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SIMULATING CERTAIN ASPECTS OF MULTIPHASE FLOW USING

STOCHASTIC DIFFERENTIAL EQUATIONS

DAVID W. DEAN∗

Abstract. Modifications to a stochastic differential equation (SDE) approach for modeling
single and two phase NAPL flow are proposed which are intended to allow SDE modeling of the
motion of air bubbles in porous media. Bubble flow and channeling are discussed along with bubble
sticking, bubble coalescing, bubble breakup and air sparging.
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1. Background. In previously presented work, ideas involving stochastic dif-
ferential equations (SDE’s) were used to model single and two-phase flow of NAPL
in a water saturated porous media, Dean et al. [4], [5]. This approach results in a
nonlinear SDE that describes the position of the NAPL fluid particles. The control of
NAPL fluid particles across a permeability interface, pooling, is accomplished using
a jump term which derives from the Itô formula for càdlàg semimartingales Dean et

al. [6],[7], Kloeden and Platen [14], Protter [18], and is based on capillary diffusivity
and the pressure-saturation curves of the sands forming the interface.

1.1. Stochastic Differential Equation Model. Consider an m-dimensional

Wiener process ~W = { ~Wt : t ≥ 0} with components ~Wt =
[

W 1
t ,W

2
t , · · · ,Wm

t

]T

which are independent scalar Wiener processes with respect to a common family
of σ-algebras {At : t ≥ 0}. Let ~a(t, ~x) be a d-dimensional vector function such
that ~a : [0, T ] × ℜd → ℜd, T ≥ 0 and let B be a d × m-matrix function such that
B : [0, T ]×ℜd → ℜd×m. These form the vector SDE

d ~Xt = ~a(t, ~Xt) dt+ B(t, ~Xt) d ~Wt,(1.1)

which is interpreted as ~X = ~X0 +
∫ t

0
~a(s, ~Xs)ds+

∫ t

0
B(s, ~Xs)d ~Ws. Using Itô’s lemma,

the conditional probability density of a particle ~Xp starting at (~x0, t0), p(~x, t) ≡
p(~x, t; ~x0, t0) is given by

∂p(~x, t)

∂t
+ ∇ ·

[(

~a(t, ~x) −∇TDT(t, ~x)
)

p(~x, t)
]

−∇ ·D(t, ~x)∇p(~x, t) = 0,(1.2)

where 2D = BBT, which illustrates the relationship between the SDE and the PDE.

1.2. Two-Phase Flow. The type of problem to be modeled is the contamina-
tion of groundwater by a non-wetting fluid such as a NAPL. The laboratory experi-
ments used Soltrol, which is lighter than water, or an LNAPL. The continuity equation
and Darcy’s law are used to develop a Fokker-Planck equation for the non-wetting
phase, Sn, which has the form
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∂Sn

∂t
+ ∇ ·

[

1

θn

(

fn~qt − λ̄γwk~z + λ̄γnk~z
)

Sn

]

−∇ ·
(

λ̄k

φ

dpc

dSn

)

∇Sn = 0,(1.3)

where in this equation, γα is the specific weight of the α-phase, λ̄ = λwλn

λw+λn

, fn =
λn

λw+λn

, λα = krα

µα

, ~z = (0, 0,−1)T, µα is the viscosity of the α-phase, krα is the relative
permeability of the α-phase, pc is the capillary pressure, θ is volumetric fraction, φ
is the porosity, k is the intrinsic permeability and ~qt is the total velocity. Letting
D = λ̄k

φ
dpc

dSn

= 1
2BBT, the associated SDE, Dean [6], is

d ~Xt =

(

1

θn

(

λ̄γnk~z − λ̄γwk~z + fn~qt
)

+ ∇TDT(t, ~Xt)

)

dt+ B(t, ~Xt) d ~Wt.

