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NUMERICAL MODELLING OF FE-CR-NI DIFFUSIVE PHASE
TRANSFORMATION ∗

JIŘÍ VALA † AND JIŘÍ SVOBODA ‡

Abstract. An original one-dimensional model for the diffusive phase transformation in substitu-
tional alloys, based on the application of the Onsager thermodynamical extremal principle, is derived
and applied to a Fe-rich Fe-Cr-Ni system. The model assumes the interface of finite thickness with
finite mobility and solute segregation and drag in the migrating interface. One typical example of
calculation of concentration profiles of Cr, Ni and Fe in two phases γ and α, where γ → α transfor-
mation is active, and in their interface (in 3 variants) is presented in details; more results obtained
by the same MATLAB-based simulation software are discussed.
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phase transformation, numerical analysis of systems of ODEs.
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1. Introduction. The general overview of problems of diffusion in solids can be
found in [2]. To simulate diffusional phase transformations it is necessary to solve
the coupled problem of bulk diffusion and interface migration. Usually some ortho-
or para-equilibrium contact conditions at the interface are applied. A more advanced
approach is presented in [1]: it restricts the continuity in chemical potentials only
to the interstitial elements (not to the substitutional ones). If no solute drug effects
in the migrating interface (of the finite mobility) occur, the jumps of the substitu-
tional elements can be derived from the Onsanger thermodynamic extremal principle
of maximum dissipation, using the access of [5]. Nevertheless, if such effects are not
negligible, the jump conditions for corresponding chemical potentials change signifi-
cantly.

In this contribution a model for massive transformation, taking into account the
solute drag in the interface of finite thickness, will be derived and applied to the
phase transformation of a Fe-rich Fe-Cr-Ni system: 0.1 % Cr and 1.9 % Ni will be set
for simulation. Unlike the approach of [7] the system of differential equations will be
formulated more carefully to avoid numerical instabilities even in case of rapid changes
of diffusive coefficients on the interface between the α and γ phases and to handle
complicated semi-empirical expressions for the evaluation of chemical potentials both
in the α and γ phases, obtained on base of the extensive experimental work at the
Montainuniverisität Leoben.

2. Physical background. We shall consider a closed one-dimensional system
with 3 substitutional components, occuring in our Fe-Cr-Ni system. (In [7] the natu-
ral generalization to a finite number of components is considered, but this will not be
necessary here.) Two phases, α and γ, will be separated by a migrating incoherent
interface; the α→ γ transformation will be active. The local chemical composition is
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described by concentrations c1, c2 and c3 for particular components in the following
order: Cr, Ni and Fe (dominant, c3 = 1 − c1 − c2). The chemical potentials µ1, µ2

and µ3 depend both on c1, c2 and c3 and on the coordinate x directly (for the details
see below). The interface of the constant thickness is assumed to move from the left
to the right. No deformation at any point due to diffusion or phase transformation,
no sources or sinks of vacancies and no stresses in the system (consequently: no me-
chanical driving force for a coupled process of bulk diffusion and interface migration)
will be included into the model.

More precisely, we shall make use of the following notation:

i component index (i ∈ {1, 2, 3}),
ci component concentration,
ji component diffusive flux,
x coordinate in the one-dimensional Euclidean space (x ∈ Ω = [0, H ], H is a

positive real constant),
t time coordinate (t ∈ [0,∞)),
I position of moving interface (I = [xL(t), xR(t)], h = xR(t)−xL(t) is a positive

real constant, independent of t, h < H),
v interface migration rate (constant on I , variable in time in general).

The Einstein summation rule (for repeated indices) will be preserved; if some index
is underlined then the summation is not allowed. The indices i, k, l will be assumed
to be from {1, 2, 3} everywhere; δ will be reserved for the Kronecker symbol (δik = 1
for i = k, δik = 0 otherwise).

