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FUTURES TRADING WITH TRANSACTION COSTS ∗

PETR DOSTÁL†

Abstract. We consider an investor, who takes positions in the futures contracts, pays pro-
portional transaction costs, do not consume and is interested in his/her wealth far in the future.
We assume that the futures price is an arithmetic Brownian motion and this assumption together
with the restriction to utility function with hyperbolic absolute risk aversion (HARA) enable us to
evaluate interval investment strategies. It is shown that the optimal interval strategy is also optimal
among a wide class of admissible strategies.
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1. Introduction. One of possible approaches to the problem of investment is to
maximize the expected value of certain transformation of investors wealth at a certain
time in the future. It is reasonable to assume that such a transformation should be
strictly increasing and concave and it is referred as a utility function. One of the
most desirable such a function is the logarithmic one and it dates at least to Daniel
Bernoulli in the eighteen century. It is known as Kelly criterion, see Kelly (1956),
whose objective was to maximize the exponential growth rate rather than to use any
utility function. Breiman (1961), Algoet and Cover (1988) showed that maximizing
logarithmic utility leads to asymptotically maximal growth rate and asymptotically
minimal expected time to reach a presigned goal. Bell and Cover (1988) showed that
the expected log-optimal portfolio is also game theoretically optimal in a single play
or in multiple plays of the stock market for a wide variety of pay off functions. Browne
and Whitt (1996) used Bayesian approach in order to derive optimal gambling and
investment policies for cases in which the underlying stochastic process has parameter
values that are unobserved random variables. For further properties of Kelly crite-
rion see Bell and Cover (1980), Rotando and Thorp (1992), Thorp (1997), Janeček
(1999). Although this criterion has a lot of desirable properties, Samuelson (1971)
and Thorp (1975) showed that maximizing geometric mean does not mean to end
with a higher utility after a long time of investment. It is sufficient to consider other
than logarithmic utility function with hyperbolic absolute risk aversion (HARA).

This paper is devoted to the simplest problem of investment in the futures con-
tracts in the presence of proportional transaction costs. Similarly as in [15], we assume
that the futures price is as an arithmetic Brownian motion. In contrast to [15], we
consider an investor who does not consume, but he/she withdraw from the market at
the end of a very large time horizon. Our objective is to maximize the asymptotic
exponential growth rate of the certainty equivalent of the wealth process. Note that
in case of logarithmic utility function, this criterion agrees with the aim to maximize
the asymptotic exponential growth rate of the wealth process itself, compare this aim
with Kelly’s objective above.

See [2],[3],[8],[9],[14],[15],[18],[20],[21],[23] for further papers on the investment and
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consumption problem mostly in the presence of transaction costs based on Merton
approach to the investment.

The motivation of the paper comes from [15], where the so called “Merton prob-
lem” for the futures trading is considered in case of constant coefficients and where
some asymptotic results are given for small transaction costs besides some qualitative
results. On the other hand, our approach is most related to the paper [11], which
solves the problem that can be regarded as a limiting case of the Merton problem.
The main difference here is that we consider futures trading instead of stock trading
and we consider arithmetic Brownian motion for the futures prices instead of geo-
metric Brownian motion for the stock market price. Both models assume that the
corresponding coefficients are constant, which enables us to obtain explicit results in
both cases and both results look very similar, but the case of futures trading cannot
be derived from the case of stock trading. See [10],[12] for additional papers on stock
trading with transaction costs following the same approach as it is considered in this
paper.

The proofs corresponding to the stated lemmas and theorems in this paper are
available at www.karlin.mff.cuni.cz/~dostal/futures.pdf or on request.

