
Proceedings of ALGORITMY 2009
pp. 449–458

ON DATA LAYOUT IN THE PARALLEL BLOCK-JACOBI
SVD ALGORITHM WITH PRE–PROCESSING ∗

MARTIN BEČKA , GABRIEL OKŠA† , MARIÁN VAJTERŠIC‡ , AND LAURA GRIGORI§

Abstract. An efficient version of the parallel two-sided block-Jacobi algorithm for the singular
value decomposition of an m × n matrix A includes the pre-processing step, which consists of the
QR factorization of A with column pivoting followed by the optional LQ factorization of the R-
factor. Then the iterative two-sided block-Jacobi algorithm is applied in parallel to the R-factor
(or L-factor). Having p processors, these iterations are efficiently computed with two block-columns
stored in each processor; hence the blocking factor is ℓ = 2p and the process grid 1 × p is used.
However, this process grid is not well suited for the pre-processing step due to the (block) column
oriented approach in the QR (or LQ) factorization with (or without) column pivoting implemented
in the ScaLAPACK. Instead, some matrix block cyclic distribution on a process grid r × c with
p = r × c, r, c > 1, and block size nb × nb is required so that all processors remain busy during the
whole parallel QR (or LQ) factorization. Optimal values for parameters r, c and nb are estimated
experimentally using matrices of order from n = 2000 to n = 8000 and the number of processors
form p = 4 to p = 16. It turns out that the optimal values are about nb = 100 and r ≤ c with both
r, c near to

√
p. It is shown that using optimal parameters in the pre-processing step, the parallel

two-sided block-Jacobi SVD algorithm becomes competitive with the ScaLAPACK routine PDGESVD

for matrices with a multiple maximal/minimal singular value regardless to the condition number.

Key words. QR factorization with column pivoting, LQ factorization, singular value decom-
position, blocking factor, process grid, cyclic matrix distribution, two-sided block-Jacobi method,
Message Passing Interface

AMS subject classifications. 15A18, 15A23, 68W10

1. Introduction. Recently, an efficient version of the parallel two-sided block
Jacobi SVD algorithm with pre-processing was proposed in [9]. When computing all
singular values together with all right and left singular vectors of a rectangular matrix
A, the pre-processing step consists of the parallel computation of the QR factorization
(QRF) with column pivoting (CP) followed by the optional LQ factorization (LQF)
of R-factor. The parallel two-sided block Jacobi method with dynamic ordering (cf.
[2]) is then applied to the R-factor (or L-factor). The purpose of pre-processing is to
concentrate the Frobenius norm near the matrix diagonal so that the Jacobi algorithm
may need substantially less parallel steps for convergence than in the case without
pre-processing.

However, to perform optimally, the parallel QRF (or LQF) and the parallel two-
sided block Jacobi method need various data layouts. Having p processors, the Jacobi
algorithm performs very well when implemented on the process grid 1×p with matrix
block columns local to processor, because the majority of computations can be done
locally. But this data distribution is not well suited for the column-oriented parallel

∗This work was supported by VEGA Grant no. 2/7143/27 from the Scientific Grant Agency of
Slovak Republic and Slovak Academy of Sciences, and by the grant ‘The QR matrix factorization and
its applications’ from the Education and Research Network PECO-NEI between France-Romania-
Slovakia, File 15521ZG provided by the Ministry of National Education, Advanced Instruction, and
Research, France.

†Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava,
Slovak Republic ((Gabriel.Oksa, Marian.Vajtersic)@savba.sk)

‡Institute for Scientific Computing, University of Salzburg, Salzburg, Austria
§INRIA, University Paris Sud-11, Orsay, France

449

450 G. OKŠA AND M. VAJTERŠIC

QRF because of a low efficiency in using the computational power. Instead, some sort
of a cyclic matrix distribution on a process grid r × c with p = rc, r, c > 1, is needed
so that all processors remain busy during the whole parallel QR (or LQ) factorization.

