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EQUIVALENCE BETWEEN LOWEST-ORDER MIXED FINITE
ELEMENT AND MULTI-POINT FINITE VOLUME METHODS.

DERIVATION, PROPERTIES, AND NUMERICAL EXPERIMENTS∗

MARTIN VOHRALÍK†

Abstract. We consider the lowest-order Raviart–Thomas mixed finite element method for
elliptic diffusion problems on simplicial meshes in two or three space dimensions. This method
produces saddle-point problems for scalar and flux unknowns. We show how to easily eliminate
the flux unknowns, which implies an equivalence between this method and a particular multi-point
finite volume scheme, without any approximate numerical integration. The matrix of the final linear
system is sparse, positive definite for a large class of problems, but in general nonsymmetric. We
next show that these ideas also apply to mixed and upwind-mixed finite element discretizations of
nonlinear parabolic convection–reaction–diffusion problems. We finally present a set of numerical
experiments confirming important computational savings while using the equivalent finite volume
form of the lowest-order mixed finite element method.
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1. Introduction. Let us consider the elliptic problem

u = −S∇p in Ω , (1.1a)

∇ · u = q in Ω , (1.1b)

p = pD on ΓD , u · n = uN on ΓN , (1.1c)

where Ω ⊂ Rd, d = 2, 3, is a polygonal domain (open, bounded, and connected set),
S is a bounded, symmetric (this is however not necessary), and uniformly positive

definite tensor, pD ∈ H 1
2 (ΓD), uN ∈ H− 1

2 (ΓN ), q ∈ L2(Ω), ΓD ∩ ΓN = ∅, ΓD ∪ ΓN =
∂Ω, and |ΓD| 6= 0, where |ΓD| is the measure of the set ΓD.

Let Th be a simplicial triangulation of Ω (consisting of triangles if d = 2 and of
tetrahedra if d = 3) such that each boundary side lies entirely either in ΓD or in ΓN .
Let us denote by Eh the set of all non-Neumann sides (edges if d = 2, faces if d = 3)
of Th. Let finally ũ ∈ H(div,Ω) be such that ũ · n = uN on ΓN in the appropriate
sense. The approximation of the problem (1.1a)–(1.1c) by means of the mixed finite
element method consists in finding uh = u0,h+ ũ, u0,h ∈ V(Eh), and ph ∈ Φ(Th) such
that (see [5, 12])

(S−1u0,h,vh)Ω − (∇ · vh, ph)Ω = −〈vh · n, pD〉∂Ω

− (S−1ũ,vh)Ω ∀vh ∈ V(Eh) , (1.2a)

− (∇ · u0,h, φh)Ω = −(q, φh)Ω + (∇ · ũ, φh)Ω ∀φh ∈ Φ(Th) , (1.2b)
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where (u,v)Ω =
∫

Ω
u · v dx, 〈v · n, ϕ〉∂Ω =

∫
∂Ω

v · nϕ dγ(x), and V(Eh) and Φ(Th)
are suitable finite-dimensional spaces defined on Th. The associated matrix problem
is saddle-point and can be written in the form

(
A Bt
B 0

)(
U
P

)
=

(
F
G

)
. (1.3)

In the lowest-order Raviart–Thomas method [11] and its three-dimensional Nédé-
lec variant [10] the scalar unknowns P are associated with the elements of Th and U are
the fluxes through the sides of Eh. Using the hybridization technique, one can decrease
the number of unknowns to Lagrange multipliers associated with non-Dirichlet sides
and obtain a symmetric and positive definite matrix, cf. [3, 5]. Especially in three
space dimensions, there are much less elements than sides, and hence the long-standing
interest in reducing the unknowns to only the scalar unknowns P . When S is diagonal,
this is indeed possible, using approximate numerical integration, cf. [4, 13]. Using
the expanded mixed finite element method, these techniques can be extended also
onto full-matrix diffusion tensors, cf. [2]. To our knowledge, the only technique for
reducing the number of unknowns to the number of elements without any numerical
integration is studied in [14]. In two space dimensions, it works on unstructured
triangular meshes, but in three space dimensions, it only works on a limited class of
structured tetrahedral meshes. One associates here to each element a new unknown.

