
Proceedings of ALGORITMY 2005
pp. 300–308

QUADRILATERAL MESHES STRIPIFICATION

PETR VANĚČEK∗, RADEK SVITÁK§ , IVANA KOLINGEROVÁ† , AND VÁCLAV SKALA‡

CENTRE OF COMPUTER GRAPHICS AND DATA VISUALIZATION
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIVERSITY OF WEST BOHEMIA
PILSEN, CZECH REPUBLIC

{PET,RSVITAK,KOLINGER,SKALA}@KIV.ZCU.CZ

Abstract. Quadrilateral models are becoming very popular in many applications of computer
graphics (e.g. computer animation, computer games, scientific visualization of volumetric data, etc.).
The complexity of these models can be very high (even millions of quadrilaterals), thus the problem
of fast visualization of these meshes is often being solved. To increase the speed one can use some
techniques to avoid sending of unnecessary faces (e.g., visibility culling) or some kind of simplification
of complex objects (e.g., (C)LOD). Still it is important to reduce the time needed to transmit the set
of faces by compressing the topological information and decompressing at the rendering stage.

One of popular approaches is to convert the quadrilateral mesh to the triangle mesh and render
this mesh using strips of triangles. Using the strips, one can reduce the number of vertices sent to
the rendering pipeline as two neighboring triangles in a strip share an edge and it is not necessary
to send these vertices twice.

In this paper we present a new triangle stripping algorithm, designed for quadrilateral meshes.
As this algorithm searches for a strip of quadrilaterals and splits them in the final stage it produces
a high quality stripification.

Key words. computer graphics, visualization, quadrilaterals, triangles, triangle strips.

AMS subject classifications. 68R10, 68P30

1. Introduction. Nowadays quadrilateral meshes are very often used to store
and visualize various geometric objects in many applications such as computer games
and movie industry (subdivision surfaces [13]), medical and scientific visualization
(volume rendering, surface reconstruction from slices [9]), etc. In many of these
applications a real time visualization is required. The speed of todays’ high perfor-
mance rendering engines is very often bounded by the rate at which the data is sent
into the machine. Furthermore, most of the rendering engines can handle only triangle
faces, thus the number of primitives increases.

To draw a set of i independent quads (quadrilaterals), we need to transmit 4i
vertices. To reduce the amount of transmitted data, it is possible to split the quads
into two triangles and connect them into triangle strips (or tristrips). In some graphic
libraries a special type of primitives used for quads can be found (e.g., OpenGL).
Rendering of quad strips is usually slower than rendering of triangle strips and the
number of vertices is equal or higher than the number of vertices using tristrips (as
we show next).

A sequential tristrip is a sequence of j+4 vertices that represents j quads: in Fig-
ure 1.1(a) the sequence (1,2,3,4,5,6) represents quads 21243 and 23465 (or triangles
∆123, ∆324, ∆345 and ∆546). A sequential quad strip is a sequence of j + 4 vertices

∗§This work was supported by Ministry of Education of The Czech Republic – project FRVŠ
1348/2004/G1
†‡This work was supported by Ministry of Education of The Czech Republic – project MSM

235200005

300



QUADRILATERAL MESH STRIPIFICATION 301

that represents j quads: in Figure 1.1(b) the sequence (1,2,3,4,5,6) represents quads
21243 and 23465.

(a) (b)

Fig. 1.1. An example of sequential triangle strip 1.1(a) and a sequential quad strip 1.1(b).

In some situations, the quad adjacency does not allow a sequential encoding. In
Figure 1.2(a) the sequence (1,2,3,4,5,6,7,8) produces an invalid triangle ∆567. An
extra vertex has to be added to change the sequence to (1,2,3,4,5,4,6,7,8). This
operation is called swap and tristrips with swaps are called generalized tristrips. Using
a quad strip, the situation is worse. In Figure 1.2(b) the sequence (1,2,3,4,5,6,7,8)
produces an invalid quad 25687. To avoid this situation, it is necessary to make a
swap at a cost of three additional vertices, i.e., a sequence (1,2,3,4,5,6,6,6,6,4,8,7).

(a) (b)

Fig. 1.2. An example of a generalized triangle strip 1.2(a) and a generalized quad strip 1.2(b).

