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Abstract. The existence of cavities should be taken into account when solving different problems
connected to the molecular properties. In the presented paper some special triangulation enclosing
possible cavities points of a system of overlapping spheres is considered. An algorithm of the con-
struction of such triangulation is discussed. It can be used for detecting the internal cavities and
their positions.
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1. Introduction. Systems of overlapping spheres are widely used in macro-
molecular modeling, where atoms are represented by spheres. Study of geometric
properties of such systems, like the surface area, the volume or the existence of inter-
nal cavities is important because of their physical applications.

The problem of computation of the volume and the surface area of the union
of overlapping spheres has been the subject of methods both numerical (Pavani and
Ranghino [1]; Gavezzotti [2]) and analytical (Richmond [3]; Kang, Nemethy, and
Scheraga [4]; Gibson and Scheraga [5, 6, 7]; Guerrero-Ruiz, Ocadiz-Ramirez, and
Garduno-Juarez [8]; Petitjean [9], Hayryan et al [10, 11]). More information can be
found at www.netsci.org/Science/Compchem/feature14.html, where an excellent
overview, written by Connolly, author of [12, 13, 14, 15] is presented. The GEPOL
package created by Silla et al. [16, 17] for computing the molecular area and volume
is referred there.

Lee and Richards [18] used a modified version of their area and volume computa-
tion method to calculate cavities. Rashin et al. [19] calculated cavities using modified
Shrake and Rupley algorithm. Programs for identification and location protein cavi-
ties were presented in [20, 21]. In [22, 23] an algorithm for accurate computation of
the location, shape, and size of internal cavities in proteins was presented. Though
the triangulation defined in this paper looks like a part of Delaunay complex used in
[23], its construction and usage described below are different.

2. Cavities enveloping triangulation. The decision whether some point lies
inside or outside of the molecule envelope is not easy. Below we will describe the
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Fig. 2.2. Nonwall and wall triangles

algorithm of solving this problem, using the sum of oriented spherical angles for a
point with respect to the oriented three-dimensional space triangles assembling some
special triangulation. Similar triangulation has been used by Sanner et al. [24].

2.1. Introductory notions. General problem we confront is to decide for any
point of the three-dimensional Euclidean space E3, if it is or it is not inside of the
possible cavity of the system composed of a finite number of overlapping spheres.

Let M =
⋃

i Si be a finite union of spheres Si in E3. The cavity C is a nonempty,
bounded, and closed domain in E3, which whole boundary consists of the part of
molecule’s boundary, and which interior Int C has no common points with the molecule
M.

The basic idea of proposed method consists in construction of a special triangu-
lation ∆M in M such that the conclusion whether a point is or is not in a cavity of
M, depends only on the relation between the point and the triangulation ∆M. Tri-
angulation ∆M as a set of triangles may be nonempty even if there exists no cavity.
However, we can construct a minimal volume triangulation for each cavity. The final
triangulation will then be empty, if there exists no cavity.

If we imagine a closed surface without the holes, composed only of spheres, the
crucial role will play the spheres triplets, which we introduce below.

Definition 2.1. The triangle ∆C1C2C3 of centers of spheres of M is a wall
triangle in M if and only if the intersection δS1 ∩ δS2 ∩ δS3 of the surfaces of the
spheres consists just of one or two points, and at least one of them is external to M
(does not lie in interior of M, IntM).
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Fig. 2.3. Coincident inward orientation of four triangles

Remark 1. Fig. 2.1 shows the wall triangle in 3D space. Fig. 2.2 shows two
different cases when the intersection of three spheres is not empty. Only spheres
in the picture on the right can generate a wall triangle, the spheroids intersection
δS1 ∩ δS2 ∩ δS3 is for the left case empty.