We present in this paper a new method which permits to exactly and efficiently
reduce the system (1.3) onto a system for the original scalar unknowns P only. It
shows that in the lowest-order Raviart–Thomas mixed finite element method, one
can express, solving only local problems, the flux through each side using the scalar
unknowns, sources, and possibly boundary conditions associated with the elements
in a neighborhood of this side. This method is thus equivalent to a particular multi-
point finite volume scheme, and this without any numerical integration. We call this
scheme a condensed mixed finite element scheme. We describe the stencil of the final
matrix and give sufficient conditions for its symmetry and positive definiteness. We
next apply the condensation to mixed and upwind-mixed (cf. [7]) finite element dis-
cretizations of nonlinear parabolic convection–reaction–diffusion problems. We finally
present numerical examples confirming considerable computational savings while us-
ing the condensation. Extension to higher-order schemes is an ongoing work.

2. The equivalence. In this section, we first define the spaces V(Eh) and Φ(Th)
and then establish the equivalence.

Let us consider simplices K,L ∈ Th sharing an interior side σ. Let VK be the
vertex of K opposite to σ and VL the vertex of L opposite to σ. The basis function
vσ ∈ V(Eh) associated with the side σ can be written in the form vσ(x) = 1

d|K|(x−
VK), x ∈ K, vσ(x) = 1

d|L|(VL−x), x ∈ L, vσ(x) = 0 otherwise. We fix its orientation,

i.e. the order of K and L. For a Dirichlet boundary side σ, the support of vσ only
consists of K ∈ Th such that σ ∈ EK , where EK stands for the sides of the element
K. A basis function φK ∈ Φ(Th) associated with an element K ∈ Th is equal to 1 on
K and to 0 otherwise.

Let us denote by Vh the set of all vertices and consider V ∈ Vh. We call the set
of all elements of Th sharing this vertex a cluster associated with V and denote it by
CV . Let us denote by ECV the set of all non-Neumann sides of CV , by FCV the set of
all non-Neumann sides sharing V , and by GCV the set of other non-Neumann sides of
CV . Let finally Cel

V denote the set of elements from the cluster which contain exactly
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one side from GCV , which we denote by δK for K ∈ Cel
V . We have ECV = FCV ∪ GCV ,

FCV ∩ GCV = ∅, and |Cel
V | = |GCV |, where we denote by |A| the cardinality of a set A.

We are not interested in the trivial cases where FCV = ∅ or GCV = ∅.
Let us now consider the equations (1.2a) for the basis functions vγ , γ ∈ FCV . We

remark that the support of all vγ , γ ∈ FCV , is included in CV and that u0,h|CV =∑
σ∈ECV

Uσvσ . This yields, using also that ph|K = PK ,

∑

σ∈ECV

Uσ(vσ ,S
−1vγ)CV −

∑

K∈CV
PK(∇ · vγ , 1)K = −〈vγ · n, pD〉∂Ω −

− (S−1ũ,vγ)CV ∀γ ∈ FCV , (2.1)

i.e. |FCV | equations for the |ECV | unknown fluxes, where we consider the scalar
unknowns PK , K ∈ CV , as parameters. The remaining |GCV | equations are given
by (1.2b) for all φK , K ∈ Cel

V ,

−
∑

σ∈EK ,σ 6⊂ΓN

Uσ(∇ · vσ , 1)K = −(q, 1)K + (∇ · ũ, 1)K ∀K ∈ Cel
V . (2.2)

The matrix problem associated with the set of equations (2.1)–(2.2) has the form

(
A1,V A2,V

B1,V B2,V

)(
UFV
UGV

)
=

(
FV − BtV PV

GV

)
, (2.3)

where UFV = {Uσ}σ∈FCV , UGV = {Uσ}σ∈GCV , and PV = {PK}K∈CV .
We now notice that the matrix B2,V is square, diagonal, and its entries are equal

to ±1 (this follows from the fact that (∇ · vσ , 1)K = ±1 for σ ∈ EK). Hence we can
eliminate the UGV unknowns and come to

MV U
F
V = FV − BtV PV − A2,V B−1

2,VGV (2.4)

for each vertex V ∈ Vh. Let us call the matrix

MV := A1,V − A2,V B−1
2,V B1,V (2.5)

a local condensation matrix associated with the vertex V . We have:
Theorem 2.1 (Equivalence between MFEM and a particular multi-point FVM).