The material characteristics are three diffusive coefficients Di, one interface mo-
bility M and three chemical potentials µi. In the following considerations also the
diffusive factor

Ai = ciDi/(RT )

for the constant R = 8314 J K−1 mol−1 and for certain fixed temperature T will be
useful. Moreover, λ is the Lagrange multiplier (forcing the “Kirchhoff law” δiiji = 0).
A prime symbol will denote a derivative by x, a dot symbol a (total) derivative by t
briefly.

Usually the diffusive coefficients Dα
i and Dγ

i for the phases α and γ are known;

the same is true for the diffusive coefficients Dβ
i , corresponding to an ideal liquid

state β of material. However, such diffusive coefficients Dβ
i are correct just in the

interface center xC = (xL + xR)/2; the diffusive coefficients Di inside the interface
(xL < x < xR) have to be interpolated applying the formula

lnDi(x) = ξαD(x) lnDα
i + ξβD(x) lnDβ

i + ξγD(x) lnDγ
i .

In this formula ξαD(x), ξβD(x) and ξγD(x) are such polynomial weight functions of order
4 that

Di(xL) = Dα
i , Di(xR) = Dγ

i , Di(xC) = Dβ
i , D′i(xL) = D′i(xR) = 0 .

The coefficients of all polynomials ξαD(x), ξβD(x) and ξγD(x) can be derived easily, using
the Newton form of the Hermite interpolation scheme. We shall also use dimensionless
factors ζi(x) = Di(x)/Dα

3 ; then we shall write D instead of Dα
3 briefly.

The formulation of 3 chemical potentials can be done in the similar way: we can
distinguish

µi(x, c) = µi0(x) +RT (ln ci + ϕ(x, c))



152 J. VALA, J. SVOBODA

where

µi0(x) = ξαµ (x)µαi0 + ξβµ(x)µβi0 + ξγµ(x)µγi0

for a priori known functions µαi0, µβi0 and µγi0. Then all polynomials of order 4 ξαµ (x),

ξβµ(x) and ξγµ(x) can be determined uniquely to guarantee

µ0i(xL) = µα0i , µ0i(xR) = µγ0i , µ0i(xC) = µβ0i , µ′0i(xL) = µ′0i(xR) = 0 .

Moreover, if ϕi = ϕi(c) are set for fixed concentrations c = (c1, c2, c3), it is possible
to write

ϕi(x) = ξαϕ(x)ϕαi + ξγϕ(x)ϕγi

where no better information for the setting of polynomials of order 4 ξαϕ(x) and ξγϕ(x)
is available than

ϕi(xL) = ϕαi , ϕi(xR) = ϕγi , ϕi(xC) = 0 , ϕ′i(xL) = ϕ′i(xR) = 0

with ϕαi and ϕγi known from (rather complicated) experiments, arranged with respect
to micromechanical arguments. (However, it is expected that these terms will not be
dominant in the whole process of phase transformation, and therefore are negligible
in the first rough approximation.)

Let us suppose that initial values of c = (c1, c2, c3) (such that c1 + c2 + c3 = 1)
are given; we shall denote them by c× = (c×1 , c

×
2 , c
×
3 ). Every diffusive flux, driven by

concentration change, must satisfy the condition of mass conservation on Ω

ċi + j′i = 0 .

On Ω also the Gibbs - Duhem condition ciµ̇i = 0 is valid.
The basic idea for the formulation of the evolution equations, following [4], p. 1374,

and [5], p. 961, is the the evaluation of the total Gibbs energy of the system

G =

∫

Ω

ciµi dx

and its time derivative Ġ = Ġα + Ġγ + ĠI where

Ġα =

∫ xL

0

(∂ci/∂t)µi dx+ ẋLci(xL)µi(xL) = −
∫ xL

0

j′iµi dx+ vci(xL)µi(xL) ,

Ġγ =

∫ H

xR

(∂ci/∂t)µi dx− ẋRci(xR)µi(xR) = −
∫ H

xR

j′iµi dx− vci(xR)µi(xR) ,

ĠI =

∫ xR

xL

(∂ci/∂t)µi dx = −
∫ xR

xL

j′iµi dx+ v

∫ xR

xL

ciµ
′
i dx+

v [ci(xR)µi(xR)− ci(xL)µi(xL)]

and of the rate of the total Gibbs energy dissipation due to bulk diffusion and interface
migration