Proposition 2.2. Let ∆C1C2C3 be a wall triangle in M with corresponding
spheres S1, S2 and S3. Then the planes of intersections of all pairs of spheroids δS1,

δS2, and δS3 intersect with the plane of centers C1, C2, and C3 in the only point x

which is an element of each of these spheres. So, x = (x, y, z) is the unique solution
to the linear system

(x2 − x1)x+(y2 − y1)y + (z2 − z1)z =
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= 0, (2.1)

where Ci = (xi, yi, zi), i = 1, 2, and 3 are centers and ri radii of the spheres.
Definition 2.3. A cavities enveloping triangulation ∆M (briefly envelope tri-

angulation) of a finite system of spheres M is either an empty set or it is such a set
of wall triangles in M with coincident orientation that

(i) ∆M forms a family of polyhedral Pi with wall triangles at post of faces ori-
ented inward such that IntPi ∩ IntPj = ∅, for all i 6= j,

(ii) any cavity point lies inside of some of these polyhedrons,
(iii) if a point from E3 −M is not included in any cavity of M, it lies outside of

the triangulation ∆M.
Fig. 2.3 shows the coincident orientation of wall triangles for an envelope triangu-

lation. If we are looking at any triangle from inside, the counter-clockwise orientation
defines the positive (inward) triangle orientation.

Remark 2. For the 2D example of points included or not included in a cavity see
Fig. 2.4 — points P1 (with the sum of oriented angles along the triangulation equal
to 2π) or P2 (with the sum of angles equal to 0), respectively.

The crucial question connected to the definition of the enveloping triangulation
is the question about the existence of such triangulation. It seems to be evident, that
if cavity exists, than the cavities enveloping triangulation exist.
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Fig. 2.4. 2D analogy for triangulation

2.2. 2D inspiration of triangulation. Let us consider a 2D problem of com-
puting the accessible “area” of a molecule consisting of atoms, represented by full
circles (see Fig. 2.4). The boundary of the molecule consists of two parts. The outer
part is the envelope of the molecule, the inner part is the envelope of a cavity, which is
inaccessible for a solvent from outside. So in this case, the accessible “area” consists
only of circular arcs of the outer part of the boundary, which is shown as a solid line
on Fig. 2.4. If we connect the centers of the circles of the intersecting “spheres” (with
some intersection point lying on the surface) by straight lines we get a special two-
dimensional net. (In three-dimensional case we consider the triangles connecting three
intersecting spheres, so each connection here represents a “triangle”). The connection,
which has neighbours only at one side, cannot affect the closure of the boundary, and
can be excluded from the mentioned net. We will denote such connections as “lugs”.
If we exclude some “lug” from the net, new lug can appear.

Our goal is to construct a minimal envelope of connections, containing all arcs,
assembling all cavities boundaries. Such envelope is shown by the bold solid straight
lines cycle on Fig. 2.4. There exists one more – minimal cycle in Fig. 2.4.

Some connections, which are not “lugs”, may lie inside this envelope, and will be
excluded from the net. At the end we obtain one or more straight line cycles, which
together compose the “cavities enveloping triangulation” of a molecule.

3. Algorithm of the construction of the enveloping triangulation for

M. Below we briefly describe the algorithm of the construction of the outer cavities
enveloping triangulation.

3.1. Collecting the preliminary wall triangles list. According to the defi-
nition of wall triangles we first assemble a list of all possible wall triangles included in
molecule M. For this purpose we start with the study of neighbourhood relations of
sphere pairs. At the moment we check all pairs, in the future we would like to adopt
the BSD Tree technique discussed in [24].

Using neighbourhood’s relations we check all possible sphere triplets, if they have
a unique solution to the system (2.1), and if at least one of three spheroids’ intersection
points lies not inside of any sphere of M. For a better imagination see Fig. 3.1. Only
2D “wall triangles” are depicted by the centers connections.
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Fig. 3.1. 2D preliminary “wall triangles”
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Fig. 3.2. The angle of two adjacent triangles

3.2. Creating new envelope triangulation component. Below will be de-
scribed our algorithm of constructing the envelope triangulation. As we have men-
tioned above, the triangulation may be not unique, and it is possible to use different
algorithms for its construction.

