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HETEROGENEOUS MULTISCALE METHOD IN EDDY CURRENTS

MODELING∗

JÁN BUŠA, JR.† AND VALDEMAR MELICHER†

Abstract. The induction of eddy currents in a conductive piece is an electromagnetic phe-
nomenon described by Maxwell’s equations. For composite materials it is multiscale in its nature.
We are looking for the macroscopic properties of the composite. We have applied the Heterogeneous
Multiscale Method in order to avoid necessity of using full microscale solver.

Key words. eddy currents, homogenization, heterogeneous multiscale method, variational prob-
lem, finite elements

AMS subject classifications. 65M55, 65M60, 65Z05, 78M40, 78A48, 78A25, 78M10

1. Introduction. Induction of eddy currents is an electrical phenomenon when
a circulating flow of electrons emerges inside of a conductor. This happens when
the conductor is exposed to a changing magnetic field either due to a relative mo-
tion between the conductor and electromagnetic field or due to the variations of the
field with time. These eddy currents create electromagnets with opposing magnetic
fields, introducing power loss in electrical devices. Therefore understanding of this
phenomenon is of a great importance.

Macroscopic behavior of a material is strongly dependent on its microscopic prop-
erties. Thus eddy currents problem for composite materials is multiscale in its nature.
We use Heterogeneous Multiscale Method (HMM), a general framework introduced
in [5] by E et al. to solve multiscale problems numerically.

Classical methods — multigrid method, domain decomposition, adaptive mesh
refinement are general purpose solvers for the fine scale problem and their price is
therefore the price of full microscale solver. Other problem of multigrid approach is
in the abundance of information gained by the full microscale solver.

Modern methods like HMM, optimal prediction method or adaptive model re-
finement are trying to use special features of the problem such as scale separation to
decrease the computational complexity of the model. For comparison of the recent
methods see [8].

This paper is organized as follows. In Section 2 Heterogeneous Multiscale Method
is introduced. In Section 3 eddy currents model is introduced and in the Section 4
numerical experiments supporting theoretical results are presented.

2. Heterogeneous Multiscale Method. HMM works as a macroscale solver
which turns to the microscale model only if the macroscopic model is invalid or where
constitutive relations are missing.

In order to be able to use the HMM we have to make following assumptions (see
[5]):
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1. We have a microscopic variational problem

min
u

f(u), (2.1)

where u is a state variable dependent on multiple scales, e.g. u = u(x, x/ε),
where ε ≪ 1 is the dimension of the microscale. Here u(x, y) is periodic in y
with period 1.

2. There exists a macroscopic variational model

min
U

F (U), (2.2)

which has a solution u0, such that

u
(

x,
x

ε

)

= u0(x) + O(ε). (2.3)

3. We have compression operator Q mapping states from the microscopic scale
to the macroscopic one and reconstruction R operator working in the opposite
direction. It must hold that QR = I, where I is the identity operator.

To make the abstract framework of HMM more concrete consider the heat con-
ductivity problem1

∇ · (Aε∇uε) = g in Ω, (2.4)

uε = 0 on ∂Ω, (2.5)

where Aε(x) = A(x, x/ε). Let us remark, that there exist no explicit formulae in
general for homogenized heat conductivity A0 and it can be found only in some
special cases.

A result of the homogenization theory [2, 3] is that for ε → 0 converges uε in the
weak sense to a u0(x) ∈ H

1
0(Ω), the solution of

∇ · (A0∇u0) = g in Ω, (2.6)

where A0 is given by

a0
ij =

∫

Y

aij +

3
∑

k=1

aik

∂χj

∂yk

(x, y)dy, i, j = 1, . . . , 3. (2.7)

Here, χj denote the solution to the cell problems

∇ · (Aε∇χj) = −

3
∑

k=1

∂Aε
kj

∂yk

in Ω, j = 1, . . . , 3. (2.8)

In the case of fine scale problem (2.4)–(2.5) we opt for finite element space dis-
cretization, which is natural for variational problems. The homogenized u0 is the
macro state variable we are looking for. It solves (2.6). Thus finite elements are again
a feasible choice.