Let the matrices MV given by (2.5) be invertible for all V ∈ Vh. Then the lowest-order
Raviart–Thomas mixed finite element method on simplicial meshes is equivalent to a
multi-point finite volume scheme, where the flux through each side can be expressed
using the scalar unknowns, sources, and possibly boundary conditions associated with
the elements sharing one of the vertices of this side.

Remark 2.1 (Comparison with a classical multi-point FVM). In “classical”
multi-point finite volume schemes, cf. [1, 6, 8, 9], one attempts to express the flux
through a given side only using the scalar unknowns associated with the neighboring
elements. There are two essential differences between these classical multi-point fi-
nite volume schemes and a particular multi-point finite volume scheme—the mixed
finite element method. First, in the mixed finite element method, not only the scalar
unknowns, but also the sources and possibly boundary conditions associated with the
neighboring elements are used to express the flux through a given side. Second, to
obtain this expression, one has to solve a local linear problem. In this last feature, the
condensed mixed finite element scheme is similar to the scheme proposed in [1].
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Let V ∈ Vh. Let us define a mapping ΨV : R|FCV | → R|Eh|, extending a vec-
tor UFV = {Uσ}σ∈FCV of values associated with the sides from FCV to a vector of

values associated with all non-Neumann sides Eh by [ΨV (UFV )]σ := Uσ if σ ∈ FCV ,
[ΨV (UFV )]σ := 0 if σ 6∈ FCV . Since there is no possibility of confusion, we keep the
same notation also for a mapping R|FCV |×|FCV | → R|Eh|×|Eh|, extending a local matrix
MV to a full-size one by zeros by [ΨV (MV )]σ,γ := (MV )σ,γ if σ ∈ FCV and γ ∈ FCV ,
[ΨV (MV )]σ,γ := 0 if σ 6∈ FCV or γ 6∈ FCV . We finally in the same fashion define a

mapping ΘV : R|FCV |×|C
el
V | → R|Eh|×|Th|, filling a full-size representation of a matrix

JV by zeros on the rows associated with the sides which are not from FCV and on the
columns associated with the elements which are not from Cel

V , [ΘV (JV )]σ,K := (JV )σ,K
if σ ∈ FCV and K ∈ Cel

V , [ΘV (JV )]σ,K := 0 if σ 6∈ FCV or K 6∈ Cel
V . Let the local con-

densation matrices MV be invertible for all V ∈ Vh. Let us finally define JV by
JV := M−1

V A2,V B−1
2,V . We then can rewrite (2.4) as

ΨV (UFV ) = ΨV (M−1
V )(F − BtP )−ΘV (JV )G . (2.6)

We now notice that
∑

V ∈Vh
1
dΨV (UFV ) = U , which expresses that if we go through

all V ∈ Vh and observe the sides in the sets FCV , each σ ∈ Eh appears just d-times.
Hence we can sum (2.6) over all vertices and divide it by d to find that

U = Ã−1(F − BtP )− JG , (2.7)

where

Ã−1 :=
1

d

∑

V ∈Vh
ΨV (M−1

V ) , J :=
1

d

∑

V ∈Vh
ΘV (JV ) . (2.8)

Finally, inserting the expression (2.7) into the second equation of (1.3), we obtain a
system for only the scalar unknowns

−BÃ−1BtP = G− BÃ−1F + BJG . (2.9)

Remark 2.2 (Comparison with direct elimination of the fluxes). From (1.3), U =
A−1(F −BtP ). There are two essential differences from (2.7). First, the matrix Ã−1

is sparse, whereas A−1 tends to be full. Second, Ã−1 is obtained for the price of the
inverse of |Vh| local matrices, whereas obtaining A−1 is in general very expensive.

Remark 2.3 (Implementation into existing mixed finite element codes). The
local problems (2.3) correspond to the rows of (1.3) associated with the sides from
FCV and elements from Cel

V . Hence obtaining (2.9) from (1.3) is immediate.
It appears that in some particular cases, the matrix MV is not invertible. We

give sufficient conditions on the mesh Th and on the diffusion tensor S ensuring that
MV are invertible for all V ∈ Vh below as a byproduct of Lemma 3.5. If a given local
condensation matrix is not invertible, one can resort to a wider set of elements than
the clusters defined above.