Figure 1.1 shows how the model simulates pooling and channeling when an
LNAPL plume encounters a broken lens of low permeability. Figure 2.1A illustrates
how the model simulates fingering through an interface between coarse and fine sands.

Advanced Fluid Particle Positions

X
x

Coarse  Sand

F ine  Sand

Coarse  Sand

Injection Point

Direction O f  Water  F low

Saturation Scale

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1.1. NAPL Pooling And Channeling

1.3. Computational SDE. As in the case of deterministic differential equa-
tions, many different time discrete approximations exist. In order to compare differ-
ent discrete approximations, the rates of weak convergence can be used - see Kloeden
and Platen [14] for details.

In our case, we are interested in numerically solving the d-dimensional stochastic
differential equation whose kth component is given by

~Xk
t = ~Xk

t0
+

∫ t

t0

~ak(s, ~Xs) ds+
m

∑

j=1

∫ t

t0

Bk,j(s, ~Xs) d ~W
j
s ,

where t ∈ [t0, T ]. The Itô-Taylor expansion can be used to specify approximation

methods for ~Xt. This expansion has the form

f(τ, ~Xτ ) =
∑

α∈A

Iα

[

fα(ρ, ~Xρ)
]

ρ,τ
+

∑

α∈B(A)

Iα

[

fα(·, ~X.)
]

ρ,τ
,(1.4)
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where ρ(ω) and τ(ω) are stopping times such that

t0 ≤ ρ(ω) ≤ τ(ω) ≤ T w.p. 1,

the Iα are multiple Itô integrals, A is a hierarchical set and B(A) is its remainder and
the fα are the Itô coefficient functions, see Kloeden and Platen [14], chapter 5 for the
details. The simplest weak Itô-Taylor approximation scheme is given by

~Y k
n+1 =

∑

α∈A

~fk
α(τn, ~Yn)Iα,τn,τn+1

= ~Y k
n + ~ak(τn, ~Yn)∆n +

m
∑

j=1

Bk,j(τn, ~Yn)∆W j
n

which is known as the Euler scheme. Under sufficient assumptions, it can be shown
that this approximation scheme has a weak order of convergence of β = 1, Kloeden
and Platen [14]. Higher order schemes can be similarly derived by including higher
order Itô integrals from the Itô-Taylor expansion.

Although the Itô-Taylor expansion can be used to establish numerical schemes in
uniform sands, the methods must be modified to simulate anisotropic dispersion, pore
scale fingering and pooling at interfaces of sands of different permeabilities, Dean et

al. [6], [7].

2. Types Of Bubble Flow. As guides to the bubble flow patterns discussed in
the in situ air sparging (ISAS) techniques, we will use Ji et al. [11] and Brooks et al.

[2]. In some cases, the flow pattern descriptions are not always clear. For example,
Brooks et al. [2] uses channel flow, slug flow, mixed pattern, mixed flow and bubble
flow. However, they do identify two general patterns on which we will focus - channel
flow and bubble flow. As a general rule, they conclude that ”· · · ISAS in a porous
media characterized by medium sand or smaller will have air channels, while the flow
pattern in porous media composed of coarse sand or larger will have bubble flow.”

2.1. Channel Flow. According to Brooks et al. [2], in channel flow the air
displaces water along continuous paths. Again, there seems to be some flexibility in
the interpretation of what this actually means. Two extremes of this pattern are:

1. ”· · · a macro scale, dendritic (tree branch) distribution of air channels of
limited cross-sectional extent, originating from the point of air injection · · ·”

2. ”· · · an air distribution in which the air saturation varies continuously over
the entire domain influenced by the air injection point.”

In their experimental results section, they offer the following; ”Channel flow was
used to describe the pattern when areas within the column suddenly desaturated and
remained significantly unsaturated for the duration of the applied pressure. Bubble
flow and slug flow were used to describe the patterns characterized by moving bubbles
or moving slugs, respectively. The distinction between bubbles/slugs and channels was
not always clear. In general, if an area was not significantly resaturated after initial
desaturation, then the pattern was labeled channel flow. Mixed flow was used when
it appeared that a combination of either bubbles or slugs and channels were present.”

