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INTRODUCTION OF DOUBLE DIVIDE AND CONQUER

AND THE RECENT PROGRESS

TARO KONDA AND YOSHIMASA NAKAMURA ∗

Abstract. An algorithm dubbed double Divide and Conquer is recently proposed, which first
computes only singluar values by a part of Divide and Conquer and then computes the corresponding
singular vectors by the twisted factorization. It accurately computes bidiagonal SVD in O(n2) flops

and is suited for parallelization when singular values are isolated. However, the twisted factoriza-
tion can fail if singular values are tightly clustered. In this paper, we discuss the adaptation of a
reorthogonalization process for double Divide and Conquer to cope with such matrices.
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1. Introduction and examples. Any given real n × m rectangular matrix
A, (n < m) can be converted into an upper bidiagonal matrix B̂ by the Housholder
transformation [6, 3]; A = Û(B̂ 0)V̂ T , where Û and V̂ are suitable orthogonal matri-
ces. This paper is concerned with singular value decomposition (SVD) of bidiagonal
matrices, particularly an n× (n+ 1) bidiagonal matrix

B ≡











b1 b2
b3 b4

. . .
. . .

b2n−1 b2n











, ∀bj 6= 0,(1.1)

whose SVD is B = U(Σ 0)V T , where U is an n×n orthogonal matrix whose columns
are left singular vectors, V is an (n+ 1) × (n+ 1) orthogonal matrix whose columns
are right singular vectors, and Σ is an n × n nonnegative definite diagonal matrix.
The diagonal elements of Σ are singular values of B. The condition for bj implies that
all singular values are nonzero and different from each other with infinite precision.

Recently, we have proposed an algorithm dubbed double Divide and Conquer
(dDC) for bidiagonal SVD. It first computes only singular values by a part of Divide
and Conquer, and then computes their corresponding singular vectors by the twisted
factorization [14, 15]. dDC has shown the competitive speed compared to the standard
algorithms such as QR or Divide and Conquer (D&C). The working memory required
by dDC is only O(n), in contrast to O(n2) of D&C. Moreover, dDC has shown the
high parallelism compared to other algorithms with the twisted factorization such as
I–SVD [11, 20, 10] because dDC adopts a part of D&C to compute singular values.

However, the accuracy of the singular vectors computed by the twisted factor-
ization can worsen if singular values are not relatively isolated [5]. To overcome this
problem, we apply a reorthogonalization process to dDC. In Sections 2.1 and 2.2, we
first introduce the details of dDC. Then the reorthogonalization process for dDC is
discussed in Section 2.3. Finally, we show some numerical results in Section 3.
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2. Proposed algorithm for singular value decomposition. The twisted
factorization is a fast and accurate algorithm to compute a singular vector for a given
singular value [11, 20, 10]. It computes sufficiently orthogonal singular vectors when
the given singular values are relatively accurate and are isolated from each other.
Each singular vector is independently computed. This feature is an advantage for
parallelization. However, the total parallelism of the algorithms which adopts the
twisted factorization such as I–SVD is limited due to seriality in the task of singular
value computation [14]. In contrast, dDC successfully improves its total parallelism
using a part of Divide and Conquer for singluar value computation. It then computes
the corresponding singular vectors by the twisted factorization.

2.1. Computing singular values. D&C was originally proposed for the solu-
tion of symmetric tridiagonal eigenvalue problems [2, 7, 9]. First, it partitions the
targeted matrix into two submatrices. Then, the eigenvalues and eigenvectors of the
targeted matrix are synthesized from the solutions of the submatrices. These processes
are recursively applied until the size of each submatrix becomes sufficiently small. As
shown below, we demonstrate that D&C can similarly be applied to bidiagonal SVD
[12, 8]. In this paper, we omit details of an acceleration technique called deflation
because it will not have considerable effect on the performance of our algorithm.