2. Notation. Let us denote by Wt the wealth process of the investor who invests
in a money market and takes positions in futures contracts on some asset or index.
For simplicity we assume that the interest rate r is zero. In contrast to the geometric
Brownian motion model for a stock price, we adopt similarly as in [15] an arithmetic
Brownian motion model for the futures price,

Ft = F0 + µt + σWt,(2.1)

where F0, µ ∈ R and σ > 0 are constants, and W is a standard Brownian motion on
a complete filtered probability space (Ω,F , P,Ft). In the case of the stock market
price, only the multiplicative changes matter, not the price itself, and similarly in this
model, only changes in the futures price matter (not the futures price itself). This is
a natural theoretical reason to consider the model of an arithmetic instead of geometric
Brownian motion model for the futures price, besides the reasons that fluctuations in
the futures price of many underlying processes (e.g., Eurodollar futures) do not have
the multiplicative scaling relative to the futures price inherent in a geometric Brownian
motion model, see [15]. It is not realistic to assume that the drift coefficient of the
futures price is known and constant in the long run, but it is important to consider
the case of constant coefficients fist, since it enables us to obtain explicit results as
can be seen in this paper. If we consider the case of stock trading, we are able to
obtain explicit results in case of constant coefficients, see [11], and we are able to
obtain almost optimal strategies when the coefficients of the model are non-constant
and when the rate of return is not observable for small transaction taxes, see [12].
One may imagine that we could find almost optimal strategies also in case of futures
trading, but one cannot expect explicit results generally.

In addition, the agent may take any long or short position in futures contracts
by paying a small transaction cost λ1 ≥ 0 or λ2 ≥ 0, respectively, times the size
of the trade required to attain the position, where λ := λ1 + λ2 > 0. See [15] for
a short discussion of this assumption with the conclusion that such an assumption is
acceptable for large traders. We assume that the investor is interested in the expected
utility of his/her wealth in the long run. In order to be able to obtain results in explicit
form, we restrict ourselves to utility functions with hyperbolic absolute risk aversion
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(HARA) unbounded from below on (0,∞),

Uγ(x) =
1

γ
xγ if γ < 0(2.2)

= lnx if γ = 0.(2.3)

As γ ≤ 0, we get that Uγ(0) := Uγ(0+) = −∞, which corresponds to the property that
such an investor never risk ruin. We also need to introduce corresponding exponential
utility functions eγ(x) := Uγ(ex). We denote by Nt the number of futures contracts
owned by an agent at time t and by Rt the ratio process Nt/Wt. Note that the agent
is able to cancel all the futures contracts with remaining positive wealth if and only
if the ratio process Rt belongs to the interval (−1/λ1, 1/λ2), which will be denoted
by A and referred as the set of all admissible ratios. Note that 1/λ1 and 1/λ2 will be
considered to be equal to +∞ whenever λ1 = 0 or λ2 = 0, respectively.

3. Zero transaction costs. If the number of the futures contracts is constant
or if the there are no transaction costs,

dWt = Nt dFt = RtWt[µ dt + σ dWt],(3.1)

d lnWt = 1
2 σ2(2θRt −R2

t ) dt + σRt dWt(3.2)

holds, where θ := σ−2µ is the value of the ratio process Rt maximizing the logarithmic
drift coefficient of the wealth process. So, if we restrict ourselves to strategies such
that the ratio process is bounded, we get that there is no strategy giving the higher
expected logarithmic utility than the strategy keeping the ratio process on θ which
will be referred as the log-optimal ratio. Further,

W−γ
t deγ(lnWt) = 1−γ

2 σ2(2ΘRt −R2
t ) dt + σRt dWt(3.3)

holds with Θ := θ/(1−γ) and this value will be referred as the optimal ratio. Note that
if we restrict ourselves to strategies such that the ratio process is bounded, Uγ(Wt) =
eγ(lnWt) is a product of an exponential martingale Et with E−1

t dEt = γσRt dWt

starting from 1 and the process

eγ(lnW0 + 1−γ
2 σ2

∫ t

0
(2ΘRs −R2

s) ds),

which is maximal if the ratio process Rt is kept on the value Θ. As the maximal value
of this process is deterministic, we get that keeping the ratio process Rt on the value
Θ really gives the maximal expected utility at each time t.