Optimal parameters for the pre-processing step need to be found experimentally
for a given parallel architecture. For a cluster of PCs, it is shown that their values
are about nb = 100 and r ≤ c, r = max, i.e., r is maximized so that both r and c
are as close to

√
p as possible. Numerical experiments suggest that the efficiency of

a pre-processing step depends on a distribution of singular values (SVs). In contrast,
the dependence on the condition number κ is only mild. Optimal parameters were
then used in the pre-processed parallel two-sided block-Jacobi SVD algorithm; its
performance was tested for well-conditioned (κ = 101) as well as ill-conditioned (κ =
108) random, square, real matrices of order n = 2000, 4000, 6000, 8000 with a multiple
maximal/minimal SV using p = 4, 8, 12, 16 processors with the constant ratio n/p =
500. As it is known from [9], these distribution of SVs leads to large saving in the
number of parallel iteration steps needed for the convergence of the whole algorithm
regardless to κ. We show that In these two cases, our algorithm is competitive with
the ScaLAPACK routine PDGESVD.

The paper is organized as follows. In Section 2 we briefly introduce the parallel
two-sided block-Jacobi SVD algorithm with dynamic ordering. Section 3 is devoted
to the variants of pre- and post-processing based on the QRF with CP, optionally
followed by the LQF of R-factor. In Section 4, optimal values nb, r and c for the pre-
processing step are found experimentally. These values are then used in Section 5 in
numerical experiments, in a detailed profiling of our algorithm and in its comparison
with the ScaLAPACK routine PDGESVD.

Throughout the paper, ‖A‖F denotes the Frobenius norm of a matrix A and κ is
the condition number of A defined as the ratio of its largest and smallest SV.

2. Parallel algorithm with dynamic ordering. To ensure the clarity of pre-
sentation, we mention only briefly basic constituents of the parallel two-sided block-
Jacobi SVD algorithm (PTBJA) with dynamic ordering. This section is basically
repeated from [9].

When using p processors and the blocking factor ℓ = 2p, a given matrix A is
cut column-wise and row-wise into an ℓ × ℓ block structure. Each processor contains
exactly two block columns of dimensions m × n/ℓ so that ℓ/2 SVD subproblems of
block size 2 × 2 are solved in parallel in each iteration step. This tight connection
between the number of processors p and the blocking factor ℓ can be released (see
[3]). However, our experiments have shown that using ℓ = 2p ensures the least total
parallel execution time in most cases.

At the beginning of each parallel iteration step, it is necessary to map one 2 × 2
block SVD subproblem to each of p processors. This can be achieved by some type
of ordering. The so-called dynamic ordering is based on the maximum-weight perfect
matching that operates on the ℓ × ℓ updated weight matrix W using the elements of
W + WT , where (W + WT)ij = ‖Aij‖2

F + ‖Aji‖2
F. Details concerning the dynamic

ordering can be found in [2].

The kernel operation is the SVD of 2 × 2 block subproblems

Sij =

(

Aii Aij

Aji Ajj

)

, (2.1)

where, for a given pair (i, j), i, j = 0, 1, . . . , ℓ − 1, i 6= j, the unitary matrices Xij

DATA LAYOUT IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 451

and Yij are generated such that the product

XH
ij Sij Yij = Dij

is a block diagonal matrix of the form

Dij =

(

D̂ii 0

0 D̂jj

)

,

where D̂ii and D̂jj are diagonal.
The termination criterion of the entire process is

F (A, ℓ) =

√

√

√

√

ℓ−1
∑

i,j=0, i6=j

‖Aij‖2
F < ǫ , ǫ ≡ prec · ‖A‖F , (2.2)

where ǫ is the required accuracy (measured relatively to the Frobenius norm of the
original matrix A), and prec is a chosen small constant, 0 < prec ≪ 1.

The subproblem (2.1) is solved only if

F (Sij , ℓ) =
√

‖Aij‖2
F + ‖Aji‖2

F ≥ δ , δ ≡ ǫ ·
√

2

ℓ (ℓ − 1)
, (2.3)

where δ is a given subproblem accuracy. It is easy to show that if F (Sij , ℓ) < δ for
all i 6= j then F (A, ℓ) < ǫ, i.e., the entire algorithm has converged.

