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EPITAXIAL CRYSTAL GROWTH

HUNG HOANG DIEU ∗

Abstract. This article deals with a numerical simulation of the spiral growth using a phase-field
formulation of the Burton-Cabrera-Frank model. The numerical scheme developed for the simulation is
based on a finite difference method. We investigate the influence of numerical parameters to the growth
and results are presented.
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1. Introduction. Crystallization is the process where solid crystals are formed
from melt, solution or vapour phase. There are two major stages involved in the
crystallization process - nucleation and crystal growth. Nucleation is the stage where
crystal forming units (atoms, ions or molecules) gather into clusters which are un-
stable until they reach a critical size. Stable clusters are called nuclei which have
three-dimensional formation. Because the workings of three-dimensional nucleation
are analogous to those for two-dimensional nucleation, we will only consider the
latter one. After nuclei are created, crystal growth begins. It is the stage where new
crystal forming units are incorporated into the crystal lattice. In this article the term
atom is used for the crystal forming unit.

Seed crystals are used to bypass the nucleation stage; thus, the growth can start
immediately. In this article we deal with phenomenon of growth of a crystal over the
substrate which acts as a seed crystal. Such phenomenon is called epitaxy.

The history of crystal growth goes back to the seventeenth century when the
Danish anatomist Nicolas Steno introduced law of the constancy of interfacial angles.
Later in the nineteenth century crystals were classified into seven crystal systems
due to their symmetry. Study of crystal growth at atomic level has started since the
1930s by Volmer, Kossel, and Stranski who have developed the theory of growth of
perfect crystals. Burton, Cabrera, and Frank continued their works and developed
the theory of real crystals in 1951 [6]. Mullins and Sekerka developed the theory
of morphological stability in 1963. The dynamics of spiral ridge formation in the
BCF model has been investigated in the work of Karma-Plapp [5] where quantitive
predictions for the selected step spacing as a function of the deposition flux have
been made.

2. The Model. There are two fundamental models of crystal growth mecha-
nism: two-dimensional nucleation growth of perfect crystals and spiral growth of
real crystals.

Recently, crystal growth has been investigated from a mathematical point of
view. For more details, we refer the reader to the works of Guo-Nakamura-Ogiwara-
Tsai [11] and Ohtsuka [12].
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2.1. Two-dimensional growth. Classically epitaxial crystal growth is modeled
using Burton-Cabrera-Frank (BCF) theory. According to that theory atoms are first
adsorbed to the crystalline surface. Such atoms are called adatoms. Then they diffuse
freely along the surface and they can either desorb from the surface with a probabil-
ity 1/τS per unit time, or they are incorporated into the crystal at one of the three
sites: ledge site, step site or kink site. Incorporation at a kink site will be the most
energetically favorable. Two-dimensional growth occurs only at relatively higher
super-saturation when random nuclei are generated on existing flat surface.

2.2. Spiral growth. Real crystals are not perfect, they contain dislocations which
are crystallographic defects in the structure of the crystal lattice as depicted in Fig.
2.1. The presence of dislocations influences the mechanism of crystal growth. If
dislocations are present in the crystal lattice of the substrate, they provide a way
of controlling the growth as they are a source of new steps where adatoms are in-
corporated to. Hence, the growth can proceed at lower temperatures and super-
saturations. Steps wind around the dislocation and produce spirals or closed loops.
Let l be the final steady-state spacing between successive steps and xS =

√
DSτS

the diffusion length, where DS is the surface diffusion constant. Then there are two
different growth regimes depended on the ratio of l and xS . When desorption is fast
(xS << l), only adatoms which are deposited near a step can be incorporated. In
contrast, when desorption is negligible all deposited atoms reach a step. This regime
refers to step-flow growth at temperatures.

Fig. 2.1: Single screw dislocation

The BCFmodel consists of a diffusion equation for the concentration of adatoms,
as well as two boundary conditions at the growing steps:

∂tc
S = DS∆cS − 1

τS
cS + F(2.1)

in the domain S and

cS = cS
eq(1 + κΩγ/kBT )(2.2)

vn = DSΩ[
∂cS

∂n+
− ∂cS

∂n− ](2.3)
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on the interface Γ(t). Here, cS is the density of adatoms on the surface S, DS is the
surface diffusion coefficient, τS is the mean time for the desorption of adatoms from
to the solution, F is the deposition rate, cS

eq is the equilibrium concentration for a
straight step, κ is the curvature of step Γ(t), Ω is the area of a single atom, γ is the
step stiffness, kBT describes the thermal energy for a fixed temperature T and vn is
the normal velocity of the step and ∂u

∂n± is the normal concentration gradient on the
lower (+) and upper (−) side of the step.

