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APPLICATION OF DISCONTINUOUS GALERKIN METHOD FOR

THE SIMULATION OF 3D INVISCID COMPRESSIBLE FLOWS ∗

M. HOLÍK

Abstract. We deal with the numerical solution of the Euler equations in three dimensions.
We define the problem and propose a numerical method for its solution. Finaly, we employ a
combination of the discontinuous Galerkin finite element method and backward difference formulae.
Due to a linearization and a suitable explicit extrapolation we solve only a system of linear algebraic
equations at each time step. This leads us to an efficient numerical scheme which has a higher
degree of approximation with respect to the space and time coordinates. The determination of these
semi–implicit schemes is briefly described. The three dimensional stabilization technique and the
new method to choice the time step are developed and some numerical examples are presented.
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1. Introduction. Our goal is to solve an unsteady inviscid compressible flow
which is described by the system of the Euler equations. Our aim is to develop a suf-
ficiently efficient, robust and accurate numerical method for solving various problems
in engineering.

It is promising to use the discontinuous Galerkin method (DGM), which is based
on a piecewise polynomial but discontinuous approximation, which is suitable for
problems with discontinuities, see [1], [2], [3], [4], [5], [6], [7] or [8].

The most usual approach for the time discretization is method of lines. Explicit
methods such as the Runge-Kutta methods are very popular for their simplicity and
a high order of accuracy. However, they suffer from a strong restriction of the time
step. On the other hand fully implicit schemes lead to a system of highly nonlinear
algebraic equations at each time step whose solution is complicated. To avoid this
disadvantage we employ a semi-implicit method for the time discretization, which is
based on a suitable linearization of the fluxes. The linear terms are treated implicitly
and nonlinear ones explicitly. Advantage of this procedure is that we need to solve
only linear algebraic problem in each time step, see [6], [7] or [8]. Within this paper
we extend this results from two dimensional problem to three dimensions. Moreover
we extend the stabilization techinque from [9] to three dimensions and present a new
strategy for the choice of the time step.

2. Compressible flow problem. For the description of motion of an inviscid
compressible flow we use the system of Euler equations.

Let Ω ⊂ IR3 be a bounded domain and T > 0. We set QT = Ω× (0, T ) and by ∂Ω
we denote the boundary of Ω which consists of several disjoint parts. We distinguish
inlet ΓI , outlet ΓO and impermeable walls ΓW on ∂Ω. The Euler equations can be
written in the dimensionless form.

∂w

∂t
+ ∇ · ~f(w) = 0 in QT ,(1)
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where

w = (w1, . . . , w5)
T = (ρ, ρv1, ρv2, ρv3, e)T(2)

is the so-called state vector and ~f = (f1, . . . ,f3)

fs(w) = (f (1)
s (w), . . . , f (5)

s (w))T(3)

= (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, ρvsv3 + δs3p, (e + p) vs)
T, s = 1, 2, 3

are the so-called inviscid (Euler) fluxes, where ρ – density, v = (v1, v2, v3) – velocity,
p – pressure, e – total energy and δsk is Kronecker’s delta(if s = k, then δsk = 1, else
δsk = 0).

In order to close the system we use the state equation for perfect gas

p = (γ − 1) (e − ρ|v|2/2),(4)

where γ is the Poisson adiabatic constant. The system (1) - (4) is of hyperbolic type.
It is equipped with initial condition

w(x, 0) = w0(x), x ∈ Ω,(5)

and boundary conditions

B(w) = 0 on ∂Ω × (0, T ).(6)

Let ∂Ω is formed by disjoint part of ΓIO and ΓW representing the inflow/outflow and
impermeable walls, respectively. On ΓW we prescribe the impermeability condition

v · n = 0 on ΓW ,(7)

where v denotes velocity and n the unit outer normal to ∂Ω. On ΓIO we prescribe mn

quantities of state vector w from dirichlet boundary condition, where mn is number
of negative eigenvalues of the matrix

P (w, n) :=

3
∑

s=1

As(w)ns,(8)

where As are jacobi matrices of the mappings f s from (3) and extrapolete mp quan-
tities of w from interior of Ω, where mp = 5 − mn, see [6].