After the embedded SVD is computed, the matrices Xij and Yij of local left and
right singular vectors, respectively, are used for the local update of block columns.
Then each processor sends its matrix Xij to all other processors, so that each processor
maintains an array of p matrices. These matrices are needed in the orthogonal updates
of block rows.

From the implementation point of view, the embedded SVD is computed using
the procedure *GESVD from the LAPACK library while matrix multiplications are per-
formed by the procedure *GEMM from the BLAS (Basic Linear Algebra Subroutines).
The point-to-point as well as collective communications are realized by the Message
Passing Interface (MPI).

3. Variants of pre-processing and post-processing.

3.1. QR factorization with column pivoting. As discussed in [9], the QR
factorization with column pivoting (QRFCP) is applied to A at the beginning of
computation. This pre-processing step can be written in the form

AP = Q1R, (3.1)

where P ∈ Rn×n is the permutation matrix, Q1 ∈ Cm×n has unitary columns and
R ∈ Cn×n is upper triangular. Notice that this is a so-called economy-sized QRFCP,
where only n unitary columns of orthogonal matrix are computed.

In the second step, the SVD of the matrix R is computed by the PTBJA with
dynamic ordering. Let us denote the SVD of R by

R = U1ΣV H
1 , (3.2)

452 G. OKŠA AND M. VAJTERŠIC

where U1 ∈ Cn×n and V1 ∈ Cn×n are left and right singular vectors, respectively, and
the diagonal matrix Σ ∈ Rn×n contains n SVs, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, that are the
same as those of A.

In the final step, some post-processing is required to obtain the SVD of A, A ≡
UΣV H . Using Eq. (3.2) in Eq. (3.1), one obtains

AP = (Q1U1)ΣV H
1 ,

so that

U = Q1U1 and V = PV1. (3.3)

As can be seen from Eq. (3.3), the post-processing step consists essentially of one
distributed matrix multiplication. Here we assume that the permutation of rows of
V1 can be done without a distributed matrix multiplication, e.g., by local exchanging
its rows in all processors and by gathering the whole V1 in one processor.

3.2. Optional LQ factorization of the R-factor. The second variant of pre-
and post-processing starts with the same first step as above, i.e., with the QRFCP of
A.

However, in the second step, the LQF of R-factor is computed (without column
pivoting), i.e.,

R = LQ2, (3.4)

where L ∈ Cn×n is the lower triangular matrix and Q2 ∈ Cn×n is the unitary matrix.
This step helps to concentrate the Frobenius norm of R towards the diagonal even
more (cf. [10]).

Next, the SVD of L is computed in the third step by our parallel PTBJA with
dynamic ordering,

L = U2ΣV H
2 , (3.5)

and, finally, the SVD of the original matrix A ≡ UΣV H is assembled in the post-
processing step, where

U = Q1U2 and V = P (QH
2 V2). (3.6)

Hence, the post-processing consists essentially of two distributed matrix multiplica-
tions.

The purpose of the pre-processing step is twofold. First, for rectangular matrices
of order m × n, m ≥ n, the R-factor (L-factor) is a square matrix of order n, which
means that for m ≫ n huge savings in storage requirements and computation of 2×2
block SVDs can be achieved. Second, after the QRFCP (followed by the optional
QLF of the R-factor), the Frobenius matrix norm is usually well concentrated near
the matrix diagonal (cf. [4, 8, 10]), so that only few iteration steps in the parallel
two-sided block-Jacobi algorithm are needed for convergence. This is true at least for
some types of matrices; see [9].

3.3. Data layout for the QRF (LQF). Past experiments in [9] have shown
that the block-column distribution of matrix A, as used in the PTBJA, is not well-
suited for the QRFCP as implemented in the ScaLAPACK. Notice that the block-
column distribution corresponds to the block cyclic distribution with the process grid
1 × p and block size 2⌈n/2p⌉ × 2⌈n/2p⌉.