The n× (n+ 1) bidiagonal matrix B is partitioned into two submatrices as

B =





B1 0
b2k−1ek

T b2ke1
T

0 B2



(2.1)

such that 1 < k < n for a fixed k. Here B1 is a (k − 1) × k bidiagonal matrix, B2 is
an (n− k)× (n− k+ 1) bidiagonal matrix and ej is the vector whose j–th element is
1 and the others are 0. The parameter k is usually taken as ⌊n/2⌋. Now, given that
the SVD of Bi is

Bi = Ui (Di 0) (Vi vi)
T

for i = 1, 2,(2.2)

where Ui and (Vi vi) are suitable orthogonal matrices and Di are positive diagonal
matrices, and assuming that for each Di, all singular values are nonzero and different
from each other, then, by substituting (2.2) into (2.1) and applying Givens rotation,
we obtain

B = Ũ (M 0)
(

Ṽ ṽ
)T

. Here(2.3)

Ũ ≡





0 U1 0
1 0 0
0 0 U2



 ,M ≡





r0 b2k−1l1 b2kf2
0 D1 0
0 0 D2



 , Ṽ ≡

(

c0v1 V1 0
s0v2 0 V2

)

,

ṽ ≡

(

−s0v1

c0v2

)

, r0 =
√

(b2k−1ψ1)2 + (b2kφ2)2, c0 =
b2k−1ψ1

r0
and s0 =

b2kφ2

r0
.

And l1 is the last row of V1, ψ1 is the last element of v1, f2 is the first row of V2 and
φ2 is the first element of v2. Hence, if we let the SVD of M be M = UMΣV T

M , then

B = Ũ
(

UMΣV T
M 0

)

(

Ṽ ṽ
)T

= U (Σ 0)V T , where U = ŨUM , V =
(

Ṽ VM ṽ
)

.(2.4)
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Time complexity of D&C ranges from O(n2) to O(n3) flops depending on the
number of deflations since the dimension of matrix–matrix multiplication in (2.4) is
reduced when the deflation is applied [3, 8]. In addition, D&C requires O(n2) extra
working memory to hold all singular vectors of submatrices.

D&C process discussed above can be simplified, particularly when only singular
values are desired [8]. Using (2.4), B can be rewritten as

B = UΣ
(

Ṽ VM ṽ
)T

= UΣ

( (

c0v1 V1 0
s0v2 0 V2

)

VM

(

−s0v1

c0v2

) )T

, where

f = (coφ1 f1 0)VM , l = (soψ2 0 l2)VM , φ = −s0φ1 and ψ = c0ψ2.(2.5)

Here f1 and f are the first rows of V1 and V , φ1 and φ are the first elements of v1

and v, l2 and l are the last rows of V2 and V , and ψ2 and ψ are the last elements of
v2 and v, respectively. Equation (2.5) shows that only f1, l2, φ1 and ψ2 are needed
to compute f , l, φ and ψ. In other words, there is no need to compute and hold all
singular vectors of the submatrices.

Now we focus on computing VM . Let us take M as

M =











z1 z2 · · · zn

d2

. . .

dn











.(2.6)

Then the SVD of M can be computed according to the following theorem.
Theorem 2.1. [8] Let UΣV T be the SVD of M with U = (u1, ...,un), Σ =

diag(σ1, ..., σn) and V = (v1, ...,vn). Then the singular values {σi}
n
i=1 satisfy the

interlacing property

0 ≡ d1 < σ1 < d2 < · · · < dn < σn < dn + ||z||2(2.7)

and the secular equation

f(σi) ≡ 1 +

n
∑

j=1

z2
j

d2
j − σ2

i

= 0 (i = 1, 2, ..., n).(2.8)