From the above example it is obvious that triangle strips are more general and
more efficient than quad strips. For this reason we concentrate on triangle strips in
this paper. As the triangle strips can potentially reduce the amount of data trans-
mission and transformation and lighting computations by a factor of three, many
graphics libraries support it (e.g., Direct3D, OpenGL). Due to importance of this
topic, many algorithms on stripification already exist. As the computing of an opti-
mal set of tristrips is NP-complete [3], some heuristic is necessary. This means that
each algorithm has its own advantages and disadvantages.

In this paper we describe a new stripification algorithm designed for quadrilateral
meshes. In Section 2, some algorithms for quadrilateral mesh stripification are shown.
Our new algorithm is presented in Section 3. Experiments and results are published
in Section 4. Conclusion and future work are discussed in Section 5.

2. Existing Methods. There are two possibilities how to construct triangle
strips from not fully triangulated meshes. The first approach is to use some algorithm
that triangulates the faces and then any stripification algorithm can be used. This way
is general and can be used for any type of polygonal meshes. The main disadvantage



302 P. VANĚČEK, R. SVITÁK, I. KOLINGEROVÁ, V. SKALA

of this approach is that it does not profit from the fact that the polygon can be
triangulated arbitrarily. The other approach searches for strips in the untriangulated
model and triangulates faces on the fly. Such an approach often leads to a better
stripification.

Many works on constructing triangle strips were presented. Akeley et al. [1] have
developed an algorithm, known as tomesh or SGI that converts a fully triangulated
mesh into triangle strips. The algorithm tries to build tristrips which do not divide
the remaining triangulation into too many small pieces. The strip is starting in the
triangle with the least number of neighbors. Then a greedy heuristic is adding adjacent
triangles with the least number of neighbors. If more triangles has the same number
of neighbors, the algorithm looks one step ahead. There exists several modifications
of this method using different heuristics [6, 11, 8, 5].

Xiang [12] developed an algorithm that can handle not fully triangulated meshes.
This algorithm uses a dual graph based approach, i.e., it does not work with triangles
but it uses a dual graph, where a node represents a triangle and neighboring triangles
are connected with an edge in the graph. First, a stable algorithm for triangulation
is used to triangulate non triangular faces. From this triangulation, the algorithm
constructs a spanning tree in the dual graph of the triangulation. Then a dynamic
procedure is used to partition the tree into a set of paths and greedily decomposes
these paths into sequential strips. Finally, the strips are concatenated into longer
ones. This algorithm produces a low number of vertices per triangle.

A method that takes the benefit of non triangulated data was developed by Evans
[4] and it is known as STRIPE. It is free for non-commercial use and it is used by
many authors for comparison. This algorithm is designed for meshes that are not
fully triangulated and contain large number of quadrilateral faces. These faces are
often arranged in large rectangular regions called patches. First, a global algorithm is
used to analyze the mesh, find these patches and stripify them. For remaining faces
a local SGI based algorithm is used.

Taubin [10] proposed an algorithm that can cover any connected manifold quadri-
lateral mesh without boundaries with a single strip. First, the algorithm finds an
Eulerian circuit in the dual graph of the mesh. This circuit is partitioned to a set of
Hamiltonian cycles. Then, these cycles are concatenated to a single strip by flipping
a diagonal of the corresponding quads.

3. QStrip. Nearly all stripification algorithms are designed for fully triangulated
meshes or for meshes with arbitrary polygons, thus these methods cannot benefit from
the regularity of quadrilateral meshes.

Our new algorithm (QSTRIP) is designed for meshes that are fully quadrilateral.
It is based on a similar idea as the SGI algorithm for triangle meshes. As we are not
working on a triangulated mesh, first we construct sequences of neighboring quadri-
laterals. Then we traverse these sequences and triangulate the quadrilaterals such a
way that each sequence can be covered with one triangle strip.

In the first step, the algorithm chooses a quadrilateral with a low number of
neighbors to start a new strip. This choice minimizes the number of short strips. In
Figure 3.1(a), the stripification process started in a quadrilateral with two neighbors
and an isolated quadrilateral Q appeared. Usually we can avoid such a situation by
starting from a quadrilatral with a low number of neighbors 3.1(b).