DATA LAYOUT IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 453

When using p processors with the matrix block cyclic distribution of type 1 × p
(i.e., the whole block columns are stored in processors), the computation of the block
QRF is serialized and synchronized. When the blocking factor in the iterative part
of the Jacobi algorithm is ℓ = 2p (i.e., each processor stores two block columns), and
the block size for the QRF is nb, then processor i, 0 ≤ i ≤ p−1, starts the QRF of its
submatrix at step 2⌈n/ℓ⌉i and finishes it at step 2⌈n/ℓ⌉(i + 1) (one step here means
the processing of one matrix column). During this computation, processor i sends
2⌈n/ℓ⌉/nb-times data to processors to its right for computing updates. At any given
time, only one processor computes the QRF; all other processors are computing only
the updates and they have to wait for data. As the computation is column-oriented
and proceeds from left to right, more and more processors become idle during the
computation of the block QRF. This is a highly inefficient use of the computational
power.

To increase the efficiency in the pre-processing step, one should use a matrix cyclic
block distribution with block size nb on a process grid r × c, r, c ≥ 1, with p = rc,
where r and c is the number of processors in a process row and column, respectively.
This type of data distribution is supported by all ScaLAPACK routines. Such a data
distribution eliminates the synchronization in computing the block QRF and can lead
to a better use of computational resources and thus to a faster computation.

The block column width nb is another parameter that influences the rate of com-
putation of the parallel block QRF. First, the larger is nb, the larger is a delay between
beginning of the QRF of a given block column and broadcast of updating data on a
process grid. However, the smaller is nb, the more often the broadcast of updating
data is performed, so that the whole computation can be trapped in a communication
bottleneck.

Once the QRFCP (optionally followed the LQF of the R-factor) is computed,
data distribution is changed to the cyclic one with the process grid 1 × p. Having p
processors, the blocking factor is ℓ = 2p and each processor stores exactly two block
columns of the R-factor (L-factor). The PTBJA is then used with dynamic ordering
for the SVD computation. At the end, the post-processing step according to Eq. (3.3)
(or Eq. (3.6)) is applied.

It is clear from the above discussion that, for the parallel block QRF (or LQF),
there is a trade-off between the block width nb and the shape r × c of a process grid.
Next section is devoted to finding experimentally optimal values of r, c and nb for a
given parallel architecture.

4. Optimal data layout for the QRF (LQF). We have implemented the pre-
processing step on a cluster of personal computers (PCs) at Salzburg University. The
cluster of PCs consisted of 36 nodes arranged in a 6×6 two-dimensional torus. Nodes
were connected by the Scalable Coherent Interface (SCI) network; its bandwidth was
385 MB/s and latency < 4µs. Each node contained 2 GB RAM with two 2.1 GHz
ATHLON 2800+ CPUs, while each CPU contained a two-level cache organized into
a 64 kB L1 instruction cache, 64 kB L1 data cache and 512 kB L2 data cache.

All computations were performed using the IEEE standard double precision float-
ing point arithmetic with the machine precision ǫM ≈ 2.22 × 10−16. The number of
processors p was variable, p = 4, 8, 12, 16, and depended on the order n of a square
real test matrix A, whereby the values n = 2000, 4000, 6000 and 8000 have been
used. At the same time, the ratio n/p = 500 was constant throughout numerical
experiments, so that the use of cache memory was standardized with respect to the
block width.

454 G. OKŠA AND M. VAJTERŠIC

Table 4.1

Pre-processing (PDGEQPF) in [s], n = 4000, p = 8, κ = 10, mode = 1

Block size / Process grid 1 x 8 8 x 1 2 x 4 4 x 2
6 x 6 121.1 135.4 112.7 127.6

100 x 100 120.1 134.0 116.4 123.0
250 x 250 136.2 143.3 124.7 133.9
500 x 500 158.8 164.1 140.6 143.3

Table 4.2

Pre-processing (PDGEQPF) in [s], n = 8000, p = 16, κ = 10, mode = 1

Block size / Process grid 1 x 16 16 x 1 2 x 8 8 x 2 4 x 4
6 x 6 444.0 486.2 438.6 447.9 427.4

100 x 100 460.8 524.1 444.4 447.4 423.9
250 x 250 553.9 555.7 494.8 481.8 458.7
500 x 500 650.0 634.3 545.5 525.2 511.8

For given number of processors p, all possible values of r and c for a process grid
r × c were tested, whereby p = rc. In particular, the process grid 1 × p corresponds
to the cyclic distribution by whole block columns; this distribution has been used in
previous experiments (see [9]) and will be used also here for the iterative part of the
PTBJA (see the next section).