Let {σ̂i}
n
i=1 be the singular values computed by solving (2.8), then the singular vectors

are given by

ui =

(

−1,
d2ẑ2

d2
2 − σ̂2

i

, · · · ,
dnẑn

d2
n − σ̂2

i

)T

√

√

√

√1 +

n
∑

j=2

(dj ẑj)
2

(d2
j − σ̂2

i )2

and vi =

(

ẑ1
d2
1 − σ̂2

i

, · · · ,
ẑn

d2
n − σ̂2

i

)T

√

√

√

√

n
∑

j=1

ẑ2
j

(d2
j − σ̂2

i )2

,(2.9)

where |ẑi| =

√

√

√

√(σ̂2
n − d2

i )

i−1
∏

j=1

(σ̂2
j − d2

i )

(d2
j − d2

i )

n−1
∏

j=i

(σ̂2
j − d2

i )

(d2
j+1 − d2

i )

and the sign of ẑi can be chosen arbitrarily.
In this paper, we refer to this compact version as Divide and Conquer for singular

values (DCSV). The secular equation can be solved by using the interpolating rational
functions [16]. Since the right singular vectors can be computed one by one as shown
in (2.9), f and l in (2.5) can be computed element by element. As a result, we don’t
need to hold the whole VM and only O(n) working memory is required.
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2.2. Computing singular vectors for isolated singular values. Once a
singular value is computed, we can apply the twisted factorization to obtain the
corresponding singular vector. Let us now consider the following system

(BTB − σ̂2I)x(k) = ekγk,(2.10)

where x(k) is the desired vector, and γk is set such that the k–th element of x(k) is 1.
We take P to be a lower bidiagonal matrix and Q to be an upper bidiagonal matrix
such that BTB − σ̂2I = PD+PT = QD−QT , where P and Q are given by Choleskey
decomposition of BTB − σ̂2I. Let the i–th diagonal elements of D+ and D− be D+

i

and D−

i , and i–th subdiagonal elements of P and Q be Pi and Qi, respectively. It
follows that the factorizations PD+PT and QD−QT are computable by stdLVvs and
rdLVvs algorithms, respectively. See [21, 11, 17] for details.

Then the twisted factorization can be described as follows.

BTB − σ̂2I = NkDkN
T
k ,(2.11)

where Nk is defined as

Nk =





























1

p1
. . .

. . . 1
pk−1 1 qk

1
. . .

. . . qn−1

1





























(2.12)

and Dk is the diagonal matrix such that Dk = diag
(

D+
1 , ..., D

+
k−1, γk, D

−

k+1, ..., D
−
n

)

.
We choose the twist point k so as to minimize |γk| according to the following theorem.

Theorem 2.2. [18] γk is given by γk = D+
k +D−

k −
(

g
(0)
k−1 + h

(0)
k − σ̂2

)

, where

k=1,2,...,n, h
(0)
k = (b2k−1)

2 and g
(0)
k = (b2k)2.

By substituting (2.11) into (2.10), we obtain NkDkN
T
k x(k) = ekγk. Since Dkek =

ekγk and Nkek = ek, it is transformed into

NT
k x(k) = ek.(2.13)

Finally, we solve (2.13) by backward substitution in O(n) flops time. Both stdLVvs
and rdLVvs cost O(n) flops [17], thus we compute all singular vectors in O(n2) flops
by the twisted factorization. Both of them require only O(n) working memory to hold
the elements of P and Q.

2.3. Computing singular vectors for clustered singular values. It is known
that the orthogonality of singular vectors computed by the twisted factorization is
guaranteed only if the corresponding singular values are high relatively isolated [5].
Consequently, the closer the singular values are, the worse the accuracy of the singu-
lar vectors computed by the twisted factorization can be. Therefore, to improve the
accuracy of all singular vectors, we add a single step of the inverse iteration [3] after
the twisted factorization.

However, the twisted factorization with the inverse iteration will fail when singular
values are indistinguishable with finite precision. This can happen even when singular
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values are computed with relative accuracy. Hence, to compute appropriate singular
vectors for such cases, we need a reorthogonalization process as a backup. If a cluster
of singular values is found, we can alternatively apply to each cluster the inverse
iteration with the modified Gram–Schmidt [19] as shown below.