4. Motivation. In the presence of transaction costs, it is not possible to find
a strategy giving the maximal expected utility of the wealth process at each time
t, but it is possible to find a strategy giving the maximal asymptotic growth rate ν
of the certainty equivalent of the wealth process similarly as in [10],[11],[12]. More
precisely, we are able to find a function f ∈ C2(A) and ν ∈ R such that eγ(Ut) is
generally an Ft-supermartingale and it is an Ft-martingale in a special case, where
Ut = lnWt − f(Rt) − νt. Then νt is a non-stationary part and f(Rt) is a stationary
part of the process, which compensates lnWt so that eγ(Ut) is an Ft-martingale in the
optimal case. Denoting the special case by hat, we obtain the following inequalities

EUγ(Wt) ≤ Uγ

(

eνt+O(1)
)

= eγ(νt + O(1)),(4.1)

EUγ(Ŵt) = Uγ

(

eνt+O(1)
)

= eγ(νt + O(1))(4.2)



422 P. DOSTÁL

as t → ∞, i.e., the certainty equivalent of the wealth process is generally less or equal
to eνt+O(1) and equal to eνt+O(1) in the special case. In particular,

lim sup
t→∞

1
t
e−1
γ Eeγ(lnWt) ≤ lim

t→∞

1
t
e−1
γ Eeγ(ln Ŵt) = ν(4.3)

and therefore we are able to solve the problem of maximizing the left hand side of (4.3)
and also the same problem with lim sup replaced by lim inf. Note that eγ(lnWt) =
Uγ(Wt). If γ = 0, then (4.3) holds almost surely with e−1

γ Eeγ omitted. For the
corresponding theorems see theorem 8.1, lemma 9.1 and corollary 10.6.

5. Basic dynamics. If the agent increase or decrease the number of futures
contracts about |∆Nt|, he/she pays the transaction costs λ1∆Nt or −λ2∆Nt, respec-
tively, and therefore the following value remains the same

Wt + λ1Nt = Wt(1 + λ1Rt) or Wt − λ2Nt = Wt(1 − λ2Rt),(5.1)

respectively. It follows from (3.1) that dRt = B(Rt) dt + S(Rt) dWt holds if the
number of futures contracts does not change, where

B(x) = σ2x2(x − θ), S(x) = −σx2.(5.2)

Let us introduce the control processes R±

t . They are assumed to be non-decreasing
left-continuous Ft-adapted with R±

0 = 0. They increase or decrease the ratio process
Rt by increasing or decreasing the agent’s position in futures contracts, respectively,
so that

dRt = B(Rt) dt + S(Rt) dWt + dR+
t − dR−

t(5.3)

holds. If the control processes are continuous or if we deal with them as they were
continuous, we get from the law of constant values (5.1) that

d lnWt = 1
2 σ2(2θRt −R2

t ) dt + σRt dWt − ζ+(Rt) dR+
t − ζ−(Rt) dR−

t(5.4)

holds as the dR±

t -coefficients of logarithm of (5.1) should be equal to zero, where

ζ+(x) = λ1

1+λ1x
, ζ−(x) = λ2

1−λ2x
.(5.5)

6. Assumptions and restrictions. Let us denote by A = A(Ω,F , P ) the set
of all processes with values in a compact subset of A. We regard the ratio process Rt

as admissible if it belongs to A. The strategies not satisfying this condition will not
be allowed.

We denote by L− = L−(Ω,F , P ) the set of all processes on R+ := [0,∞) de-
fined on the probability space (Ω,F , P ) with finite all negative moments. Only those
strategies such that the wealth process Wt belongs to L− will be considered. For
simplicity, we assume that W0 = w0 > 0 is a deterministic random variable.

We assume that in the presence of transaction costs, Nt is a process of locally
finite variation, left-continuous and Ft-adapted with the minimal decomposition Nt =
N+

t −N−

t to non-decreasing Ft-adapted left-continuous processes N±

t with N±

0 = 0.
Further, we restrict ourselves to strategies that do not take short and long positions
in the futures contracts at the same time. Then the total value of transaction costs
on the interval [0, t) is of the form λ1N+

t + λ2N−

t . Similarly as in [12], we consider
a special type of integration in the presence in jumps that allows us to compute with
stochastic differentials, as every integrator was a continuous process.
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Further, we assume that θ 6= 0 and therefore Θ 6= 0. If θ = Θ = 0, the optimal
strategy is to take always zero position in futures contracts in case of zero transaction
costs. Since such a strategy does nothing, it is optimal also in case of non-zero
proportional transaction costs.