Direct numerical simulations of the sharp-interface problem (2.1)− (2.3) are dif-
ficult, since the position of the step has to be tracked explicitly [3]. The BCF model
described above can be replaced by a phase field model where a higher-dimensional
order parameter function Φ(x, y, t) is introduced whose values indicates the phase
at a given position. In our case, the phase field Φ(x, y, t) describes the height of the
epitaxial solid by the number of monoatomar layers. The phase-field model was
previously used by Liu and Metiu [7] for one-dimensional step train, then enhanced
by Karma and Plapp [5]. This model, which represents a system of parabolic partial
differential equations, has the form

∂tc
S = DS∆cS − cS

τS
+ F − Ω−1∂tΦ(2.4)

α∂tΦ = ξ2∆Φ + sin(2π(Φ − ΦS)) + λcS(1 + cos(2π(Φ − ΦS)))(2.5)

in the domain S, where α is the time relaxation parameter, ξ is the width of steps
between terraces,ΦS is the height of the initial substrate surface and λ is the coupling
constant.

The boundary conditions are given by

∂cS

∂n
(t, x) =

∂Φ

∂n
(t, x) = 0, t ∈ (0, T ), x ∈ ∂S(2.6)

The initial conditions are given by

cS(0, x) = 0, x ∈ S(2.7)

Φ(0, x) = ΦS(x), x ∈ S(2.8)

3. Numerical scheme. For solving the free boundary problem of epitaxial crys-
tal growth we use an explicit scheme of a finite difference method which is easy to
develop. Using a finite difference method, one must first discretize the problem’s
domain, then derivative expressions are replaced with equivalent finite differences.

We consider S to be a rectangular domain (0, L1) × (0, L2) which is to be dis-
cretized. We introduce this notation: h1 = L1

N1
, h2 = L2

N2
are the mesh sizes on the

surface S and ωS
h = {(ih1, jh2)|i = 1, ..., N1 − 1, j = 1, ..., N2 − 1} are the grids of

internal nodes. We discretize the time interval [0, T ] : Tτ = {kτ |k = 0, ..., NT } where
τ = T

NT
is the time step. Then we can use a grid function u : Tτ × ωS

h → R for which

uk
ij = u(ih1, jh2, kτ).

Time derivative are approximated by forward difference

∂tu
k = uk+1

−uk

τ
and the space derivatives are approximated by second-order central differences:
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∂2
xuk

ij =
uk

i+1,j−2uk
ij+uk

i−1,j

h2
1

∂2
yuk

ij =
uk

i,j+1−2uk
ij+uk

i,j−1

h2
2

.

The Laplace operator in two dimensions is given by ∆huk = ∂2
xuk

ij + ∂2
yuk

ij .
The explicit schema has the form

α
Φk+1

ij − Φk
ij

τ
= ξ2∆hΦk

ij + sin(2π(Φk
ij − Φk

Sij
))

+ λcSk

ij (1 + cos(2π(Φk
ij − Φk

Sij
)))

cSk+1

ij − cSk

ij

τ
= DS∆hcSk

ij −
cSk

ij

τS
+ F − Ω−1

Φk+1
ij − Φk

ij

τ

for i = 1, ..., N1 − 1, j = 1, ..., N2 − 1, k = 0, ..., NT .
Finally we express Φ and cS

Φk+1
ij = Φk

ij +
τξ2

α
∆Φk

ij +
τ

α
sin(2π(Φk

ij − Φk
Sij

))

+
τλ

α
cSk

ij (1 + cos(2π(Φk
ij − Φk

Sij
)))(3.1)

cSk+1

ij = cSk

ij + τDS∆cSk

ij − τ

τS
cSk

ij + τF −
Φk+1

ij − Φk
ij

Ω1
(3.2)

for i = 1, ..., N1 − 1, j = 1, ..., N2 − 1, k = 0, ..., NT . That means we can obtain the
values at time k + 1 from the corresponding ones at time k which can be illustrated
using five-point stencil as follows

i,j i,j+1i,j−1

i−1,j

i+1,j

For h = h1 = h2 this explicit method is known to be numerically stable and

convergent whenever ξ2τ
αh2 < 1

4 and DSτ
h2 < 1

4 .
The boundary conditions are treated by mirroring the values in the inner nodes

across the boundary.

4. Numerical results. In the numerical experiments the parameters are set up
as follows: Ω = 2.0, α = 1.0, ξ = 1.0, λ = 10.0, DS = 2.0, F = 3.0, τ = 0.00025,
NT = 100000, so that T = 25. The dimensions of ωS

h are 100 × 100 and the spatial

step size is set to 50/99. The initial height of the substrate ΦS is formed by arctan(y/x)
2π

for the dislocation. We investigated the influence of the parameter τS to the spiral
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(a) (b)

(c) (d)

Fig. 4.1: Spiral ridge at different times t for τS = 0.1

growth. The numerical simulations show that for small τS the spiral finds its final
step spacing l essentially after a single rotation which is demonstrated in Fig. 4.1. In
contrast, for very large τS the transient spiral ridge evolves slowly towards a spiral
with a constant l. This surface evolution is demonstrated in Fig. 4.2.

From these numerical simulations we conclude that step spacing is dependent
on desorption time. The larger desorption time is, the smaller the step spacing is. In
the future works, we would consider elastic deformation of the solid generated by
the misfit strain between atoms in the epitaxial layer and the substrate and include
it to the model [2-3].
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Fig. 4.2: Spiral ridge at different times t for τS = 1 × 10200
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