The chosen quadrilateral is removed from the mesh and it is inserted into the strip.
The mesh is locally updated to reflect the quadrilateral removal. Now the algorithm
chooses a neighboring quadrilateral that will be adjacent in the strip. To decrease



QUADRILATERAL MESH STRIPIFICATION 303

(a) (b)

Fig. 3.1. An example of a bad 3.1(a) and a good 3.1(b) choice of the starting quadrilateral.

the number of vertices in the final stripification the algorithm preferentially chooses a
quadrilateral that does not produce a swap (Figure 3.3(a)). The chosen quadrilateral
is again removed from the mesh and inserted into the strip. These steps are repeated
as long as it is possible (i.e., as long as there is a neighboring quadrilateral). If the
mesh still contains some quadrilaterals, a new strip is started. A pseudo-code of this
algorithm is presented in Figure 3.2.

while there is any quad in the mesh do
start a new strip
choose a quad with the lowest number of neighbors

add the quad to the current strip
remove the quad from the mesh
locally update the mesh
while there exists a neighbor of the current quad do

choose a neighboring quad that does not produce a swap
if such a quad does not exist then choose arbitrary

add the quad to the current strip
remove the quad from the mesh
update the mesh

end while
end while

Fig. 3.2. Pseudo-code of the algorithm.

The algorithm complexity is O(s · q+ q), where q is the number of quads and s is
number of strips in the final stripification, as we need O(q) steps to find the starting
quad for each strip. To speed up this algorithm, we use a priority queue for finding
the quad with the lowest number of neighbors. Using such a structure decreases the
complexity of finding the starting quad to O(1), and the algorithm complexity is
reduced to O(s+ q).

After the stripification phase, it is necessary to decompose the lists of quads into
vertices of triangle strips. To provide a correct (counter-clockwise) orientation of
triangle strips in the final mesh, it is necessary to start the first triangle of the strip
in a counter-clockwise manner. This determines the diagonal of the first quad. As we
cannot choose the first diagonal, three different situations can appear. In Figure 3.3(a)
a sequential strip for four quads is shown. If the sequence of quads is not straight, a
strip is preserved at a cost of one swap (Figure 3.3(b)) or two swaps (Figure 3.3(c)).

As the input meshes are fully 3D, in some cases it is not possible to split the quad
arbitrarily, otherwise incorrect triangles appear. As there are four triangles incident



304 P. VANĚČEK, R. SVITÁK, I. KOLINGEROVÁ, V. SKALA

(a) (b) (c)

Fig. 3.3. A straight sequence of quads can be covered by a sequential strip 3.3(a). To preserve
a strip in a non-straight sequence of quads, it is necessary to use one swap 3.3(b) or two swaps
3.3(c).

to one edge, the mesh is not manifold. Such a situation appears when two quads are
neighboring through two edges (see Figure 3.4(a)). To avoid the incorrect triangles
(Figure 3.4(b)), at least one of the quads has to be split along the diagonal that starts
in the vertex that is not common for these two quads (Figure 3.4(c)). Respecting
this criterion may lead to more swaps in the final stripification. Luckily this situation
does not appear very often in a real life model.

(a) (b) (c)

Fig. 3.4. When two quads have two common edges 3.4(a), incorrect triangles may appear
3.4(b); the incorrect triangle is gray colored. To avoid it, at least one of the quads has to be split
along the diagonal that starts in the vertex that is not common for these two quads 3.4(c).

4. Experiments and Results. Our new algorithm has been implemented in
Borland Delphi 7.0 as a part of a program for surface reconstruction from orthogonal
slices (the reconstructed mesh is purely quadrilateral). The experiments were per-
formed on a PC INTEL Pentium 4, 2.8 GHz, 2 GB of RAM, ATI FireGL T32 graphic
card, running on MS Windows XP.

As our algorithm is designed specially for quad meshes, the quality of stripification
is very high. We have compared our stripification algorithm with the STRIPE v.2
[2], which is also designed for quadrilateral meshes, and with the FTSG [12], which
can handle non-triangulated meshes. Both algorithms were compiled with gcc/cygwin
compiler.

A comparison of stripification methods is presented in Table 4.1. In the first
two columns the number of vertices and the number of quads of the tested model are
presented. In the next columns the number of strips and number of vertices (including
swaps) obtained by tested algorithm are shown.

Our new method produces more or less the same number of vertices as STRIPE,
but usually it covers the mesh by much smaller number of strips (especially for larger
models). The FTSG method, which produces very good stripification for fully trian-



QUADRILATERAL MESH STRIPIFICATION 305

Table 4.1
Comparison of stripification methods. For each method the number of strips and the number

of vertices in strips (including swaps) are presented.