3. Discretization. For discretization we employ the discontinuous Galerkin fi-
nite element method (DGFEM), which takes advantages from finite element method
as well as from finite volume method. DGFEM is based on piecewise polynomial
approximation without any requirement on interelement continuity what is suitable
for problems where shock waves and contact discontinuities appear.

Let Th (h > 0) be a partition of the domain Ω into a finite number of closed 3-
dimensional mutually disjoint simplexes and/or parallelograms K i.e., Ω =

⋃

K∈Th
K.

We call Th = {K}K∈Th
a triangulation of Ω and do not require the conforming prop-

erties from the finite element method. We define the set of all faces Fh and the set of
all inner faces FI

h and a unit normal vector nΓ as can be seen in [10].
Over the triangulation Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th},(9)
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where Hk(K) = W k,2(K) denotes the (classical) Sobolev space on element K.
For each Γ ∈ FI

h there exist two elements Kp, Kn ∈ Th such that Γ ⊂ Kp ∩ Kn.
We use a convention that Kn lies in the direction of nΓ and for v ∈ H1(Ω, Th), we
introduce the following notation:

v|
(p)
Γ ≡ the trace of v|Kp

on Γ,(10)

v|
(n)
Γ ≡ the trace of v|Kn

on Γ,

[v]Γ ≡ v|
(p)
Γ − v|

(n)
Γ .

For boundary faces Γ ∈ ∂Ω there exists element Kp ∈ Th such that Γ ⊂ Kp ∩ ∂Ω.
Then for v ∈ H1(Ω, Th), we introduce the following notation:

v|
(p)
Γ ≡ the trace of v|Kp

on Γ,(11)

〈v〉Γ ≡ [v]Γ ≡ v|
(p)
Γ ≡ v|

(n)
Γ .

Similarly as in [10] for w, ϕ ∈
[

H2(Ω, Th)
]5

, we define the forms:

(w, ϕ) =
∑

K∈Th

∫

K

w · ϕ dx(12)

L2 scalar product and

b̄h(w, ϕ) = −
∑

K∈Th

∫

K

3
∑

s=1

fs(w) ·
∂ϕ

∂xs

dx

+
∑

K∈Th

∫

∂K

3
∑

s=1

(fs(w)ns) · ϕ dS(13)

diffusive form.
Following the notation (12) - (13) we can present a weak formulation of Euler

equation in the form:

d

dt
(w(t), ϕ) + b̄h(w(t), ϕ) = 0, w(t), ϕ ∈ H2(Ω, Th)5, t ∈ (0, T ),(14)

where w(t) denotes function on Ω such that w(t)(x) = w(x, t), x ∈ Ω.
Now we shall introduce the space semi–discretization. The integrals over the faces

in (13) are evaluated by the approach from the finite volume method. In the element
K on the face Γ we use approximation

3
∑

s=1

(fs(w(t)) · nΓ) · ϕ|Γ ≈ H
(

w(t)|
(in)
Γ , w(t)|

(out)
Γ , nΓ

)

· ϕ
∣

∣

∣

(in)

Γ
,(15)

where H is a numerical flux, w(t)|
(in)
Γ and w(t)|

(out)
Γ are values of w(t) on the face Γ

from the interior and the exterior of element K, respectively, at the time t.
The approximate solution of problem (1) with initial and boundary condition

is sought at each instant time t in the space of discontinuous piecewise polynomial
functions Sh defined by

Sh ≡ [Sh]5, Sh ≡ {v; v|K ∈ P p(K) ∀K ∈ Th},(16)
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where p is a positive integer and P p(K) denotes the space of all polynomials on K of
degree ≤ p.

¿From the definition (13) using then notation (10) and the aproximation (15) we
can define for wh, ϕh ∈ Sh the form

b̃h(wh, ϕh) = −
∑

K∈Th

∫

K

3
∑

s=1

f s(wh(x)) ·
∂ϕh(x)

∂xs

dx

+
∑

Γ∈Fh

∫

Γ

H
(

wh|
(in)
Γ , wh|

(out)
Γ , nΓ

)

· [ϕh] dS.(17)

In order to avoid the time step restriction and nonlinearity of the discretized
problem, we carry out a linearization of the nonlinear form b̃h.