With respect to the block size nb, the a priori information form [5] can be
used. The authors in [5] have recommended small values of nb for their parallel
architecture; in particular, nb = 6 was recommended. In our experiments, values
nb = 6, 100, 250, 500 were used.

Matrix elements in all cases were generated randomly, with a prescribed condition
number κ and a known distribution of singular values (SVs) 1 = σ1 ≥ σ2 ≥ · · · ≥
σn = 1/κ. Two distributions of singular values were used—the same ones as in [9]. In
the first distribution (mode = 1), a matrix had a multiple minimal SV with σ1 = 1 and
σ2 = σ3 = · · · = σn = κ−1. In the second case (mode = 3), the SVs were distributed
in the form of a geometric sequence with σ1 = 1 and σn = κ−1 (i.e., all SVs were
distinct, but clustered towards σn).

In next two tables (Tables 4.1 and 4.2) we report experimental results for mode = 1
and for n = 4000 and n = 8000 (the results for other matrix sizes were similar). As
was shown in [9], for this combination of κ and mode, it is sufficient to compute only
the QRFCP (i.e., the LQF of R-factor was not needed). The QRFCP was computed
by the ScaLAPACK routine PDGEQPF as indicated in the caption of both tables. The
minimal parallel execution time of the pre-processing step is depicted in bold.

Experimental data in Tables 4.1 and 4.2 can be analyzed by looking at trends (if
any) along their rows (fixed block size (BS), variable process grid (PG)) and columns
(fixed process grid, variable block size). For p = 8 (Table 4.1) and fixed block size nb,
the minimal parallel execution time of pre-processing TQR was always achieved for
the process grid 2 × 4. Similar trend is observed also for p = 16, where the minimal
TQR was always achieved for the process grid 4 × 4.

Looking at trends along columns, for p = 8 the minimal TQR was measured for
nb = 6 or nb = 100, i.e. for small block sizes. Note the jump in TQR when going
form the block size nb = 100 to the value nb = 250. Presumably, this jump could be
connected to the limitation of the cache size when computing the QRF of the block

DATA LAYOUT IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 455

Table 4.3

Pre-processing (PDGEQPF/PDGELQF) in [s], n = 4000, p = 8, κ = 10, mode = 3

BS / PG 1 x 8 8 x 1 2 x 4 4 x 2
QRCP LQ QRCP LQ QRCP LQ QRCP LQ

6 x 6 112.2 24.4 124.4 42.5 109.3 24.2 115.0 35.7
100 x 100 120.1 11.3 132.4 26.5 114.9 11.0 117.9 17.9
250 x 250 136.3 17.9 142.6 49.4 124.1 22.0 123.9 36.6
500 x 500 160.4 37.3 163.3 85.0 140.6 43.3 135.5 66.9

column of width nb = 250. For p = 8, the global minimum of TQR was achieved for
nb = 6 and r×c = 2×4. The same behavior was observed also for p = 16 (Table 4.2);
the only difference is that the global minimum of TQR was measured for the larger
block size nb = 100 and for the square process grid r × c = 4 × 4.

The pre-processing step was repeated for κ = 10 and mode = 3 (a geometric
sequence of SVs), and the results for n = 4000 are summarized in Table 4.3. Similar
behavior was observed also for other values of n.

As discussed in [9], for a geometric distribution of singular values the best perfor-
mance of the parallel block-Jacobi SVD algorithm is achieved when both factorizations
(the QRFCP and the LQF) are applied in the pre-processing step. The QRFCP and
LQF were computed by the ScaLAPACK routines PDGEQPF and PDGELQF, respectively.
Hence, the total parallel execution time of a pre-processing step is the sum of two par-
tial numbers. In Table 4.3, the minimal total parallel execution time is marked in
bold.

The observed trends along rows and column of Table 4.3 are similar to those
discussed for Tables 4.1 and 4.2. For a fixed block size nb, the minimal total parallel
execution time TQRLQ was always achieved for the process grid r × c = 2 × 4. For
a fixed process grid, the optimal block size was always nb = 100, whereby the global
minimum of TQRLQ was measured for nb = 100 and r × c = 2 × 4. Notice that the
LQF can be one order of magnitude faster than the QRCP as in the case of globally
minimal TQRLQ. It is clear that the column pivoting in the first factorization takes a
large portion of the total parallel execution time of the pre-processing step.