Q =
1

2

∫

Ω

(j2
i /Ai) dx+

1

2

∫

I

(v2/M) dx+

∫

Ω

δiijiλ dx .
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The stationary point of the functional Ġ+Q corresponds to zero values of all varia-
tional derivatives

D(Ġ+Q)(j̃1, j̃2, j̃3) =

∫

Ω

j̃iµ
′
i dx+

∫

Ω

(jij̃i/Ai) dx = 0 ,

D(Ġ+Q)(ṽ) = −ṽ
∫

I

ciµ
′
i dx+ ṽv/M = 0 , DQ(λ̃) = δiijiλ̃ = 0

for any admissible diffusional fluxes j̃1, j̃2, j̃3, an interface migration rate ṽ and a
Lagrange multiplier λ̃.

One simple consequence of the second condition is the direct expression for cal-
culation of interface migration rate

v = M

∫

I

ciµ
′
i dx .

The differential equations for concentrations on Ω can be derived from the remaining
stationary point conditions: we have

µ′i + ji/Ai + λ = 0 , δiiji = 0

which (using the elimination of λ by [7]) yields

ji = −AiAk(µ′i − µ′k)/(δllAl) = −Ai (µ′i −Akµ′k/(δllAl)) .

The integral version of the resulting differential equations, suggested in [7], is
∫

Ω

(∂ci/∂t)φ dx+

∫

Ω

AiAk(µ′i − µ′k)/(δllAl)φ
′ dx = 0

for some virtual functions φ; after rather long calculations this can be converted into
the form

∫

Ω

(∂ci/∂t)φ dx+

∫

Ω

Bik(c)c′kφ
′ dx = 0 .

Nevertheless, Bik(c) are strongly nonlinear functions generated by µ1, µ2 and µ3;
this limits all applications of standard variational methods as FEM, FVM, etc. In
the literature usually very simplified versions of such equations can be found. The
analysis of the two-component system (c3 = 0) is most frequent: since c2 = 1 − c1
evidently, only one evolution equation is substantial. For example, in [3] for a system
of such type (using the theory of Hölder spaces and analytic semigroups in parabolic
problems) both the existence and the uniqueness of smooth solutions for a fully non-
linear coupled system of PDEs has been proved. The proper three-component system
(without deeper mathematical analysis) has been studied in [4]; unfortunately, its
assumption of very thin interface (xL → xR) cannot be removed and, moreover, stan-
dard differential equations are replaced by “ad hoc” constructed difference schemes,
whose FDM convergence properties are not transparent.

3. Steady-state analysis. Most experiments with α→ γ transformations ver-
ify the hypothesis that (after some time) the process obtains steady-state properties
– the quantities v and c become constant in time. The diffusional fluxes ji are then
able to be related to the concentrations ci as

ji = v(ci − c×i )
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where c×i are the concentrations in the phase γ far from the interface; the integral
expression for the evaluation of v stays unchanged. Especially in the phase α no
concentration profiles exist – the chemical composition is given by c×i .

Let us try to construct an effective numerical algorithm for this case. We must
respect that all diffusion coefficients Di(x) change their values on I very rapidly.
Eliminating all explicit diffusional fluxes, we have now

AiAk(µ′i − µ′k)/(δllAl) + v(ci − c×i ) = 0 .

