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SEMIDEFINITE REPRESENTABILITY OF THE TRACE OF

TOTALLY POSITIVE LAURENT POLYNOMIAL MATRIX

FUNCTIONS∗

MICHEL BAES†

Abstract. The function that maps a positive semidefinite matrix to the trace of one of its
nonnegative integer power is semidefinite representable. In this note, we reduce the size of this
semidefinite representation from O(kn) linear matrix inequalities of dimension n, where k is the
desired power and n× n the size of the matrix to O(log

2
(k)) linear matrix inequalities of dimension

2n. We also propose a variant of our strategy that can deal with traces of negative powers.
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1. Introduction. A central preoccupation in optimization is to ascertain that
a certain problem can be reliably solved within a predictably reasonably short time-
span. Among the classes of problems that can be solved efficiently figures the class
of semidefinite optimization problems, that is, as optimization problems with a linear
objective, some linear equality constraints, and a semidefinite constraint. This class
is now well-studied and many new applications have emerged, where semidefinite
optimization plays a decisive role (see [2] and the references therein).

Nesterov and Nemirovski [5], and later Ben-Tal and Nemirovski [1], have defined
formally the set of objects that can be used as building blocks for a semidefinite
optimization problem. These objects should possess the property of semidefinite rep-

resentability. Below, we denote by Sn the set of symmetric n × n matrices, and by
Sn

+ ⊂ Sn the cone of positive semidefinite matrices. We write A ∈ Sn
+ and A � 0

indifferently, and A ≻ 0 when A ∈ intSn
+. Also A � [resp. ≻]B iff A−B � [resp. ≻]0.

Definition 1.1. Let Q ⊆ Rm be a closed convex set. We say that Q is semidef-
inite representable (SDr) if and only if there exists two positive integers n, p, a linear

operator A : Rm × Rp → Sn, and a matrix B ∈ Sn such that:

x ∈ Q ⇐⇒ A(x, u) � B.

We say that a convex function f : S ⊆ Rm → R, where S is a convex set, is
semidefinite representable if and only if its epigraph is SDr. Optimization problems
involving a SDr objective function and linear equality constraints can be written as
semidefinite optimization problems and solved efficiently using standard semidefinite
optimization software such as SeDuMi [6] or SDPT3 [7], provided that the size of the
resulting problem remains moderate.

Note that a function f : Q ⊆ Rm → R is SDr if it can be represented in the
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following form:

f(x) := min〈c, (x; u)〉
s.t.A(x, u) � B,

where A and B are defined as in Definition 1.1. Indeed, the epigraph of f can be
described as:

epi f = {(t, x) : ∃u ∈ Rp such that A(x, u) � B and 〈c, (x; u)〉 ≤ t}.

We have borrowed the Matlab notation for (x; u) := [xT , uT ]T .

2. Semidefinite representability of power trace. We are investigating in
this section the semidefinite representability of functions of the type:

fk : Sn
+ → R

X 7→ fk(X) := tr(Xk),

where k ∈ Z. The semidefinite representability of totally positive Laurent polynomi-
als, that is, functions of the type:

f(X) =
∑

k∈Z

akfk(X),

where {ak : k ∈ Z} is a sequence of nonnegative reals only a finite number of which
are nonzero, would follow immediately.

It is well-known (e.g. as an application of the convexity result of Davis [3]) that fk

is a convex function for those k’s for which the function R+ → R+, t 7→ tk is convex
itself, that is, for k /∈]0, 1[. For k ∈]0, 1[, the corresponding function fk is concave.

Actually, a self-scaled representation of this function exists for k ≥ 0, as a
consequence of Proposition 4.2.2 in [1]. However, this representation is rather ex-
pensive. Their construction starts from a second-order representation of the func-
tion x 7→ g(x) :=

∑n
i=1 xk

i (See Section 3.3 in [1]) — this construction takes as
much as O(k) second-order cones of dimension 3. We write this representation of
{(x, t) : g(x) ≤ t} as ∃u ∈ Rl : A(x, u, t) ∈ K, where A is affine and K an appropriate
self-scaled cone. Now,

fk(X) ≤ t ⇐⇒ ∃x ∈ Rn, u ∈ Rl such that:

A(x, u, t) ∈ K,

x1 ≥ x2 ≥ · · · ≥ xn,
k

∑

i=1

λi(X) ≤
k

∑

i=1

xi for every 1 ≤ k ≤ n.