3.2.1. Lugs cutting. Any wall triangle in the list of wall triangles, which has a
side not occupied by a neighbour (free side) must be “deleted” from the list of wall
triangles. After the deletion of some lug-triangle, new one with some free side may
appear. This lugs cutting should be repeated as long as any lug-triangle exists. After
the lugs cutting, each triangle from the wall triangles list has neighbour at all sides.

3.2.2. Determination of a unique outer neighbour for each side. Let us
consider an oriented triangle (see Fig. 2.3). Except some special sphere configurations,
each triangle, which forms the part of the outer triangulation (its face is exposed to
the outer space with respect to the set M) has at each side only one neighbouring
triangle, which includes the maximal angle with the actual triangle from the point of
view of the inward orientation (see Fig. 3.2), and which constitutes a triangulation’s
part, too.

In the beginning, we do not know which triangle orientation is the inward orien-
tation. Therefore, we define the neighbouring triangles for each side for both orienta-
tions. This information is stored in the matrix whose rows represent triangles.

At this stage we delete multiple triangles, which include the maximal angle with
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Fig. 3.3. Special spheres configurations
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Fig. 3.4. Positive (left) and negative (right) inward orientation of the southernmost triangle

the actual triangle, we keep only one such triangle for each side. Such special case
of multiple neighbours may appear, if more than three spheres’ centers produce the
triangles set, for which sides compose a complete graph (see Fig. 3.3 bottom). We
may choose which triangle will be left, and which will be deleted. The deletion of
some triangle activates the deletion of some of its neighbours (see the top pictures in
Fig. 3.3).

3.2.3. Start of the new envelope component assembling. We need to start
with the wall triangle from the preliminary list of wall triangles. The appropriate
choice is e.g. the southernmost triangle (for which the South Pole of one vertex
spheres is the southernmost).

When the choice of the first southernmost triangle was done, the (positive) inward
orientation of this triangle is defined (see Fig. 3.4 left).

3.2.4. Looking for a new neighbour. The triangles list of the next envelope
triangulation component is built in successive steps. The first triangle of this list is the
southernmost triangle, described above. It will be the first actual triangle. Next one
new neighbour triangle from the preliminary wall triangles list, which is the neighbour
to the actual triangle adjoining his vacant side with corresponding orientation is added
to the list. The indices of vertices of the new triangle are first written in increasing
order. If the orientation should be changed (to become inward), we replace the indices
of the second and the third vertex.

When all sides of the actual triangle are occupied by triangles of its neighbours,
new actual triangle from component’s list, with at least one free side is chosen.

3.2.5. Completion of the enveloping triangulation component. At some
moment all triangles in the list of actual component will have all sides occupied. At
this moment new envelope triangulation component is complete. All triangles creating
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Fig. 3.5. Minimal cavity triangulation

the component are written to the output list. All other triangles from the preliminary
wall triangles’ list are checked, whether some vertex lies inside the actual envelope
triangulation component. If yes, such triangle is removed from the preliminary wall
triangles’ list (its status is set to 0).

After the component is constructed, we can check if it contains a cavity or not.
According to the Definition 2.1, at least one of the intersection points of three sphere
surfaces of each wall triangle is external for IntM. During the construction of the pre-
liminary wall triangles list we save all these intersection points. If any of these points
lies inside the triangulation polyhedral segment, then a cavity belonging to this tri-
angulation component exists, otherwise, there is no cavity inside. The corresponding
test is explained below in the Section 4.

After each cycle of assembling the envelope triangulation component, the number
of triangles from the preliminary list becomes smaller and smaller. At some moment,
it will contain less then 4 triangles and the outer envelope triangulation will be ready
in hand.