3. Properties of the condensed mixed finite element scheme. We study
in this section the properties of the system matrix of the condensed scheme.

3.1. Properties of the system matrix. Theorem 3.1 (Stencil of the system
matrix). LetMV be invertible for all V ∈ Vh. Then on a row of the final system matrix
BÃ−1Bt corresponding to an element K ∈ Th, the only possible nonzero entries are
on columns corresponding to L ∈ Th such that K and L share a common vertex.
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Proof. The assertion of this theorem follows from the fact that by (2.4), the flux
through a side σ is expressed only using the scalar unknowns of the elements K ∈ Th
such that K and σ share a common vertex.

Theorem 3.2 (Positive definiteness of the system matrix). Let MV be positive
definite for all V ∈ Vh. Then the final system matrix BÃ−1Bt is also positive definite.

Proof. Since B has a full row rank, BÃ−1Bt is positive definite as soon as Ã−1 is
positive definite, i.e. when

XtÃ−1X > 0 for all X ∈ R|Th| , X 6= 0 .

Let V ∈ Vh. We define a mapping ΠV : R|Eh| → R|FCV |, restricting a vector of values
associated with all non-Neumann sides to a vector of values associated with the sides
from FCV . Let X ∈ R|Eh|, X 6= 0. Then

XtÃ−1X =
1

d

∑

V ∈Vh
XtΨV (M−1

V )X =
1

d

∑

V ∈Vh
[ΠV (X)]tM−1

V ΠV (X) > 0 ,

using the positive definiteness of the local condensation matricesMV and consequently
ofM−1

V for all V ∈ Vh and the fact that in the above sum, all the terms are nonnegative
and at least d of them are positive.

Theorem 3.3 (Symmetry of the system matrix). Let MV be invertible and
symmetric for all V ∈ Vh. Then the final system matrix BÃ−1Bt is also symmetric.

Proof. IfMV and consequentlyM−1
V are symmetric for all V ∈ Vh, their extensions

ΨV (M−1
V ) are symmetric as well. Hence Ã−1, a sum of symmetric matrices by (2.8),

is symmetric. Finally, if Ã−1 is symmetric, BÃ−1Bt is symmetric as well.

3.2. Properties of the local condensation matrices. Let V(ECV ) be the
space spanned by the basis functions vσ associated with the non-Neumann sides ECV
of the cluster CV and V(FCV ) its restriction with the basis functions vσ associated
with the sides from FCV . Let further V(div, ECV ) be the subspace of V(ECV ) of
the functions whose divergence is equal to 0 on all elements K ∈ Cel

V . The space
V(div, ECV ) is spanned by basis functions pσ associated with the sides from FCV ,
which have the same support as the basis functions vσ and whose fluxes across the
associated sides equal those of vσ (this namely fixes their orientation). In particular,

for K ∈ Cel
V and σ ∈ EK ∩ FCV , pσ |K = vσ − (∇·vσ,1)K

(∇·vδK ,1)K
vδK . Note that this is a

constant function given by 1
d|K|qσ |K , where qσ |K is the vector of the edge of K which

is not included in the sides σ and δK . For K ∈ CV \ Cel
V , pσ |K = vσ |K . We refer

to [15, Chapter 3] for the proofs of the following assertions.
Lemma 3.4 (Form of the local condensation matrices). The local condensation

matrix MV for V ∈ Vh is given by

(MV )γ,σ = (pσ ,S
−1vγ)CV ,

where pσ and vσ, σ ∈ FCV , are the basis functions of the spaces V(div, ECV ) and
V(FCV ), respectively, defined above.