The last set of constraints are semidefinite representable. When k = n, the corre-
sponding constraint is just linear. But for other values of k, the constraint can be
represented by no less than two linear matrix inequalities of dimension n.

We describe below an alternative representation of the function fk, which proves
to be much cheaper. The fundamental principle on which our representation is based
is the well-known Schur complement Lemma (see Theorem 7.7.6 in [4]), which we
recall below.
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Lemma 2.1. Let

X :=

(

A BT

B C

)

be a real symmetric matrix. Then X ≻ 0 if and only if C ≻ 0 and A ≻ BT C−1B.

Also if C ≻ 0 and A � BT C−1B, then X � 0.

For positive integers k, the matrix inequalities in the SDr of fk can be constructed
according to the following algorithm.

Algorithm 2.1.

Input: k ∈ N0.

Let i := 0, m := k.

while m ≥ 2 do

if m is odd

Add

(

Xi Xi+1

Xi+1 X

)

� 0 to the list of LMI’s.

Let i := i + 1 and m := (m + 1)/2.
end

if m is even

Add

(

Xi Xi+1

Xi+1 In

)

� 0 to the list of LMI’s.

Let i := i + 1 and m := m/2.
end

end

Add Xi = X to the set of constraints. Observe that every matrix Xi is necessarily
symmetric. The size of our representation is of the order of O(log2(k)) linear matrix
inequalities of dimension 2n× 2n, which is much smaller in terms of k and of n than
the representation of Ben-Tal and Nemirovski.

The following proposition shows that the inequalities constructed in the previous
algorithm correspond indeed to a SDr of fk.

Proposition 2.1. For every positive k, the function fk can be written as fk(X) =
min{tr(X0), subject to the set of constraints generated by Algorithm 2.1 with input k}.

Proof. We denote by Ck the set of constraints generated by Algorithm 2.1 with
input k.

First, we proceed to prove the inequality fk(X) ≥ min{tr(X0) : Ck}. Let us fix
k ∈ N0 and define the matrices X∗

i according to the following procedure:
let i := 0, m := k.
while m ≥ 2 do

X∗

i := Xm. Let i := i + 1 and m := m/2 + (1 − (−1)m)/4.
end

X∗

i := X .
A simple verification shows that these matrices X∗

0 , X∗

1 , . . . , X∗

i satisfy the inequalities
Ck. As tr(X∗

0 ) = tr(Xk) = fk(X), we have proved the desired inequality.

We use a duality argument to prove the reverse inequality. We fix a power k,
and, for every iteration number 0 ≤ i < N , we denote by mi the value of the variable
m at the beginning of loop i. We write Ai for the (2, 2)-block of the i-th constraint
matrix constructed in the algorithm (2.1). That is, Ai = X if the variable mi is odd,
and Ai = In otherwise. We also denote by N the value of the variable i at the end of
the algorithm — actually, N = ⌈log2(k)⌉.
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The original problem can be written in the primal form

min
{

〈C, M〉F : AM = B, M ∈
(

S2n
+

)N
}

,

with C = [In; 0n×n; . . . ; 0n×n], B = [02n×n; A1; · · · ; 02n×n; X ; X ; AN ], and, denoting

M = diag

((

F1 GT
1

G1 H1

)

, . . . ,

(

FN GT
N

GN HN

))

,

the linear operator A takes the form:

A =

F1 GT
1 G1H1 F2 GT

2 G2H2 · · · FN GT
NGNHN
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

.

The dual of the above problem writes:

max
{

〈B, Y 〉F : AT Y + S = C, C ∈
(

S2n
+

)N
}

.

After a few elementary manipulation, this dual takes the following form:

max
∑N−1

i=0 〈Yi, Ai〉 + 2〈ZN , X〉

s.t.

(

In −ZT
1

−Z1 −Y0

)

� 0,
(

Z1 + ZT
1 −ZT

2

−Z2 −Y1

)

� 0, . . . ,
(

ZN−1 + ZT
N−1 −ZT

N

−ZN −YN−1

)

� 0.

Now, we proceed to construct a feasible dual point for which the objective value
equals tr(Xk), thereby proving the theorem and actually providing all the information
on the sensitivity of each primal constraint.

We set Z∗

i := 2iXk−mi , which is therefore symmetric, and Y ∗

i := −2iXkA−1
i , so

that 〈Y ∗

i , Ai〉 = −2itr(Xk). Observe that Z∗

0 = In. Also, we set

Z∗

N := 2N−1Xk−mN = 2N−1Xk−1.