Let us consider a matrix B̌ such that

B̌ =

(

B
BT

)

.(2.14)

Here let the element b2n of B be 0 and we henceforth regard B as the n×n bidiagonal
matrix for simplicity. Then, the eigenvalues of this matrix are λ = ±σ, and it can be
equivalently transformed into the following tridiagonal matrix TGK called the Golub–
Kahan matrix [4].

TGK =















0 b1
b1 0 b2

. . .
. . .

. . .

b2n−2 0 b2n−1

b2n−1 0















.(2.15)

Let zj be an eigenvector of TGK , then TGKzj = σjzj , where zj consists of uj and
vj such that zj = (vj(1), uj(1), vj(2), uj(2), · · · , vj(n), uj(n))T . Here vj(i) and uj(i)
are the i–th elements of vj and uj , respectively. If we explicitly construct BTB,
then the condition number can worsen. To circumvent this problem, we compute
the singular vectors of B without a change in the condition number by applying the
inverse iteration with the modified Gram–Schmidt orthogonalization to TGK .

Now we summarize the algorithm of dDC. It first computes singular values by
the compact D&C, and then computes the corresponding singular vectors by the
twisted factorization with a single step of the inverse iteration. For singular vectors
corresponding to clustered singular values, the Golub–Kahan matrix is solved by the
inverse iteration with the modified Gram–Schmidt for each cluster. We name our
algorithm double Divide and Conquer (dDC) because it accomplishes two functions;
(i) it computes singular values by Divide and Conquer and (ii) it computes singular
values and singular vectors separately.

Since in D&C, matrix–matrix multiplication in (2.4) is the unique part to take
O(n3) flops and the other parts cost only O(n2) flops, thus the time complexity
of DCSV is O(n2) flops to compute all singular values. Moreover, both the twisted
factorization to compute one singular vector and the single step of the inverse iteration
for one singular vector cost O(n) flops [3]. Therefore, the total complexity of dDC is
O(n2) flops when all singular values are isolated from each other. If singular values are
duplicated or tightly clustered, then reorthogonalization costs O(nk2) flops, where k
is the size of the largest cluster [3]. Thus in such cases, dDC takes O(n2 +nk2) flops.
As we have discussed already, the working memory required by DCSV is reduced to
O(n) when vectors f and l are computed element by element. Moreover, the twisted
factorization also requires O(n), and in practice, we can use vi and ui to hold vector
zi during the modified Gram–Schmidt. Thus dDC requires O(n) working memory
whereas D&C requires O(n2) to hold the matrices U and V .

Furthermore, the twisted factorization can selectively compute the required vec-
tors because each singular vector is computed independently of each other. Similarly,
DCSV is capable of selecting the secular equation to be solved. In contrast, I–SVD
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Table 3.1

The shortest run time out of 10 executions to compute SVD for each bidiagonal matrix type
and dimension.

Run time for n× n matrix (Seconds)
Algorithm Matrix type n = 1, 000 n = 2, 000 n = 3, 000

dDC Isolated 0.53 2.12 4.84
I–SVD Isolated 0.51 2.09 4.79
D&C Isolated 4.98 40.66 135.54
QR Isolated 42.34 382.21 1356.15
dDC Clustered 1.26 10.37 38.79
D&C Clustered 0.15 0.68 1.80
QR Clustered 31.29 274.97 900.15

has to compute all singular values in order to find the targeted ones. Let us note that
the computational cost of DCSV is not proportional to the number of the desired
singular values because all subproblems other than the root must be fully solved.

3. Numerical experiments. In this section, we evaluate the speed and accu-
racy of dDC compared to the following three algorithms. We use LAPACK [1] with
self–compiled BLAS (Basic Linear Algebra Subprograms).

