular

cells. Fig. 5.1 shows rezoned meshes obtained by our swapping process with first
derivatives computed in various ways. We compare the approach with analytical
function f = (x+ 1

2 )3/8 + (x+ 1
2 )2(y+ 1

2 )2/16 + (y+ 1
2 )3/8 (shown by dashed isolines

in the background) and its analytical derivatives to the results based on discrete
mean values of f and numerical approximation of its derivatives. Fig. 5.2 shows
results on a denser meshes (200 cells) based on piecewise constant and piecewise
linear reconstruction of function f = cos(πx) cos(πy).

Here and in all other tests we performed on various meshes, the general behavior
of the swapping process is the same: as expected, all cells tend to align either parallel
or perpendicular to isolines of the underlying function. This is exactly what we need
in ALE simulations: the mesh geometry automatically adapts to some variable of
the physical system under study. Note, that the aligning of cells is more dramatic in
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the case of piecewise constant reconstruction, since the difference to the underlying
function (i.e. the L2 error of interpolation) is bigger. With the piecewise linear recon-
struction, the effect is still strong enough and moreover the cells retain a satisfactory
quality.
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Fig. 5.1. Test 1. The original mesh (a). Mesh after rezoning based on piecewise constant
reconstruction and error estimator with analytical first derivatives (b), unlimited numerical first
derivatives (c) or numerical first derivatives restricted by Barth’s limiter (d). Isolines of recon-
structed function f (dashed).

6. Conclusion. As we have already mentioned, in ALE simulations it is advan-
tageous if the mesh rezoning strategy is related to physical behavior of the system
under study. This is why the proposed node reconnecting algorithm utilizes the val-
ues of a selected state variable, for example density, and minimizes the error of its
piecewise constant or piecewise linear interpolation. First, we tested the idea on an
analytical underlying function with known analytical derivatives. In all cases, cells of
a sufficiently dense mesh aligned according to isolines of that function, which means
that in this way the mesh geometry can keep track with behavior of the physical
system. However, in practical ALE simulations we know only discrete values of the
state variable (mostly mean values in the cells) and so we need to interpolate them
and approximate the derivatives. This can be done for example by minimization of
the next term in Taylor expansion, as it was suggested above. Numerical results of
this discrete implementation are in good correspondence to results with analytical
function, which proves that the proposed method is practically applicable.

There is no doubt that a good mesh rezoning strategy can be achieved as a
combination of node reconnection with node repositioning (see e.g. [3]), but we believe
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Fig. 5.2. Test 2. The original mesh (a). Isolines of underlying function f (d). Mesh rezoned
by piecewise constant reconstruction using error estimator with analytical (b) or unlimited numerical
first derivatives (c). Mesh rezoned by piecewise linear reconstruction with error estimator based on
analytical (e) or numerical (f) first and second order derivatives.

that it is first necessary to understand and manage both approaches in detail in order
to develop their fully controlled combination. Our belief is supported by preliminary
results of the ongoing research.
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