7. Advanced dynamics. First, we introduce lemma that tells us what ODE
we have to solve and how the boundary conditions look. Its proof is based just on Itô
formula for continuous semimartingales.

Lemma 7.1. Let f ∈ C2(A). Let Wt > 0,Rt ∈ A hold for every t ≥ 0. Then the
process Ut := lnWt − f(Rt) − νt is an Ft-semimartingale with

e−γUt deγ(Ut) = dν
f (Rt) dt + vf (Rt) dWt + δf

+(Rt) dR+
t + δf

−(Rt) dR−

t ,(7.1)

where vf (x) = σx(1 + xf ′(x)), δf
±(x) = −ζ±(x) ∓ f ′(x) and

dν
f (x) = 1−γ

2 σ2(2Θx − x2) − ν − f ′(x)B̃(x) − 1
2 [f ′′(x) − γf ′(x)2]S2(x)(7.2)

B̃(x) = B(x) + γσxS(x) = (1 − γ)σ2x2(x − Θ),(7.3)

where Θ := θ/(1 − γ).

We say that an Ft-Itô process has bounded coefficients if it is a sum of Ft-adapted
Lipschitz process and a continuous local Ft-martingale with Lipschitz quadratic vari-
ation. A process Xt is assumed to be Lipschitz if and only if there is c ∈ R such that
|Xs − Xt| ≤ c|s − t| holds for every s, t ≥ 0.

Lemma 7.2. Let f ∈ C2(A),Wt > 0,Rt ∈ A. Put Ut := lnWt − f(Rt) − νt.
(i) If Ut is a an Ft-Itô process with bounded coefficients, then Wt ∈ L−.
(ii) If Wt ∈ L−, then

V := eγ(U0) +
∫

eγUsvf (Rs) dWs is an Ft-martingale.(7.4)

This lemma says that (i) strategies satisfying certain condition are admissible and
that (ii) the diffusion part of Ut has increments with mean value zero provided that
an admissible strategy is considered.

8. Interval strategies. Let us assume that α < β are in A and consider an in-
terval strategy denoted by [(α, β)] that keeps the ratio process Rt within the interval
[α, β] and does nothing if Rt ∈ (α, β). More precisely, we say that the strategy [(α, β)]
is applied if there exist continuous non-decreasing Ft-adapted processes R±

t such that
the ratio process Rt satisfies (5.3), that Rt ∈ [α, β] holds for every t ≥ 0 and that

∫ ∞

0
1[Rt>α] dR+

t = 0,
∫ ∞

0
1[Rt<β] dR−

t = 0.(8.1)

Note that given the above mentioned processes, there is an almost surely unique
positive continuous Ft-semimartingale Wt representing the wealth process such that
(5.4) holds with the initial condition W0 = w0 > 0. See theorem 6.4 in [10] that if
R0 = r0 ∈ [α, β], such processes Rt,R±

t exist and therefore we can (say that we)
apply the strategy [(α, β)]. The corresponding portfolio market price will be denoted
by Wα,β

t and the corresponding ratio process by Rα,β

t . If the initial ratio, further
denoted by R0−

, does not belong to [α, β], we take positions in futures contracts in
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order to achieve that R0 = α if R0− < α and R0 = β if R0−> β at time t = 0. This
may cause that Rt,R±

t are not left-continuous at t = 0, but we are interested in these
processes on R+.

In order to better understand the meaning of the initial value R0−, the reader
can imagine that all processes are constant on (−∞, 0) with possible jumps at t = 0
from left. The rigorous approach is considered only on time interval [0,∞), which
corresponds to the assumption that there are no initial contracts or that the initial
values of the processes are adjusted. Note that this adjustment is negligible thanks
to our criterion based on the asymptotics of the certainty equivalent of the wealth
process.