1To consider eddy currents model itself would be unnecessary technical.
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Let TH be the macro triangulation of Ω. The diameter H of the triangulation is
chosen to resolve well the macro scale properties of (2.4)–(2.5). We allow H ≫ ε. Let
the macro finite element space be defined as

P k
0 (Ω, TH) :=

{

UH ∈ H1
0

∣

∣ UH |K ∈ P k(K) ∀K ∈ TH

}

, (2.9)

where P k(K) is the space of k-th order polynomials on the triangle K ∈ TH .
The variational formulation of (2.6) reads

(A0∇u0,∇ϕ) = (g, ϕ) ∀ϕ ∈ H1
0 (Ω). (2.10)

xl

Ih(xl)

H

h

Fig. 2.1. Illustration of HMM. H – diameter of macroelement, xl – quadrature point, h –

diameter of microelement, Ih(xl) – domain on which the microproblem is solved

The macro data which have to be estimated using the fine scale problem (step 2
of the HMM) is the stiffness matrix corresponding to (2.10)

MH
ij = (A0∇Φi,∇Φj), (2.11)

where Φi are the basis functions of P k
0 (Ω, TH). Imagine, that we would know the

effective conductivity A0. Then we could simply evaluate MH
ij by means of a numerical

quadrature

MH
ij ≈

∑

K∈TH

|K|
∑

xl∈K

ωlA
0(xl)∇Φi(xl)∇Φj(xl), (2.12)

where xl and ωl are the quadrature points and weights, respectively. An idea of HMM
is to approximate

fij = A0(xl)∇Φi(xl)∇Φi(xl) (2.13)

by the solution to a fine scale problem on a small domain Ih(xl) around the quadrature
point xl (see Fig. 2.1). This idea is based on the homogenization theorem, see for
example [3], Th. 6.1. Let MY (f) stand for the Y -cell average of a function f , i.e.,
MY (f) = 1/|Y |

∫

Y
fdy. The matrix A0 is given by

A0λ = MY (Aε∇wλ) ∀λ ∈ R
n, (2.14)

where wλ is the solution to the next auxiliary cell problem.
Problem 1. Find wλ such that wλ − λ · y ∈ Wper(Y ) and aY (wλ, v) = 0 for all

v ∈ Wper(Y ), where the space Wper(Y ) is defined as

Wper(Y ) :=

{

v ∈ H1
per(Y )

∣

∣

∫

Y

v = 0

}

. (2.15)
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Here H1
per(Y ) is the closure of C∞

per(Y ), i.e. the subset of Y -periodic functions of

C∞(RN ), in H1-norm. The bilinear form aY (u, v) is defined as

aY (u, v) :=

∫

Y

Aε∇u∇v dy ∀u, v ∈ Wper(Y ). (2.16)

Moreover we have

MY (wY − λ · y) = 0. (2.17)

On the basis of this characterization of A0, particularly from (2.14) we can write

A0(xl)∇U(xl) = MY (Aε∇u), (2.18)

where u = wλ for λ = ∇U(xl). Moreover the Y-periodicity of wY − λ · y yields

∇U(xl) = MY (∇u). (2.19)

In this way, the homogenization theorem gives us the definition of the appropriate
compression operator Q. It is defined in the quadrature points by (2.19).

Consequently, the macro bilinear form can be defined by the HMM as

A(UH , V H) :=
∑

K∈TH

|K|
∑

xl∈K

ωl

|Ih(xl)|
(Aε∇u,∇v)Ih(xl), (2.20)

where u, v are solutions to Problem 2 (see below) for Ψ = UH , Ψ = V H , respectively.
The sublinear cost of the HMM stems from the fact that we solve the microproblem
only on the small sampling domain Ih(xl) around the quadrature point xl, not on the
whole triangle K. Let us recall, that the convergence of the HMM in H is robust in a
sense that it does not depend on ε, see [4].