STRIPE FTSG QSTRIP
vertices quads strips vertices strips vertices strips vertices

2112 2114 88 5101 113 5675 4 4903
4000 4002 111 9517 258 10955 33 9516
8240 8236 140 17096 293 21549 8 17922

12592 12588 391 29050 664 33725 32 28290
16288 16290 393 36570 788 43333 37 36558
25712 25714 570 57181 1084 67931 49 57386
36264 36266 817 79957 1522 95801 44 80078
41919 42005 1356 98276 2405 112840 102 95998

gulated models, produces stripifications with very high number of vertices and strips
in comparison to the STRIPE or the QSTRIP. The main reason for this big difference
is that the FTSG makes a triangulation of the quadrilateral mesh first and then it
stripifies the triangulated model. The STRIPE algorithm did not surprisingly create
large patches but usually it created long sequential strips of quads (see Figure 4.1(a)).
As these strips do not contain swaps, the number of vertices in the final stripification
is comparable to our new algorithm although the STRIPE contains much higher num-
ber of strips. A visual comparison of the tested algorithms is presented in Figure 4.1.
The tap model contains 16288 vertices and 16290 quads.

As the STRIPE algorithm outputs the stripification during the stripification pro-
cess, it is not possible to exclude the time of I/O operations. For this reason we have
included the time of I/O operations in all measurements, which can arise significant
errors. To minimize these errors, all time measurements were performed five times
and the minimal time is presented. Such a measurement can be a bit unfair to the
STRIPE algorithm, as the write operation is not continuous, but on the other hand
it is the real time that is needed for stripification. The comparison of running times
is published in Table 4.2.

The running times of the FTSG are comparable to the QSTRIP. The difference in
the running times can be partially caused by the cygwin emulation, as some functions
have to be called from the cygwin dynamic library, but the main reason is probably
the dynamic programming part of the FTSG algorithm.

The most time consuming step in the STRIPE algorithm is the global analysis
which searches for the patches. As this global analysis searches the longest possible
sequence of quads in both directions for each quad, it has O(n2) complexity for fully
quadrilateral meshes.

In the last table (Table 4.3) we present the average frame rate (FPS) for models
stripified by the tested methods and a ratio of frame rate for stripified models to
frame rate for models rendered with quads. For the measurement we used OpenGL
and vertex buffer objects (VBO) as they are preferred in new GPUs [7]. When using
VBO, a sequential list of vertices is sent to the GPU (i.e., for each quad, four vertices
are sent, for each triangle, three vertices are sent – 6 vertices for a quadrilateral face
– and for each strip all vertices including swaps are sent).

As for a triangle mesh we have to send 1.5 times more vertices than for a quadri-
lateral mesh, the frame rate is much lower even though rendering a triangle primitive



306 P. VANĚČEK, R. SVITÁK, I. KOLINGEROVÁ, V. SKALA

(a) STRIPE – 393 strips (b) FTSG – 788 strips

(c) QSTRIP – 37 strips

Fig. 4.1. Visual comparison of stripification of a model of a tap (16290 vertices).

is faster than rendering a quadrilateral.

Although the number of vertices using triangle strips is nearly two times smaller
than the number of vertices when using quads, the speed up is not two times higher.
The reason is similar to the quad vs. triangle speed up (e.g. drawing the triangle
strip primitive is more time consuming than drawing the quad).

The comparison of frame rates of individual stripification methods did not get
any surprising results. The FTSG produces a stripification that is rendered at the
lowest frame rate as it contains high number of vertices and strips. The stripification
produced by our algorithm runs at highest frame rate as the number of vertices and
strips is low. Although STRIPE produces a stripification of nearly the same number
of vertices as QSTRIP, the frame rate is in the middle between QSTRIP and FTSG.
This is caused by the fact that STRIPE stripification contains higher number of strips
and starting a new triangle strip costs some extra time.



QUADRILATERAL MESH STRIPIFICATION 307

Table 4.2
Comparison of running times (in seconds). For each method the running time (including I/O

operations) is presented.

vertices quads STRIPE FTSG QSTRIP
2112 2114 0.31 0.14 0.25
4000 4002 0.51 0.25 0.30
8240 8236 8.69 0.70 0.39

12592 12588 15.18 0.97 0.51
16288 16290 10.20 1.31 0.60
25712 25714 21.79 2.06 0.84
36264 36266 50.81 2.89 1.11
41919 42005 83.58 3.10 1.28

0

10

20

30

40

50

0 10000 20000 30000 40000

No. of quads

T
im

e
in

s
e
c
o
n
d
s

STRIPE

FTSG

QSTRIP

In all these tests our new algorithm reached the best results. These tests are a
bit unfair to STRIPE and FTSG as these algorithms can handle more general type
of meshes, on the other side as far as we know, there is no other algorithm designed
for fully quadrilateral meshes, thus we have chosen the best existing algorithms.