The following theorem tells us that the right evaluation of the interval strategy is
ν provided that we are able to find a solution to certain ODE with certain boundary
conditions. The theorem follows immediately from lemmas 7.1 and 7.2.

Theorem 8.1. Let f ∈ C2(A) and ν ∈ R, and α, β ∈ A be such that α < β,

dν
f (x) = 0 holds for every x ∈ [α, β], δf

+(α) = 0 = δf
−(β).(8.2)

Then eγ(Ut) is an Ft-martingale and

ν(α, β) := lim
t→∞

1

t
e−1
γ Eeγ(lnWt) = ν(8.3)

and Wt ∈ L−, when applying the strategy [(α, β)].

Remark 8.2. See corollary 10.6 that for every α < β in A with the same sign
there exists f ∈ C2(A) and ν ∈ R such that the assumptions of theorem 8.1 are
satisfied, and we get that the strategy [(α, β)] is admissible.

9. Comparison of strategies. In this section, we assume that the policies
α < β from A are as in lemma 11.1 and that g ∈ C2(A) is as it introduced in
section 11 so that

dν
g(x) = 0 on [α, β], δg

+(x) = 0 on (−1/λ1, α], δg
−(x) = 0 on [β, 1/λ2)

hold with ν = σ2

2 u(α, β) and that dν
g(x), δg

±(x) ≤ 0 hold on A.

Further, we will use the following notation

Ut = lnWt − g(Rt) − νt, Uα,β

t = lnWα,β

t − g(Rα,β

t ) − νt.

If Vt, Zt are random processes, we write Vt = o
as
(Zt) if Vt = o(Zt) holds as t → ∞ for

almost every element of Ω.

Lemma 9.1. Let Wt ∈ L−,Rt ∈ A. (i) Then eγ(Ut) is an Ft-supermartingale,
and eγ(Uα,β

t ) is an Ft-martingale. In particular,

EUγ(Wα,β

t ) = Uγ

(

eνt+O(1)
)

, EUγ(Wt) ≤ Uγ

(

eνt+O(1)
)

as t → ∞.(9.1)

(ii) Let γ = 0. Then Wt ≤ exp{νt + o
as

(t)}, and Wα,β

t = exp{νt + o
as

(t)}.
In particular if γ = 0, outside of a P -null set we have that

ν = lim
t→∞

1
t
lnWα,β

t ≥ lim sup
t→∞

1
t
lnWt.
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10. Solution to (8.2). In order to simplify the form of the results, we introduce
the following transformations

ξ+(x) = ξλ1
(x) = x

1+λ1x
, ξ−(x) = ξ−λ2

(x) = x
1−λ2x

,(10.1)

where ξa(x) = x
1+ax

. Further, note that ξ0(x) = x and that ξa ◦ ξb = ξa+b, which gives

that ξ−1
a = ξ−a.

Remark 10.1. Let us consider the equation (8.2), see (7.2) and (5.2), in the form

x4

1−γ
[f ′′(x) − f ′(x)2] + (x[1 + xf ′(x)] − Θ)2 = Θ2 − 2νσ−2

1−γ
(10.2)

with the boundary conditions δf
+(α) = 0 = δf

−(β) in the form

f ′(α) = −ζ+(α), f ′(β) = ζ−(β).(10.3)

As ∓ζ′±(x) = ζ±(x)2, the principle of the smooth fit at the boundary conditions is of
the form

f ′′(α) = ζ2
+(α) = f ′(α)2, f ′′(β) = ζ2

−(β) = f ′(β)2.(10.4)

Considering x ∈ {α, β}, we obtain that the right-hand side of (10.2) is equal to ω2 for
some ω ≥ 0. Using again the boundary conditions (10.3) and (10.4), we obtain the
following requirements

(ξ+(α) − Θ)2 = (ξ−(β) − Θ)2 = ω2, ν = 1−γ
2 σ2(Θ2 − ω2).(10.5)

Let us consider a substitution

f ′(x) = y( 1
x
) 1

x2 − 1
x
, i.e. y( 1

x
) = x(1 + xf ′(x)).(10.6)