Figure 2.1B is the result of applying the model to create a channelized flow. It
seems to fit somewhere into the numerous possibilities of what channelized flow can
be. Basically, we start with a tank packed with a uniform sand and then form in the
tank the four high permeability channels shown in color in the figure. The bubbles are
shown in black. This is consistent with Brooks’ et al. [2] characterization of channel
flow ”· · · in which air displaces liquid along continuous paths of least resistance.” The
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Fig. 2.1. NAPL Fingering And Air Bubble Channels

dendritic nature of the channels is evident as well as their limited cross-sectional extent
and their origin at the point of air injection. The channeling algorithm originated with
our attempts to simulate NAPL fingering at coarse/fine sand interfaces in two-phase
flow. As with bubble flow, the channel flow model tries to take into consideration
bubble sticking, bubble coalescence and bubble breakup. Since the same algorithms
are used in both cases, they will be discussed below.

2.2. Bubble Flow. The other type of bubble movement we are considering
is sometimes called bubbly flow or just bubble flow. It should be noted that the
terminology used to characterize these flows in the literature seems to be dependent
on the interpretation of the author. In our case, what is meant by bubbly flow or
bubble flow is a flow of bubbles that (very) generally trace out an elliptic paraboloid in
a 3-dimensional space of uniform material. However, in a heterogeneous environment,
the bubbles tend to behave in a manner similar to NAPL flow. We will illustrate this
later.

Appealing to Newton’s second law, we have

~F = m~a = m
d~v

dt
,

so that

∫ t

0

~F (s) ds =

∫ t

0

m d~v(s) = m~v(t).

In Dean [6], see also Honerkamp [9], it is shown that the diffusion process ~X(t)
whose probability density satisfies the Fokker-Planck equation also satisfies the SDE

d ~Xt = ~a(t, ~Xt) dt+ B(t, ~Xt) d ~Wt,

where d ~Wt is a white noise process such that d ~W (t) = ~η
√

(dt) and ~η is a vector of
standard normal variables. This equation is a Langevin equation which describes an
Ornstein-Uhlenbeck process.

The model that we are using to describe the bubble movement is given by
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~Xt = ~X0 +

∫ t

0

(

1

θn

(

λ̂γnk~z − λ̂γwk~z
)

)

ds+

∫ t

0

B(s, ~Xs) d ~Ws.(2.1)

The integrand in the first integral on the RHS of Equation( 2.1) is a velocity

and B(s, ~Xs) in the integrand of the second integral on the RHS of Equation( 2.1)
is derived from the diffusion coefficient, D, using the relationship D = 1

2BBT. Since

the dimension of D is l2

t
, the dimension of B is l√

(t)
and since the dimension of

d ~Ws is
√

(t) the second integral on the RHS of Equation( 2.1) is also a distance.
Generally speaking, B plays the role of a velocity. The second integral on the RHS
of Equation( 2.1) is an Itô integral and not the usual Stieltjes integral. Conceptually,

the time derivative of ~Xt is a velocity and the impulse force is then the mass times
this velocity.

Let

FB
~Dg = λ̂ (γn − γw)k~z =

ψ

µ
(γn − γw)k~z ≡ VB

µ
(ρn − ρw) gk~z,(2.2)

where ψ is a dimensionless scaling factor whose magnitude is equal to the volume VB .
In this model, the forces determining the motion of an air bubble, B, in a saturated
porous media consist of the buoyancy force, the drag force and the surface tension
force. In Equation( 2.2), the buoyancy force is represented by

FB = VB (ρn − ρw) g,

and the drag force is represented by

~Dg =
1

µ
k~z.