Problem 2. Find u such that u − Ψ ∈ Wper(Ih(xl)) and

∫

Ih(xl)

∇uAε(∇v)T = 0 ∀v ∈ Wper(Ih(xl)).

In [11] is studied how the choice of the boundary condition influences the accuracy
of the solution. It appears that the periodic boundary condition is the best choice
not only for periodic materials, but also for materials with stochastic nature. Only
requirement is, that diameter of sampling domain Ih(xl) should be large enough to
cover the whole microscopic structure.

3. Eddy currents problem. We will start from time-harmonic Maxwell’s sys-
tem (see e.g. [9])

∇× E = −iωµH, (3.1)

∇× H = Ja + σE, (3.2)

∇ · (µH) = 0, (3.3)

∇ · (ǫE) = ̺, (3.4)

where H denotes the magnetic field, Ja is the current density, E is the electric field, ̺
is the electric charge density and σ, µ, ǫ are the matrices of conductivity, permeability
and permittivity, respectively. Model (3.1)–(3.4) as stated here is known as eddy
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Fig. 4.1. Convergence of the HMM

currents model [1]. Applying the divergence to both sides of Faraday’s law (3.1) we
can see, that Gauss’s magnetic law (3.3) is only a consequence of it. After elimination
of H from Maxwell’s equations (3.1)–(3.2) we arrive at

∇× (µ−1∇× E) + iωσE = −iωJa in Ω. (3.5)

Note, that the matrices σ, µ, ǫ can be in general dependent on both micro and
macro scale and thus σ = σ(x, y), µ = µ(x, y) and ǫ = ǫ(x, y).

4. Numerical experiments. To implement the eddy currents problem (3.5) we
have used feHMM library. It is a C++ library being developed at our department.
The main objective of this package is to work as a black-box solver, where user has
to enter only geometry of the problem, right-hand side at the macro level, boundary
conditions and the bilinear form of the microproblem. Since this library is build as
a plug-in for Alberta finite element package [10] it possesses all strong features of
Alberta as mesh generation based on bisectioning refinement method introduced in
[7] and the usage of standard BLAS solvers. Another strong feature is, that code is
automatically written for all space dimensions. Only geometry dependent issues like
domain or boundary conditions have to be treated individually.

At present only Dirichlet boundary conditions are implemented in the feHMM

library. The error estimate for Dirichlet boundary conditions as stated by E et al. in
[6] is

‖u0 − UH‖L2(Ω) ≤ C
( ε

h
+ h + H2

)

‖f‖L2(Ω), (4.1)

where u0 is the homogenized solution and UH its approximation obtained by the
finite element HMM. H is the diameter of macro mesh, h is the diameter of micro
mesh (for idea of this see Fig. 2.1). This estimate is valid under the assumption that
microproblems are solved precisely.

On Fig. 4.1 is shown the convergence of HMM depending on size of the mesh.
Logarithm of absolute error is shown. The dimension of microscale ε = 0.001.

The numerical experiments confirm the theoretical predictions. The error with re-
spect to H decreases when H decreases until the term ε/h in (4.1) becomes dominant.
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Fig. 4.2. Testing problem and performance of the HMM

For the biggest values of H the error decreases with respect to h when h decreases.
Once the values of h become very small, microscopic details (around the quadrature
points) are resolved with high precision. The error with respect to h does not improve
any more.

On Fig. 4.2 is shown performance of the HMM method with ǫ = 1, σ = 1 and
1/µ = sin(2πx/ε)x + 3 with prescribed exact solution E(x, y) = (x(x − 1)y(y −
1), x(x− 1)y(y − 1)). The dimension of microscale ε = 0.001. Here H = 0.006472 and
h = 0.000034.
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