Then the condition dν
f (x) = 0 is of the form

y′(u) + F (y(u)) = 0, with F (y) = γy2 + 2θy − 2νσ−2(10.7)

and the boundary conditions (10.3) are of the form

y
(

1
α

)

= ξ+(α), y
(

1
β

)

= ξ−(β).(10.8)

Further, note that

dν
f (x) = − 1

2 σ2x4[f ′′(x) − f ′(x)2] − 1−γ
2 σ2[(y( 1

x
) − Θ)2 − ω2](10.9)

holds provided that ν is as in (10.5) and y( 1
x
) as in (10.6) and also note that

f ′(x) = ∓ζ±(x) ⇒ y( 1
x
) = x(1 + xf ′(x)) = ξ±(x).(10.10)

Remark 10.2. Let u0, y0 ∈ R be such that F (y0) 6= 0. Then y(u) := G−1(u) is
the unique maximal solution to (10.7) with the boundary condition y(u0) = y0, where
G(y) = u0 −

∫ y

y0
F (x)−1 dx. Further, G′ attains values in R\{0}, and we get that the

functions G and y are strictly monotone.

Proof. As F (y0) 6= 0 and as F is a polynomial, the function G is defined correctly
just on the maximal open interval containing y0 of y such that F (y) 6= 0. Obviously,
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G′(y) = −F (y)−1 6= 0. Further, G(y0) = u0 and y′(u) = G′(y(u))−1 = −F (y(u)). As
F is a locally Lipschitz function, we have the uniqueness.

Lemma 10.3. Let ν ∈ R and u1, u2, y1, y2 ∈ R with u1 < u2 be such that

u2 − u1 =
∫ y1

y2
F (y)

−1
dy.(10.11)

Then there exists y ∈ C1[u1, u2] satisfying y′ + F (y) = 0 on [u1, u2] with y(u1) = y1

and y(u2) = y2.

Proof. As the right-hand side of (10.11) has to converge and F is a polynomial,
we obtain that F (y) 6= 0 holds on [y1 ∧ y2, y1 ∨ y2]. By remark 10.2, the inversion
of G(y) := u1 −

∫ y

y1
F (x)−1 dx is a solution to y′ + F (y) = 0 on [u1, u2] and it is

obviously a C1-function as F is a polynomial and as G′ has values in R\{0}. Further,
u2 = u1 +

∫ y1

y2
F (y)−1 dy = G(y2), which is nothing else but y(u2) = y2.

Remark 11.4. Let assume that α < β have the same non-zero sign and that

1

α
− 1

β
=

∫ ξ−(β)

ξ+(α)

dy

γy2 + 2θy − 2νσ−2
.(10.12)

By lemma 10.3, there exists y ∈ C1[1/β, 1/α] satisfying (10.7-10.8). Then

f(x) =
∫

y
(

1
x

) dx
x2 − ln |x| ∈ C2[α, β]

is a solution to (8.2), see remark 10.1.

Lemma 10.5. Let α < β be from A with the same sign, then there exists just
one u(α, β) ∈ R such that

1

α
− 1

β
=

∫ ξ−(β)

ξ+(α)

dy

γy2 + 2θy − u(α, β)
.(10.13)

Corollary 10.6. Let α < β be from A with the same sign, then ν := σ2

2 u(α, β)
satisfies (10.12) and therefore there exists f ∈ C2[α, β] satisfying (8.2) with the above
introduced value of ν.

11. Smooth fit. Let α < β be from A with the same sign. By corollary 10.6,

there exists f ∈ C2[α, β] and ν = σ2

2 u(α, β) satisfying (8.2). Put

g(x) = f(x) if x ∈ [α, β](11.1)

g(x) = f(α) + ln 1+λ1α
1+λ1x

if x ∈ (−1/λ1, α](11.2)

g(x) = f(β) + ln 1−λ2β
1−λ2x

if x ∈ [β, 1/λ2).(11.3)

Obviously, g ∈ C1(A). We are looking for the policies α, β ∈ A such that g ∈ C2(A).
Note that this requirement corresponds to the stationary condition of function u at
the point (α, β) are therefore we can imagine that we are looking for (α, β) maximizing

u. Note that ν(α, β) = σ2

2 u(α, β) holds, where ν(α, β) is given by (8.3).