5. Conclusion. We have designed and implemented a new stripification algo-
rithm for quadrilateral meshes. As we know the mesh structure, we can exploit it
and produce a high quality stripification. In comparison to other methods that can
stripify not fully triangulated meshes, our new algorithm produces a stripification
with lower number of strips and vertices.

In the future work we would like to improve the quality of stripification (especially
to decrease the number of vertices). We also would like to investigate the behavior of
vertex caches that are implemented in todays GPUs and adapt the stripification to
maximize the benefit of the cache.

REFERENCES

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c. C Program on SGI Develope’s Toolbox CD,
1990.

[2] F. Evans. Stripe, 1998. http://www.cs.sunysb.edu/ ˜stripe/.
[3] F. Evans, S. Skiena, and A. Varshney. Completing Sequential Triangulations is Hard. Technical



308 P. VANĚČEK, R. SVITÁK, I. KOLINGEROVÁ, V. SKALA

Table 4.3
Comparison of frame rate achieved with models rendered with quads, triangles and tested strip-

ifications.

no. of QUADS TRIS STRIPE FTSG QSTRIP
quads FPS ratio FPS ratio FPS ratio FPS ratio FPS ratio
2114 234 1.00 229 0.98 252 1.08 238 1.02 240 1.03
4002 291 1.00 261 0.90 305 1.05 312 1.07 320 1.10
8236 229 1.00 192 0.84 285 1.25 276 1.21 283 1.24

12588 180 1.00 147 0.82 220 1.22 214 1.19 224 1.25
16290 166 1.00 130 0.79 207 1.25 200 1.21 218 1.31
25714 125 1.00 95 0.76 167 1.33 159 1.27 176 1.40
36266 99 1.00 73 0.74 139 1.40 130 1.32 146 1.48
42005 80 1.00 60 0.75 111 1.39 100 1.25 111 1.40

0.5

1.0

1.5

0 10000 20000 30000 40000

No. of quads

R
a
ti
o

TRIANGLES STRIPE

FTSG QSTRIP

report, Department of Computer Science, State University of New York at Stony Brook,
1996.

[4] F. Evans, S. Skiena, and A. Varshney. Optimizing Triangle Strips for Fast Rendering. In Roni
Yagel and Gregory M. Nielson, editors, IEEE Visualization ’96, pp. 319–326, 1996.

[5] O.M.van Kaick, M.V.G.da Silva, and H. Pedrini. Efficient Generation of Triangle Strips from
Triangulated Meshes. In Proceedings of the 12th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision (WSCG’2004), pp.
475, 2004.

[6] D. Kornmann. Fast and Simple Triangle Strip Generation. Technical report, VMS Finland,
Espoo, Finland, 1999.

[7] NVIDIA Corporation. Using vertex buffer objects. White Paper: http:// developer.nvidia.com/
object/ using VBOs.html, 2003.

[8] M.V.G.da Silva, O.M.van Kaick, and H. Pedrini. Fast Mesh Rendering through Efficient Tri-
angle Strip Generation. In Proceedings of the 10th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision (WSCG’2002), pp.
127–134, 2002.

[9] R. Sviták and V. Skala. Robust Surface Reconstruction from Orthogonal Slices. In Electronic
Computers and Informatics (ECI’04), pp. 451–456, 2004.

[10] G. Taubin. Constructing Hamiltonian Triangle Strips on Quadrilateral Meshes. In International
Workshop on Visualization and Mathematics 2002, 2002.

[11] P. Vaněček. Comparison of Stripification Techniques. In 6-th Central European Seminar on
Computer Graphics CESCG’02, pp. 65–74, 2002.

[12] X. Xiang, M. Held, and P. Mitchell. Fast and Effective Stripification of Polygonal Surface
Models. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on
Theoretical and Experimental Analysis of Discrete Algorithms), 1999.

[13] D. Zorin and P. Schröder. Subdivision for Modeling and Animation. Technical report, SIG-
GRAPH 2000, 2000. course notes.