Now according to [6] we can define the form bh(w̄h, wh, ϕh), which is linear with
respect to the second and third argument and cosistent with b̃h(·, ·) by

bh(wh, wh, ϕh) = b̃h(wh, ϕh) ∀ wh, ϕh ∈ Sh.(18)

For more details see, e.g. [6].
Now we introduce the full space-time discrete problem. The main idea of the

semi-implicit discretization is to treat the linear parts of form bh implicitly and their
nonlinear parts explicitly. In order to obtain a sufficiently accurate approximation
with respect to the time coordinate we use the so-called backward difference formula
(BDF) for the solution of the ODE semidiscrete problem. Moreover, a suitable explicit
higher order extrapolation is used in the nonlinear part of bh, see [8].

Let 0 = t0 < t1 < . . . < tr = T be a partition of (0, T ) and τk ≡ tk+1 − tk, k =
0, 1, . . . , r − 1.

Definition 3.1. Functions wk+1
h , k = 0, . . . , r − 1 are an approximate solution

of problem (1) with some suitable initial and boundary conditions satisfying

(a)wk+1
h ∈ Sh,

(b)
1

τk

(

n
∑

l=0

αlw
k+1−l
h , ϕh

)

+ bh

(

n
∑

l=1

βlw
k+1−l
h , wk+1

h , ϕh

)

= 0

∀ϕh ∈ Sh, k = n − 1, . . . , r − 1,(19)

(c)w0
h is an Sh approximation of initial condition w0,

(d)wl
h ∈ Sh, l = 1, . . . , n − 1 are given by a suitable one-step method,

where n ≥ 1 is the degree of the BDF scheme, the coefficients αl, l = 0, . . . , n, and
βl, l = 1, . . . , n, depend on time steps τk−l, l = 0, . . . , n. The problem (19), (a) –
(d) represents a system of linear algebraic equations for each k = n − 1, . . . , r − 1,
which is solved by a suitable iterative solver (e.g. GMRES method).

4. Stabilization. Application of this numerical scheme to transsonic flow leads
to spurious overshoots and undershoots in computed quantities near shock waves.
Therefore we use the stabilization of the scheme from [9], witch we generalize to three



308 M. HOLÍK

dimensions. For each K ∈ Th denote ∂KI inner part of boundary of element K as
∂KI ≡ ∂K \ ∂Ω. According [9] we define the quantity

g2D
K (wh) =

∑

Γ∈∂KI

∫

Γ
[wh,1]

2ds

|K|
3

4

∑

Γ∈∂KI |Γ|
,(20)

that meassures the interelement jump of the first component of wh, what is piecewise
polynomial aproximation of density function ρ. For this measure, we can also use
another quantity such as pressure. For face we define g2D

Γ (wh) as aritmetical mean
of g2D

K (wh) from adjacent elements. Moreover, we define the forms

d2D
h (wh, w̄h, ϕ) =

∑

K∈Th

hKg2D
K (wh)

∫

K

∇w̄h · ∇ϕh dx,(21)

where hK is diameter of element K and

J2D
h (wh, w̄h, ϕ) =

∑

Γ∈KI

g2D
Γ (wh)

|Γ|

∫

Γ

[w̄h][ϕh] dS(22)

which represent so-called artifical viscosity and interior penalty, respectively. This
desined stabilization for 2 dimensions from [9] is applied by adding term

d2D
h (wk

h, wk+1
h , ϕ) + J2D

h (wk
h, wk+1

h , ϕ)(23)

to the left hand side of (19). Both terms are vanishing in region where w is smooth
for h → 0. The presented quantity (20) and forms (21) and (22) were derived for two
dimensional computation in [9]. They are based on assumption that for smooth u is
jump over face [u] of order O(hp+1), see [11], but in vicinity of discontinuity (shock

wave) is [u] order O(1). Then quantity (20) is in region with smooth density O(h2p+ 1

2 )

and O(h− 3

2 ) near the discontinuity. Moreover, the quantities (21) and (22) are order

O(h− 1

2 ) and O(h− 3

2 ) in vicinity of discontinuity and O(h2p+ 3

2 ) and O(h2p+ 1

2 ) in other
case, respectively.