Since ~z = (0, 0,−1)T, λ̂ (γn − γw)k~z ≥ 0. The permeability of the sand, k, is
related to drag, Bear [1]. Also, the greater the viscosity of the fluid, the slower
the bubble will move, hence the inverse relationship. The surface tension around a
spherical pore throat, assuming a zero contact angle, is given by

Fs = 2πrσ where σ = 72.86± 0.05 dyne/cm at 20◦ C.

The buoyancy force and the drag force are represented in Equation( 2.2). The
effect of the surface tension force is applied on a time step by time step and bubble
by bubble basis.

2.3. Bubble Sticking, Coalescence and Breakup. At each time step, the
bubble is facing a pore throat whose size is determined by sampling from the grain size
distribution and converting the selected grain size to an equivalent pore size, Dean
[6], [7]. If the size of the bubble is less than the pore size, the bubble is allowed to
pass through the pore throat. If the size of the bubble is greater than or equal to the
pore throat, then

1. If FB
~Dg,i > Fs, the bubble is allowed to pass.

2. If FB
~Dg,i ≤ Fs, the bubble is stuck.
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Fig. 2.2. Bubbles Stuck Over Time

It turns out that in this model, the bubble sticking phenomenon is a very dynamic
process. This is illustrated in Figure 2.2A, which is a very busy graph. In this
experiment, 3000 bubbles of radius 0.1cm were injected uniformly over 1000 time
steps, i.e., 3 bubbles each time step. The total length of the experiment was 7000
time steps. Figure 2.2 shows the total number of bubbles that were stuck at the end
of each time step. If this is reflective of reality, then the flow of bubbles would be
greatly influenced by the sticking of bubbles. Figure 2.2B shows the position and size
of the bubbles stuck at the end of the experiment.

There are some processes that it seems likely would tend to release a stuck bubble,
either partially or completely from its imprisonment. First, and probably the most
questionable, is at each time step the pore throat size is randomly changed. The
reason for this is that the positions of the grains of sand can be changed by movement
of the water or the impact of other bubbles in the region near the stuck bubble.
Secondly, other bubbles might come along and coalesce with the stuck bubble thereby
increasing its buoyancy to the point where the force holding the bubble is overcome.
Thirdly, a snap-off mechanism might release a portion of the bubble from its captivity
and keep the remainder entrapped.
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Fig. 2.3. Bubbles Coalesced Over Time
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Two bubbles might also coalesce if they come in contact with each other. In
theory, when two air bubbles come close together, a water film forms between them.
As the water in the film between them drains, if it does, it will ultimately reach a
critical thickness at which the film ruptures and the bubbles coalesce. Kim and Lee
[12] give an estimate of this final film thickness to be 1 × 10−6cm. Some estimates
for time to coalescence are in the range of 10−3 − 10−4sec, Prince and Blanch [17],
Marrucci [16]. These results do depend on some simplfying assumptions. But, in light
of these results, our algorithm for coalescence depends on the assumption that when
there is contact between a stuck bubble and a free bubble, then coalescence occurs.
The stuck bubble increases in size and the free bubble disappears. If the buoyancy
of the stuck bubble increases enough due to its increase in volume to overcome the
surface tension force at the pore throat, then the stuck bubble will become unstuck.

Figure 2.3 shows the number of coalesced bubbles at the end of each time step.
The flat line from 0 − 1000 is self-imposed. It is intended to cover the injection
zone where it is possible that chaotic conditions could be occurring. In other words,
a lot of bubbles would be competing for space in a very limited volume. So, it is
assumed that bubble coalescence and bubble breakup would be cancelling each other
out. Suffice it to say that more work has to be done to realistically simulate this part
of the bubble flow.