To avoid long mathematical expressions, let us introduce several additional functions
η(c) = ζlcl, µ̂0i(x) = µ′0i/(RT ) and σ(c) = µ̂0kζkck. Using the decomposition of µi
(and dividing this equation by Dζi), we obtain

c′i − (ci/η)ζkc
′
k + ciµ̂0k − (ci/η)σ + ciϕi,l(c)c

′
l − (ci/η)ckζkϕk,l(c)c

′
l+

vci/(Dζi) = vc×i /(Dζi)

where ϕi,l(c) means ∂ϕi/∂cl, etc. Clearly it is helpful to introduce one more notation

ϕ̂ik(c) = ciϕi,k(c)− (ci/η)clζlϕl,k(c) ;

this leads to a formally simple system of 3 ODEs with 3 unknowns

(δik − (ci/ζk)η + ϕ̂ik) c′k + (µ̂0i − σ/η + v/(Dζi)) ci = vc×i /(Dζi) .

Evidently, c1 + c2 + c3 = 1, and thus c′3 = −c′1 − c′2. This enables us to remove the
last (third) equation and to express c3 (including its derivative) in first two equations
by means of remaining concentrations. Standard algebraic manipulations then yield

(I +M)c̄′ +Kc̄ = F

where c̄ = (c1, c2) (later also c̄× = (c×1 , c
×
2 ) will be useful), M is the square matrix of

order 2 compound from elements (i, k ∈ {1, 2})

Mik = −ci (ζi − ζ3) /η + ϕ̂ik − ϕ̂i3 ,

K is the diagonal square matrix of the same order compound from elements (i ∈ {1, 2})

Ki = µ̂0i − σ/η + v/(Dζi)

and F is the vector consisting of 2 elements (i ∈ {1, 2} again)

Fi = vc×i /(Dζi) .

The exact solution of such system is (even in case of constant µ0i and zero φi)
not available; therefore some robust numerical scheme has to be applied. In [7] the
formal transformation zi = ζici has been done and the whole system has been re-
formulated in new variables zi. This can simplify the system for (nearly) piecewice
constant factors ζi. However, in case of rapid changes of ζi the original formula-
tion with unknown concentrations ci seems to be better for the following numerical
analysis: in practice we can expect ε/2 < ci < 1 − ε with ε ≈ 10−3, thus e. g.
(maxx∈I max(c1, c2, c3))/(minx∈I min(c1, c2, c3)) will be probably much lower than
(maxx∈I max(z1, z2, z3))/(minx∈I min(z1, z2, z3)).
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For example, the Crank-Nicholson scheme on I gives

(I +Ms +
∆

2
Ks)c̄s = (I +Ms−1 − ∆

2
Ks−1)c̄s−1 + Fs ;

here ∆ means a calculation step and ψs is briefly used instead od ψ(s∆) for any
function ψ(x) everywhere on Ω and s ∈ {1, . . .m}, m = h/∆ (therefore c′(sh) ≈ (cs−
cs−1)/∆). At the start of all calculations both matricesMs and Ks are set using the
assumption that ci = c×i (no better information is available); this starts an iterative
procedure of evaluation of c̄1, c̄2, . . . , c̄m and also v, correction of M1, . . . ,Mm, of
K1, . . . ,Km and of F1, . . . ,Fm, etc. Outside I (where H � h) the real distributions
of concentrations are typically similar to (but not exactly identical with) exponential
curves: the first two additive terms in Ki are equal to zero, the right-hand side
of the whole system of ODEs is constant, the (non-constant) matrix M is not far
from diagonal (neglecting all terms of type ϕ̂ik), thus the eigenvalue analysis for
−(I +Ms)−1Ks can be useful to improve approximate solutions from the Crank-
Nicholson scheme.

4. Numerical results and discussion. All numerical calculations make use of
the original software code, runable in each standard MATLAB environment (with no
special requirements to additional toolboxes of FEMLAB compatibility). Only the
automatic code generator of algebraic expressions for µi evaluation (not described in
details here) needs MAPLE-supported symbolic differentiation.