Lemma 3.5 (Positive definiteness of the local condensation matrices). Let the
matrices EV,K ∈ R|EK∩FCV |×|EK∩FCV | given by

(EV,K)γ,σ := (pσ ,S
−1vγ)K ,

where pσ and vσ, σ ∈ EK ∩ FCV , are the basis functions of the spaces V(div, ECV )
and V(FCV ), respectively, be positive definite for all K ∈ Th and for all vertices V of
K. Then the local condensation matrices MV are positive definite for all V ∈ Vh.
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Fig. 3.1. Theoretical (left) and experimental (right) limit mesh for the positive definiteness of
the system matrix for a deformed square and S = Id

Example 3.1 (Positive definiteness for a triangulation of a deformed square).
Let S = Id and let Ω = (0, 1)× (0, 1). Let us deform Ω and Th given by right-angled
triangles by shifting horizontally the upper edge. Then the theoretical and experimental
limits for the positive definiteness of the system matrix are given in Figure 3.1.

Lemma 3.6 (Symmetry of the local condensation matrices). Let Th consist of
equilateral simplices and let S be a piecewise constant scalar function. Then MV are
symmetric for all V ∈ Vh.

Remark 3.1 (Equilateral simplices and a piecewise constant scalar diffusion ten-
sor). Let Th consist of equilateral simplices, let S be piecewise constant and scalar, and
let ΓN = ∅. Then the local condensation matrices are diagonal and consequently the
final system matrix has only a 4-point stencil in two space dimensions and a 5-point
stencil in three space dimensions and is moreover symmetric and positive definite.

4. Application to nonlinear parabolic problems. We show in this section
that the above ideas easily apply also to the discretization of nonlinear parabolic
convection–reaction–diffusion problems. We consider in particular the problem

∂β(p)

∂t
+∇ · u + F (p) = q in Ω× (0, T ) , (4.1a)

u = −S∇p+ ψ(p)w in Ω× (0, T ) , (4.1b)

p(·, 0) = p0 in Ω , (4.1c)

p = pD on ΓD × (0, T ) , (4.1d)

u · n = uN on ΓN × (0, T ) , (4.1e)

where β, ψ, and F are nonlinear functions, S is a bounded, symmetric, and uniformly
positive definite tensor, w is a velocity field, and q represents the source term.

Let again ũ be such that ũ · n = uN on ΓN in the appropriate sense. We split
up the time interval (0, T ) such that 0 = t0 < . . . < tn < . . . < tN = T and define
4tn := tn − tn−1, n ∈ {1, 2, . . . , N}, and p0

h|K by (p0, 1)K/|K| for all K ∈ Th. The
fully implicit lowest-order Raviart–Thomas mixed finite element approximation of the
problem (4.1a)–(4.1e) consists in finding on each time level tn, n ∈ {1, 2, . . . , N}, the
functions unh = un0,h + ũn, un0,h ∈ V(Eh), and pnh ∈ Φ(Th) such that

(S−nun0,h,vh)Ω − (∇ · vh, pnh)Ω − (ψ(pnh)wn,S−nvh)Ω = −〈vh · n, pnD〉∂Ω

− (S−nũn,vh)Ω ∀vh ∈ V(Eh) , (4.2a)
(β(pnh)− β(pn−1

h )

4tn
, φh

)
Ω

+ (∇ · un0,h, φh)Ω + (F (pnh), φh)Ω = (q, φh)Ω

− (∇ · ũn, φh)Ω ∀φh ∈ Φ(Th) , (4.2b)
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where

S−n :=
1

4tn

∫ tn

tn−1

S−1(·, t) dt , wn :=
1

4tn

∫ tn

tn−1

w(·, t) dt ,

pnD :=
1

4tn

∫ tn

tn−1

pD(·, t) dt , ũn :=
1

4tn

∫ tn

tn−1

ũ(·, t) dt n ∈ {1, 2, . . . , N} .

We now notice that the terms where the unknown discrete velocity function un0,h
appears are exactly the same as in the linear elliptic diffusion case, see (1.2a)–(1.2b).
Hence one can eliminate un0,h on each discrete time level as in Section 2. The sys-
tem (4.2a)–(4.2b), linearized by the Newton method, can be written in the matrix
form as

(
A C
B D

)(
U
P

)
=

(
F
G

)
(4.3)

and the final system for the scalar unknowns P only writes in the form

(−BÃ−1C+ BJD+ D)P = G− BÃ−1F + BJG . (4.4)

This transcription enables in particular a straightforward implementation of the con-
densation in any mixed finite element code. Moreover, if the diffusion tensor S is
constant with respect to time, A,B do not change and hence the assemblage of Ã−1

and J can be done only once before the start of the calculation.
We now finally turn to the upwind-mixed lowest-order Raviart–Thomas method,

cf. [7]. For this purpose, we first rewrite (4.1a)–(4.1b) as

∂β(p)

∂t
+∇ · r +∇ · (ψ(p)w) + F (p) = q in Ω× (0, T ) ,

r = −S∇p in Ω× (0, T ) .