We can conclude from above tables (and also from similar results not published
here) that, having p processors with p = rc, the optimal values for the pre-processing
step are nb = 100, r ≤ c, and both r, c closest to the value

√
p (in other words, r =

max). This conclusion confirms the results in [5] that were obtained for a completely
different parallel architecture. Note that the block-column data partition, which was
used for the pre-processing step in [9], corresponds to the first column in Tables 4.1,
4.2, 4.3, and nb = 500. It follows that using the optimal values of nb, r and c one
can save up to 30–35 per cent of parallel execution time needed for the pre-processing
step. This saving can be substantial when the subsequent iterative phase needs only
few parallel iteration steps for its convergence. As shown in [9], exactly this happens
for well-conditioned matrices and mode = 1.

5. Numerical experiments with the optimal data layout. Optimal param-
eters nb = 100 and r, c, which depend on p = rc, were used in numerical experiments
that are described in this section. We were interested in the dependence of the PT-
BJA’s performance on the distribution of SVs, in its profiling and in its comparison
with the ScaLAPACK routine PDGESVD for a parallel SVD computation via matrix
bidiagonalization. Numerical results and their discussion are summarized in next two

456 G. OKŠA AND M. VAJTERŠIC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14

pe
rc

e
n

ta
g

e
 o

f to
ta

l t
im

e
 [%]

number of processors

M A T M U L
S V D

C O M M
Q R P R E - P R O C

Fig. 5.1. Portion of Tp needed in matrix multiplication (MATMUL), SVD computation (SVD),
communication (COMM) and pre-processing (the QRF with CP) for fixed n = 4000, nb = 100, κ =
101 and mode = 1.

subsections.

5.1. Profiling. When analyzing the efficiency of a parallel algorithm, one is also
interested in portions of the total parallel execution time Tp that are occupied by com-
putation inside processors and communication between processors. The computation
can be further divided into basic elements of an algorithm; for example, in the case of
the PTBJA one can think about the pre-processing step, matrix multiplication and
SVD computations in 2 × 2 block subproblems.

We have chosen matrices with a multiple maximal SV (mode = 1). Since the
properties of the pre-processing step as well as of the iterative part of the PTBJA do
not strongly depend on the condition number κ, only results for κ = 101 are presented.
To demonstrate various trends clearly, two kinds of profiling were performed. The first
kind takes the matrix order n = 4000 fixed and varies the number of processors p,
while the second one uses the fixed number of processors p = 12 and changes the
matrix order n.

Profiling results for mode = 1 are presented in Fig. 5.1 (fixed n = 4000) and
Fig. 5.2 (fixed p = 12). Looking at fixed n = 4000, about 60–70 per cent of
Tp is spent in the pre-processing step consisting of the QRF with CP. This is the
consequence of the fact that for mode = 1 such pre-processing (together with the
dynamic ordering) is capable to decrease the number of parallel iteration steps nit

from O(102) to O(1)—see [9]. A small value of nit needed for the convergence means
that time portions required for the matrix multiplication, the SVD of subproblems and
for the communication are small—between 5 and 15 per cent of Tp. By increasing the
number of processors p, the block factor ℓ = 2p also rises, which leads to the decrease
of complexity in the SVD computations in accordance with a detailed analysis of time
complexity performed in [2].

Almost the same conclusions can be drawn for the case of fixed p = 12 in Fig. 5.2.
The QRF with CP is again far the most time consuming computation, while the
iterative part of the PTBJA takes only about 10 per cent of Tp. Note that the fixed
process grid 3 × 4 was used in the pre-processing step.