As a typical example, let us consider 3 chemical potentials defined by

µα01 = 23353 J/mol , µβ01 = 39437 J/mol , µγ01 = 36765 J/mol ,

µα02 = 27186 J/mol , µβ02 = 41624 J/mol , µγ02 = 39885 J/mol ,

µα03 = 32083 J/mol , µβ03 = 48167 J/mol , µγ03 = 45495 J/mol ,

the interface thickness h = H/2 = 10−8 m (the value of H must be supplied for

the postprocessing) and the mobility coefficient M = 4.10−14 J s/m4. The values of
diffusive coefficients can be transformed from those applied in [5], p. 965:

Dα
3 = 10−14 m2/s , Dβ

3 = 10−16 m2/s , Dγ
3 = 4.10−19 m2/s ,

Dα
1 = 2Dα

3 , Dβ
1 = 2Dβ

3 , Dγ
1 = 5Dγ

3 ,

Dα
2 = .3Dα

3 , Dβ
2 = .3Dβ

3 , Dγ
2 = .5Dγ

3 .

All functions ϕαi and ϕγi are available for our Fe-Cr-Ni system as the research out-
puts from the Montainuniverisität Leoben (thanks to the collaborations with the
joint authors of [6]). Unfortunately, their original calculation formulae are very long
(containing more then 1500 FORTRAN program lines, much more complicated than
those presented in the illustrative example of [7]) and include a lot of additive terms
of power-law types (. . .) cri and (. . .) cri ln ci with r ∈ {0, 1, . . . , 25}. Therefore it was
necessary to prepare a special MATLAB-based software to analyse these formulae, to
decompose them into logical parts and to suggest some algorithms for the (not very
expensive) evaluation of ϕi and (using the symbolic differentiation) of ϕi,k. As we
have announced yet, we shall start from c×1 = 0.001 and c×2 = 0.019.

For such data the final distributions of concentrations of Cr, Ni and Fe have
been obtained after 3 iterative steps; the results are evident from Fig. 1 where these
distributions in the left column are completed by the distributions of corresponding
chemical potentials µi: the full line shows always the final value, the upper dashed
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Fig. 1. Original settings of material characteristics

line shows the approximate final value without any correction based on ϕi functions
(from the above mentioned complicated formulae) and the lower dashed line shoes
the value of RT ln ci only. Fig. 2 and Fig. 3 demonstrate that relatively small changes
of material characteristics cause very different results: those on Fig. 2 were received
for M = 4.10−15 J s/m

4
(instead of original M = 4.10−14 J s/m

4
), those on Fig. 3 for

Dγ
3 = 2.10−18 m2/s (instead of original Dγ

3 = 4.10−19 m2/s).

Some more results of numerical simulations have been published in [6]. Both

M and Dβ
i /D

α
i have been supposed as free parameters to study the changes in the

behavior of all concentration profiles. Alternatively, to provoke a significant solute
segregation, other chemical potentials than those from our example have been tested,
too. Several figures and graphs presented in [6] (together with other sequences of
results of computations, not published yet) show how the concentration profiles are
influences by the above mentioned settings. (Let us remind the fact that most material
characteristics for the α→ γ phase transformation are far from exact – various authors
rely on various “correct values”.) In the case that no solute drag effect is supposed and
a finite interface mobility is assumed, the sharp interface model [5] predicts the same
jumps of chemical potentials for all substitutional components across the interface.
These conditions can be modified dramatically if the solute segregation and drag
effects are included into the model. The jumps of chemical potentials are then not
the same for all components and depend on both M and Dβ

i /D
α
i .

We can conclude: to reach a higher level of understanding of Fe-rich Fe-Cr-Ni
phase transformation, it seems to be necessary at least: i) to do more precious anal-
ysis of sensitivity of all concentration profiles on prescribed material characteristics
(including complicated “nonlinear corrections” ϕi of chemical potentials and their
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Fig. 2. Modified interface mobility
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Fig. 3. Modified diffusive coefficients in the phase γ
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physical background), ii) to prepare a special FEM software for the analysis of the
original evolution (not only of the simplified steady-state) problem.
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