We use the same idea in our three dimensional case. In quantity (20) we modify
exponent of |K| (3

4 → 1
6 ) so that the new terms d3D

h and J3D
h will be of negative order

in h in region near discontinuity and with maximal order in h in region with smooth
solution. Hence we define quantity

g3D
K (wh) =

∑

Γ∈∂KI

∫

Γ
[wh,1]

2ds

|K|
1

6

∑

Γ∈∂KI |Γ|
,(24)

and the terms J3D
h ≡ J2D

h given by (22) with term g3D
Γ instead of g2D

Γ and

d3D
h (wh, w̄h, ϕ) =

∑

K∈Th

g3D
K (wh)

∫

K

∇w̄h · ∇ϕh dx(25)

which are of order O(h2p+ 3

2 ) in smooth part of domain and O(h− 1

2 ) near discontinuity.

5. Adaptive time step. In order to achieve a steady-state solution in an effi-
cient way it is necessary to adapt the time step during the computational process. In
[12] , an adaptive choice of the time step based on a comparison of two BDF formulae
was presented. Moreover we present an alternative heuristic choice of the time step
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Table 1

Comparison of choice of time step for BDF from [8] and heuristic choice (HCh) from 26

DOF = 60 360 DOF = 121 000
method iter CPU iter CPU

BDF tol = 10−2 64 275 74 1117
BDF tol = 10−1 54 266 63 1042

HCh α = 3
2 39 177 59 863

HCh α = 2 17 111 20 531

which is based on a idea to increase the time step when the ”steady-state residuum”
is decreasing. Hence we put τ1 = CFL

Λ0

and:

τk+1 =
CFL

Λk

( 1
τk
||wk − wk−1||
1
τ1

||w1 − w0||

)−α

, t = 1, 2, . . . ,(26)

where

Λk = max
K∈Th

|K|−1 max
Γ∈∂K

max
l=1,...,5

λl(w
k
h|Γ)|Γ|.

This approach is motivated from explicit schemes where time step is bounded by the
term CFL

Λk
, where CFL ∈ (0, 1) is a suitable number, see [13]. Then τ0 = τ1 correspond

to the size of the time step from explicit time discretization and for k > 1 τk is
exponencially incerasingwhe steady state residuum (= 1

τk
||wk−wk−1||) is decreasing.

Table 1 contains comparison of number of iteration and CPU time to reach steady
state solution of the method based on two BDF formulae and our heuristic choice
(26) with CFL = 1

2 for two different computation with 60 360 and 121 000 degrees
of freedom. Where tol is tolerance in BDF formulae, and α is coefficient in (26).
We observe that the method of heuristic choice of time step (26) is faster adaptive
method.

The presented numerical method is now being implemented within the object
oriented patform COOLFluiD developed at the Von Karman Institute in Brussel, see
[14].

6. Example. We present two examples Wedge3D and Jets3D of inviscid com-
pressible flow with P1 DGFEM aproximation.

6.1. Wedge 3D. It is supersonic flow (MACH = 2.0) in channel forward facing
oblique step, see Fig. 1. The initial condition is constant with values ρ = 1.0, v =
(2.366431913, 0.0, 0.0), e = 5.3. Distribution of density in steady state sollution is in
Fig. 2. This problem cannot be solved without stabilization and adaptive choice of
time step greatly spare time of computation.

6.2. Jets 3D. It is flow in which computational domain is divided into two semi
spaces with different initial state describing flow. To each domain flows from the
boundary flow with same properties as is flow from initial condition, see Fig. 3. In
Fig. 4 is disribution of density in case when as initial condition are chosen flows with
MACH 0.8 and 2.4. Most interesting is the case when as initial flows are chosen both
supersonic flows with MACH 4.0 and 2.4. The distribution of density is presented in
Fig. 5. Due to adaptive choice of time step first case need only 15 and second case
less than 35 iteration to reach steady state solution.



310 M. HOLÍK

Fig. 1. Description of WEDGE3D problem.

Fig. 2. Distribution of density.

7. Conclusion. We described a numerical solution of the Euler equations in
three dimensions by a combination of DGFEM and BDF. We presented extension of
the scheme to three dimensions, generalization of the stabilization technique and new
choice of time step. Numerical examples demostrate a robustness of the proposed
method.

We wish to express our sincere gratitude to Tiago Quintino (von Karman Institute,

Belgium) for a large effort with an implementation of DGFEM scheme into COOLFLuiD

platform.
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[8] M. Feistauer, V. Doleǰśı, and V. Kučera. On the discontinuous Galerkin method for the simula-
tion of compressible flow with wide range of mach numbers. Comput Visual Sci, 10:17–27,
2007.
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