Whereas the initial and Dirichlet boundary conditions (4.1c) and (4.1d) stay the same,
we rewrite the Neumann boundary condition (4.1e) as r · n = vN on ΓN × (0, T ).
Let again r̃ be such that r̃ · n = vN on ΓN in the appropriate sense and define
r̃n := 1

4tn
∫ tn
tn−1

r̃(·, t) dt, n ∈ {1, 2, . . . , N}. The fully implicit upwind-mixed finite

element method then reads: on each time level tn, n ∈ {1, 2, . . . , N}, find the functions
rnh = rn0,h + r̃n, rn0,h ∈ V(Eh), and pnh ∈ Φ(Th) such that

(S−nrn0,h,vh)Ω − (∇ · vh, pnh)Ω = −〈vh · n, pnD〉∂Ω

− (S−nr̃n,vh)Ω ∀vh ∈ V(Eh) , (4.6a)
(β(PnK)− β(Pn−1

K )

4tn
, φK

)
K

+ (∇ · rn0,h, φK)K +
∑

σ∈EK
ψ(p̂nσ)wn

K,σ + (F (PnK), φK)K

= (q, φK)K − (∇ · r̃n, φK)K ∀K ∈ Th , (4.6b)

where wn
K,σ = 〈wn · n, 1〉σ and p̂nσ is the upwind value defined by P nK if wn

K,σ ≥ 0
and by PnL otherwise for σ an interior side between the elements K and L, by P nK
if wn

K,σ ≥ 0 and by 〈pnD, 1〉σ/|σ| otherwise for σ a Dirichlet boundary side, and by
PnK for σ a Neumann boundary side. The linearization of the system (4.6a)–(4.6b)
has again the form (4.3), with this time C = −Bt. The condensation applies again
directly and in particular the final system has the form (4.4). The final matrix has
however in this case a wider stencil due to the upstream weighting.
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Fig. 5.1. Initial meshes A (left) and B (right)

Table 5.1
Condensed mixed method, problem (5.1), left part of the mesh A

Ref. Unkn. St. Cond. Bi-CGS Iter.
3 1024 14 721 0.20 76.5
4 4096 14 2882 1.43 147.5
5 16384 14 11523 12.55 295.5
6 65536 14 46093 117.58 555.5

Table 5.2
Hybridized mixed method, problem (5.1), left part of the mesh A

Ref. Unkn. St. Cond. Bi-CGS Iter. CG Iter.
3 1504 5 1397 0.31 118.0 0.22 157
4 6080 5 5616 2.43 230.5 1.75 316
5 24448 5 22499 23.40 449.5 16.87 623
6 98048 5 89995 227.04 864.0 162.09 1226

5. Numerical experiments. We give the results of several numerical experi-
ments in two space dimensions in this section. All the computations were done in a
C++ code in double precision on a notebook with Intel Pentium 4-M 1.8 GHz pro-
cessor and MS Windows XP operating system. Machine precision was in power of
10−16. All the matrix operations were done with the help of MATLAB 6.1.

5.1. An elliptic problem. For Ω = (0, 1)× (0, 1), we consider the problem

−4p = −2exey (5.1)

with a Dirichlet boundary condition given by the exact solution p(x, y) = exey on
regular refinements of the initial mesh given in the left square of the mesh A from
Figure 5.1. We compare the computational cost of the condensation and that of the
hybridization onto Lagrange multipliers associated with the edges. In both cases the
system matrices are positive definite but they are symmetric only in the latter case. In
Tables 5.1 and 5.2, we give the number of unknowns, the system matrices stencil and
2-norm condition number, and the CPU time in seconds and the number of iterations
of the Bi-CGStab method necessary to decrease the 2-norm relative residual below 1e-
10, using a zero start vector. For the hybridization, we consider also the CG method.
In this case, the condensation CPU time is about 1.35-times shorter.