As mentioned above, bubble breakup is also a dynamic force at play in determin-
ing the distribution of bubbles over time. Although several bubble breakup mecha-
nisms have been suggested in the literature, Javadpour [10], the mechanism we have
chosen is a form of snap-off. In theory, Kovscek and Radke [15], as with bubble co-
alescence, bubble breakup has to do with the liquid film at the pore throat. The
sequence of events seems to be

1. Air bubble enters a liquid pore throat
2. Water accumulates at the pore throat into a collar isolating a portion of the

air bubble
3. The water eventually forms a lens that spans the pore throat thus separating

the isolated portion of the air bubble
4. The lens separates from the pore throat separating the isolated portion as a

separate air bubble
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Fig. 2.4. Distribution Of Bubbles By Size

The algorithm used to simulate bubble breakup follows this prescription. Gener-
ally, as the bubble attempts to pass through the pore throat if a portion of the bubble
is such that
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FB
~Dg,i > Fs

then that portion of the bubble is allowed to separate and exist as a separate bubble.
Figure 2.4 shows the distribution of bubbles by size at the end of the experiment.
As before, the 3000 bubbles originally injected all had a radius of 0.1cm. As shown
in Figure 2.4, at the end of the experiment the largest number of remaining bubbles
still have a radius of 0.1cm, but some of the bubbles are smaller, due to breakup, and
some are larger, due to coalescence.

Figure 2.5 shows two views of bubble flow around two impervious lenses. The
bubble flow plumes shown in this figure are the result of numerical experiments similar
to actual bubble flow experiments conducted by Ji et al. [11] who used glass beads
as the porous medium. The implication for air sparging is that if the contaminant
is above the impervious lens, then the bubbles will likely not reach it. Also, the
horizontal spreading of the air bubbles beneath the impervious layer may cause the
contaminant plume to spread in the horizontal directions.

Advanced Bubble Positions

Advanced Bubble Positions

x

Injection Point

Fig. 2.5. Bubble Flow Around Impervious Lenses

2.4. Air Sparging. Figures 2.6 and 2.7 are intended to illustrate this type of
bubble behavior. The context of these illustrations is one of air sparging. In Figure 2.6,
a residual NAPL plume is shown which is assumed to be immobile. The saturation
of the plume is low, varying between 0% and 3.6% as indicated by the associated
Percent Saturation Scale.

Also shown in Figure 2.6 are the injection points where the air is injected below
the stationary NAPL plume. As time progresses, the air bubbles rise up, fan out and
pass through the residual NAPL. Figure 2.7 shows the progress of the air bubbles as
they pass the halfway point of the tank.

As the flow of bubbles of air passes through the experimental tank, the individual
air bubbles interact with the residual NAPL plume and a part of the volatile NAPL is
transferred to the air bubbles and carried off. This is shown, in an exaggerated sense,
by the NAPL plume changing from a reddish color to a grayer color. The tracks are
clearly visible in the two images shown in Figure 2.7.

The algorithm keeps track of the positions of the NAPL particles and the mass of
NAPL associated with them. As the bubble moves, if it encounters a NAPL particle,
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Fig. 2.6. Distribution Of NAPL And Initial Bubble Flow
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Fig. 2.7. Effect Of Air Sparging

i.e., the NAPL particle falls within the spherical volume of the air bubble, then a
percentage of the mass associated with the NAPL particle is transferred to the air
bubble and carried off. When the NAPL saturations are recomputed, this loss of mass
is recorded as a change in color from more reddish to more grayish. In Figure 2.7, the
air bubbles are ready to leave the tank, and their tracks through the NAPL plume are
evident when compared to the relatively undisturbed NAPL plume shown in Figure
2.6.

The program that generated these images is still very much under development
and will no doubt undergo many changes in the future. However, this is pretty
much what we have at the present. Since we have very little in the way of our own
experimental results to use for scaling and validating these results, we have had to
use our own judgement in developing them. Since we cannot look into the inside of a
three dimensional domain to observe the movement of the individual bubbles, more
results such as those reported in Chen et al. [3], where Xray tomography was used to
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produce images of air distribution patterns, are needed.
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