DATA LAYOUT IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM 457

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2000 3000 4000 5000 6000

pe
rc

e
n

ta
g

e
 o

f to
ta

l t
im

e
 [%]

matrix dimension

M A T M U L
S V D

C O M M
Q R P R E - P R O C

Fig. 5.2. Portion of Tp needed in matrix multiplication (MATMUL), SVD computation (SVD),
communication (COMM) and pre-processing (the QRF with CP) for fixed p = 12, process grid
3 × 4, nb = 100, κ = 101 and mode = 1.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 2000 3000 4000 5000 6000 7000 8000 9000

to
ta

l t
im

e
 [s
]

matrix dimension

S C A L A P A C K
O R I G I N A L

Q R P R E - P R O C

Fig. 5.3. Total parallel execution time Tp in seconds for a process grid r × c, r ≤ c, r =
max, nb = 100, κ = 101, n/p = 500 and mode = 1. ORIGINAL means the PTBJA with no
pre-processing.

5.2. Comparison with ScaLAPACK. We have repeated the procedure of
finding the optimal values r, c and nb also for the ScaLAPACK routine PDGESVD. The
results were the same as for the pre-processed PTBJA so that the same optimal values
could be used for both ways of computing the SVD in parallel.

The comparison was performed for varying matrix dimension (n = 2000 − 8000)
and number of processors p = 4−16 using the constant ratio n/p = 500, nb = 100 and
the optimal process grid in the pre-processing step. Results are summarized in Fig. 5.3,
where the performance of the original PTBJA (without any pre-processing) and that
of the pre-processed PTBJA (the QRF with CP) were compared to the ScaLAPACK.
The most important result is that our pre-processed PTBJA is competitive with the

458 G. OKŠA AND M. VAJTERŠIC

ScaLAPACK routine PDGESVD, whereas the original PTBJA is not. It should be
stressed that because nit after pre-processing is so small (see [9]), the portion of Tp

taken by the pre-processing step plays an important rôle and affects significantly the
whole computation. Therefore, the optimal parameters with respect to nb and process
grid r × c are of crucial importance for the performance of the whole PTBJA, too.
Without using optimal nb, r and c, the pre-processed PTBJA with dynamic ordering
is not competitive with the ScaLAPACK routine PDGESVD.

Similar results (not reported here) were obtained also for matrices with a multiple
minimal singular value (mode = 2) regardless to the condition number κ.

6. Conclusions. To be efficient, the pre-processing step in the PTBJA requires
the use of optimal block size nb and optimal cyclic matrix distribution on a process
grid r × c with r, c > 1 where p = rc is the number of processors. We have found
experimentally that the optimal values for a cluster of PCs are nb = 100, and r ≤
c, r = max.

With optimal parameters for pre-processing, a set of numerical experiments was
performed for a multiple maximal SV and two condition numbers. For matrices with
a multiple maximal/minimal SV, the use of optimal parameters in the pre-processing
step (the QRF with CP) enabled to achieve the performance comparable to that of
the ScaLAPACK routine PDGESVD. For the future work, we plan to test the optimal
data layout also for other types of distribution of SVs.

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the solution of
algebraic eigenvalue problems: A practical guide, First ed., SIAM, Philadelphia, 2000.

[2] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi SVD algo-
rithm, Parallel Computing 28 (2002) 243-262.

[3] M. Bečka and G. Okša, On variable blocking factor in a parallel dynamic block-Jacobi SVD
algorithm, Parallel Computing 29 (2003) 1153-1174.

[4] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88/89 (1987) 67-82.
[5] J. Choi, J.J. Dongarra, L.S. Ostrouchov, A.P. Petitet, D.W. Walker, R.C. Whaley, The design

and implementation of the ScaLAPACK LU, QR and Cholesky factorization routines,
Scientific Programming 5 (1996) 173-184.

[6] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: I., LAPACK Working
Note 169, August 2005.

[7] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: II., LAPACK Working
Note 170, August 2005.

[8] Y. P. Hong and C.-T. Pan, Rank-revealing QR factorizations and the singular value decompo-
sition, Math. Comp. 58 (1992) 2 13-232.

[9] G. Okša and M. Vajteršic, Efficient pre-processing in the parallel block-Jacobi SVD algorithm,
Parallel Computing 32 (2006) 166-176.

[10] G. W. Stewart, The QLP approximation to the singular value decomposition, SIAM J. Sci.
Comput. 20 (1999) 1336-1348.