5.1.1. A convection–reaction–diffusion problem. For Ω = (0, 2) × (0, 1)
and a time interval (0, 1), we consider a nonlinear convection–reaction–diffusion prob-
lem which involves discontinuous coefficients and an inhomogeneous and anisotropic
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Table 5.3
Condensed mixed method, problem (5.2), coefficients (5.3), mesh B

Ref. Unkn. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
3 2048 14 4824 1.47 322.5 0.12 0.07 0.05 3.5
4 8192 14 12523 8.66 474.5 0.88 0.56 0.32 5.0
5 32768 14 31368 61.53 787.5 7.47 5.46 2.01 5.5

Table 5.4
Standard mixed method, problem (5.2), coefficients (5.3), mesh B

Ref. Unkn. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
3 3120 5 131073 12.12 2419.5 0.41 0.18 0.23 3.0
4 12384 5 250923 103.42 5390.5 3.06 1.32 1.74 3.5
5 49344 5 586375 617.26 7145.5 29.88 14.96 14.92 4.0

diffusion tensor,

∂(p+ pα)

∂t
−∇ · (S∇p) +∇ · (pw) + αpα = 0 (5.2)

with α = 0.5 and

S =

(
1 0
0 1

)
for x < 1 , S =

(
8 −7
−7 20

)
for x > 2 ,

w = (3, 0) for x < 1 , w = (3, 12) for x > 2 . (5.3)

Initial and Dirichlet boundary conditions are given by the exact solution p(x, y, t) =
exeye−t/e3. The system of equations of the mixed method has on each time and lin-
earization step the form (4.3), where D is a diagonal matrix. Hence a standard solution
approach is to inverse D, then solve for U the system (A−CD−1B)U = F −CD−1G,
and finally recover P from P = D−1(G − BU). We compare the properties of the
linear systems on the first time and Newton linearization steps in Tables 5.3 and 5.4,
considering regular refinements of the mesh B. We consider the Bi-CGStab method
without any preconditioning first and then use the incomplete LU factorizations as
preconditioners (in both cases the system matrices are nonsymmetric but positive
definite). The drop tolerance is chosen in a such way that the sum of times in seconds
(CPU) for the preconditioning and the solution of the preconditioned system was
minimal. The CPU time of the condensation is in this case about 4-times shorter.

5.1.2. A convection–reaction–diffusion problem and the upwind-mixed
method. We consider here once more the problem (5.2), this time with coefficients

S =

(
1 0
0 1

)
in Ω , w = (3, 0) in Ω (5.4)

and mesh A. We employ the upwind-mixed finite element method (4.6a)–(4.6b) and
the corresponding condensed version. For the upwind-mixed method, we cannot easily
eliminate the scalar unknowns P , as the matrix D from (4.3) is in this case not
diagonal. The direct application of the Bi-CGStab method to the system (4.3) does
not lead to satisfactory results, cf. Table 5.6. A suitable solution approach however
seems to be to first perform the column minimum degree permutation and then use the
incomplete LU factorization for preconditioning; we report in Table 5.6 the separate
times in seconds as well as their sum (CPU). In the given case, the condensation
reduces the CPU time for one linear system by a factor better than 3.
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Table 5.5
Condensed upwind-mixed method, problem (5.2), coefficients (5.4), mesh A

Ref. Unkn. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
3 2048 19 318 0.46 88.0 0.11 0.06 0.05 3.0
4 8192 19 777 2.99 138.5 0.68 0.36 0.32 5.0
5 32768 19 1792 18.86 210.5 4.89 2.87 2.02 7.5

Table 5.6
Standard upwind-mixed method, problem (5.2), coefficients (5.4), mesh A

Ref. Unkn. St. Cond. Bi-CGS Iter. CPU Per. ILU PBi-CGS Iter.
3 5168 7 67 13.01 1540.5 0.48 0.03 0.15 0.30 3.5
4 20576 7 168 124.06 3561.5 2.83 0.32 0.98 1.53 4.0
5 82112 7 393 3233.05 16763.5 15.70 1.35 4.92 9.43 6.0
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