3.3. The determination of a minimal volume triangulation and the cav-

ities’ boundaries. As we have mentioned above, at the end of the segment construc-
tion we are looking for the intersection points of three spheroids determining the wall
triangles which belongs to the interior of the actual triangulation segment. If we find
at least one such point, we know, that there exists at least one cavity. If we will find
not only the first such point, but all points internal to the segment’s outer triangu-
lation, we will get the list of all wall triangles and corresponding spheres, which are
partially exposed to some cavity. From such spheres a set of closed domains can be
created, each of them containing inside exactly one cavity.

Corresponding wall triangles create together a set of minimal volume boundary
triangulations for all cavities inside the actual outer triangulation segment. An ex-
ample of 2D minimal volume cavity’s triangulation with denoted internal vertices is
shown in Fig. 3.5. It can be compared with the outer triangulation shown in Fig. 2.4.
The minimal volume cavity’s triangulation is also shown in Fig. 3.1 (see the internal
cycle).

4. Calculating the spherical angles and the cavity index. As we have
mentioned above, in 2D case the sum of oriented angles can be used to make decisions,
if a point belongs to the interior or to the exterior of some closed curve. Similarly,
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in 3D case, the sum of spherical angles can be used to make decisions, if a point lies
inside the closed polyhedral, or outside of it.

4.1. Spherical triangle area. A spherical triangle is a figure formed on the
surface of a sphere by three great circular arcs intersecting pairwise in three vertices.

Let ∆ABC be a spherical triangle on the unit sphere with angles a, b, and c

(measured in radians at the vertices along the surface of the sphere, see Fig. 4.1).
Then the surface area σ of the spherical triangle is

σ(∆ABC) = a + b + c − π. (4.1)

The arc (angular) lengths α = ∠BPC, β, γ and vertex angles a, b, and c of the unit
sphere triangle in Fig. 4.1 are related by the following cosine formula

cos α = cos β cos γ + sin β sin γ cos a (4.2)

and its next two permutations by variables (see [25, 26, 27]).

4.2. Spherical angle calculation. An oriented triangle ∆V1V2V3 in E3 is seen
from a point P (different from vertices) under spherical angle that is equal to the
surface area of the projection of the triangle onto unit sphere with the center P (see
Fig. 4.2). We denote this oriented spherical angle as σP (∆V1V2V3). The absolute value
of σP (∆V1V2V3) one gets using Eq. (4.2) and Eq. (4.1). The sign of σP (∆V1V2V3)
of this spherical angle is positive if the point P is on the inward side of the triangle,
otherwise it is negative.

4.3. Cavity index. We now consider some point P , which does not lie on the
triangulation surface. All vertices of cavity triangulation are projected on the unit
sphere with the center in this point P (see Fig. 4.2).

Definition 4.1. Let P be a point of E3 not belonging to the cavity triangulation
∆M. The index of P with respect to the cavity triangulation ∆M is the number

χP (∆M) =
1

4π

∑

δ∈∆M

σP (δ).

Proposition 4.2. An envelope triangulation ∆M encloses the point P (different
from vertices of triangulation) if and only if χP (∆M) = 1.
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Fig. 5.1. The central and the water cavity volumes

5. Cavity volume definitions. There are several possibilities to define the
volume of a cavity for a given radius of a probe sphere, which for the rp = 0 will give
the true value of the cavities volume.

Richmond [3] has defined the solvent-excluded volume to mean the volume con-
tained within the solvent accessible surface, i.e. the volume which is inaccessible to the
centers of solvent particles. The central cavity volume in Fig. 5.1 left should be added
to the molecule (with enlarged radii) volume to get the solvent-excluded volume.

The domain accessible to probe sphere put into the cavity, is shown in the Fig. 5.1
right. The volume of this domain we may call the water cavity volume.

Conclusions. We have presented algorithm for detection of the existence of the
cavities and for the study of their properties such as localization, boundary “atoms”,
central volume and surface area. It allows us also to compute the solvent-excluded
volume and the solvent accessible surface area of a molecule.
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