The objective’s value is therefore

N−1
∑

i=0

−2itr(Xk) + 2N tr(Xk) = tr(Xk).
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If mi is odd, then Ai = X , and the i-th matrix takes the form:

(

2Z∗

i −Z∗

i+1

−Z∗

i+1 −Y ∗

i

)

=

(

2 · 2i−1Xk−mi −2iXk−(mi+1)/2

−2iXk−(mi+1)/2 2iXk−1

)

= 2iD1/2

(

X(1−mi)/2

−In

)

(

X(1−mi)/2 −In

)

D1/2

� 0,

where

D :=

(

Xk−1 0
0 Xk−1

)

.

If mi is even, we have Ai = I, and the i-th constraint matrix is:

(

2Z∗

i −Z∗

i+1

−Z∗

i+1 −Y ∗

i

)

=

(

2 · 2i−1Xk−mi −2iXk−mi/2

−2iXk−mi/2 2iXk

)

= 2iD1/2

(

X−mi/2

−In

)

(

X−mi/2 −In

)

D1/2 � 0.

As the point we have constructed is feasible for the dual problem and attains an
objective’s value of tr(Xk), we have proved the inequality fk(X) ≤ min{tr(X0) : Ck}.

For negative indices k, we use the following consequence of Schur’s Lemma:

(

X I
I Y

)

≻ 0 ⇐⇒ X ≻ 0 and Y ≻ X−1.(1)

Algorithm 2.2.

Input: k, negative integer.

Let i := 0, m := −k.

while m ≥ 2 do

if m is odd

Add

(

Xi Xi+1

Xi+1 X

)

� 0 to the list of LMI’s.

Let i := i + 1 and m := (m − 1)/2.
end

if m is even

Add

(

Xi Xi+1

Xi+1 In

)

� 0 to the list of LMI’s.

Let i := i + 1 and m := m/2.
end

end

Add

(

Xi In

In X

)

� 0 to the set of constraints.

The proof of this algorithm follows the same lines as the one for positive k’s.
Proposition 2.2. For every negative k, the function fk can be written as

fk(X) = min{tr(X0), subject to the set of constraints generated by Algorithm 2.2

with input k}.
Proof. We denote by Dk the set of constraints generated by Algorithm 2.2 with

input k.
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Let us fix k < 0, and decompose it as k = −
∑N

i=0 ai2
i, with ai ∈ {0, 1}. We

also define mi :=
∑N

j=i aj2
j−i, which is exactly the value of the variable m at the

beginning of loop i in Algorithm 2.2. We finally write Ai := Xai , so that AN = X .
It can be easily checked that the matrices X∗

i := X−mi for 0 ≤ i ≤ N satisfy Dk.
Therefore tr(Xk) = tr(X∗

0 ) ≥ min{tr(X0) : Dk}.
Now, the problem min{tr(X0) : Dk} can be written in the primal form

min
{

〈C, M〉F : AM = B, M ∈
(

S2n
+

)N
}

,

where

C = [In; 0n×n; . . . ; 0n×n]

and

B = [02n×n; A1; · · · ; AN−1; In; In; AN ].

The matrix A is as in the proof of Proposition 2.1. The dual of this problem, after a
few trivial simplifications reads as:

max
∑N−1

i=0 〈Yi, Ai〉 + 2〈ZN , In〉

s.t.

(

In −ZT
1

−Z1 −Y0

)

� 0,
(

2Z1 −ZT
2

−Z2 −Y1

)

� 0, . . . ,
(

2ZN−1 −ZT
N

−ZN −YN−1

)

� 0.

A feasible point is given by Y ∗

i := −2iXk−ai for 0 ≤ i < N , and Z∗

i := 2i−1Xk+mi

for 0 ≤ i ≤ N , which is symmetric. Note that Z∗

0 = In/2. We have:

(

2Z∗

i −Z∗T
i

−Z∗

i −Y ∗

i

)

=

(

2 · 2i−1Xk+mi −2iXk+(mi−ai)/2

−2iXk+(mi−ai)/2 2iXk−ai

)

= 2i

(

X 0
0 X

)

k+mi

2
(

−In

X−
mi−ai

2

)

(

−In X−
mi−ai

2

)

(

X 0
0 X

)

k+mi

2

� 0.

Finally, this feasible point brings the dual objective to a value of:

−
N−1
∑

i=0

2i〈Xk−ai , Xai〉 + 2 · 2N−1〈Xk+mN , In〉 = tr(Xk),

since mN = 0. The desired inequality is thereby proved.
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