Lemma 11.1. Let ω ∈ [0, |Θ|) and α < β from A be such that

ξ+(α) = Θ − ω, ξ−(β) = Θ + ω, u(α, β) = (1 − γ)(Θ2 − ω2).(11.4)
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Then g ∈ C2(A). Moreover, dν
g ≤ 0 and δg

± ≤ 0 hold on A.

Further, we will show that there exists ω ∈ (0, |Θ|) such that (11.4) holds. It will
immediately follow from the following lemma.

Lemma 11.2. The function L(ω) is continuous increasing on (−|Θ|, |Θ|) with
range R

L(ω) :=
1

Θ − ω
− 1

Θ + ω
−

∫ Θ+ω

Θ−ω

dy

γy2 + 2θy − (1 − γ)(Θ2 − ω2)
.(11.5)

Further, L(0) = 0 and L(ω) = qω3 + o(ω3) holds as ω → 0+, where q = 4
3 (1−γ)Θ−4.

Lemma 11.3. There exists just one ωλ := ω ∈ (0, |Θ|) such that λ := λ1 + λ2 =
L(ω), and there are α < β from A such that (11.4) holds.

Remark 12.4. By lemma 11.2, L(x) := L( 3
√

x) = qx+o(x) as x → 0, i.e. L′(0) =
q 6= 0 and we get from the theorem on explicitly defined function that (L−1)′(0) = q−1,
i.e. L−1(λ) = q−1λ + o(λ). Then

ω3
λ = 3

4
Θ4

1−γ
λ + o(λ)(11.6)

holds as λ → 0+. Since λ1, λ2 = O(λ), we get that

α = ξ−λ1
(Θ − ωλ) = Θ − ωλ + O(λ),(11.7)

β = ξ−λ2
(Θ + ωλ) = Θ + ωλ + O(λ).(11.8)

12. Conclusion. Let us assume that we have constant (and deterministic) co-
efficients µ, σ 6= 0. If µ = 0, the optimal strategy would be to invest all the wealth in
the money market and not to be interested in futures contracts (and the case σ = 0
would lead to a deterministic model).

Then we get that Θ = σ−2µ/(1 − γ) 6= 0 is the optimal ratio of the wealth
process that should be “invested” in the futures contracts in case of zero transaction
costs. In the presence of transaction costs, it is optimal just to keep the ratio process
within the interval [α, β], where ξ+(α) = Θ − ω and ξ−(β) = Θ + ω, where ω is
a parameter connected with the width of the no-trade region given by the equation
L(ω) = λ := λ1 +λ2. See (11.5) for the definition and properties of function L(ω) and
(10.1) for the definition of functions ξ±(x).

Note that the optimal strategy gives the maximal value of lim 1
t
e−1
γ Eeγ(lnWt) as

t → ∞, which for γ < 0 gives that

EUγ(Wt) ≤ EUγ(Ŵt) exp{o(t)}(12.1)

holds as t → ∞, where Ŵt stands for the wealth process corresponding to the optimal
strategy described above. See lemma 9.1 that we can write O(1) instead of o(t) in
(12.1).

In case of logarithmic utility, i.e. γ = 0, we have a better comparison of strategies
given by lemma 9.1 for a large family of stopping times τ in the form

E lnWτ ≤ E ln Ŵτ + K,(12.2)
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where K ≥ |f(Rt) − f(R̂t)| is a constant not depending on τ , but depending on the
strategy that is compared with the optimal one. This inequality for stopping times im-
mediately gives that such a strategy is in certain sense optimal also in a time changed
model. In order to appreciate (12.1) and (12.2), note that EUγ(Wt) and E lnWt has
asymptotically exponential and linear growth, respectively, whenever considering any
interval strategy for example.
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[13] Janeček K., Optimal Growth in Gambling and Investing, M.Sc. Thesis, Charles University,

Prague, 1999.
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