1. I–SVD: I–SVD algorithm whose mdLVs’s parameter δ(t) is set as 1.0. A
single step of the inverse iteration updates singular vectors computed by the twisted
factorization.

2. D&C: Normal Divide and Conquer algorithm (DBDSDC in LAPACK).
3. QR: QR algorithm with shifts (DBDSQR in LAPACK).

We set thresh of dDC as thresh ≡ 1.0 × 10−9 in all experiments. dDC solves the
secular equation using DLASD4 in LAPACK. We use a Linux (Fedora Core 3) PC with
Opteron 2.4GHz (Cache L1D: 64KB, L1I: 64KB and L2: 1024KB) and 2GB Memory.
We have chosen the following two bidiagonal matrices.

1. Isolated: All diagonal elements are 2.001 and all subdiagonal elements are
2.0. All singular values are well separated from each other.

2. Clustered: Glued Kimura Matrix. The 16th and 17th singular values of the
17 × 17 bidiagonal matrix K whose diagonal elements are (9, ..., 1, ..., 9) and subdi-
agonal elements are all unity are duplicated with double precision like the Wilkinson
matrix for symmetric tridiagonal eigenvalue problem [13]. The following “glued” ver-
sion of K with a small number δ should contain some strong clusters.













K δ

K
. . .

. . . δ
K













.(3.1)

The tail K is to be truncated to appropriate dimension and δ is set as 1.0 × 10−10.

3.1. Speed. The Table 3.1 shows the shortest run time out of 10 executions to
compute SVD by each algorithm. The size of the matrices are n = 1, 000, n = 2, 000
and n = 3, 000. For Isolated matrices, D&C shows around O(n3) run time due to a
small number of deflations in D&C although D&C is faster than QR all each cases.
dDC is as fast as I–SVD and they are much faster than the others.
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Table 3.2

Evaluations of ||V T V − I||abs for orthogonality of right singular vectors, ||UT U − I||abs for
orthogonality of left singular vectors and ||(B − UΣV T )||abs for accuracy of SVD for n = 1, 000
bidiagonal matrices of each type.

Algorithm Matrix type ||V TV − I||abs ||UTU − I||abs ||(B − UΣV T )||abs

dDC Isolated 3.7e-10 3.6e-10 4.2e-09
I–SVD Isolated 3.7e-10 3.5e-10 3.8e-09
D&C Isolated 5.1e-11 5.1e-11 3.0e-11
QR Isolated 1.3e-10 1.3e-10 1.1e-10
dDC Clustered 6.1e-10 6.1e-10 1.1e-08
D&C Clustered 1.3e-12 1.4e-12 1.7e-11
QR Clustered 3.2e-11 3.2e-11 3.1e-10

For Clustered matrices, dDC slows down compared to the results in Isolated
matrices because 17 clusters are found in each Clustered matrix and the reorthogo-
nalization is required. In contrast, a large number of deflations occurs in D&C and it
becomes the fastest algorithm. Again, they are much faster than QR in this case.

3.2. Accuracy. Here, we test the accuracy of dDC compared to the other algo-
rithms. To evaluate error over all elements, we use the norm ||A||abs = Σi,j |aij |. The
criteria are ||V TV − I||abs and ||UTU − I||abs for orthogonality of right and left singu-
lar vectors, respectively, and ||(B−UΣV T )||abs for accuracy of SVD. Table 3.2 shows
the results for n = 1, 000 bidiagonal matrices. For Isolated matrices, we observe that
D&C shows the highest accuracy and QR is the second for all criteria. dDC performs
as good as I–SVD.

For Clustered matrices, the same tendency of results for Isolated matrices is
observed. dDC acquires singular vectors having a proper orthogonality by using the
reorthogonalization.

Conclusion. For bidiagonal SVD, double Divide and Conquer (dDC) is O(n2)
flops algorithm for matrices whose singular values are isolated. When singular
values are tightly clustered, dDC alternatively uses the inverse iteration with the
modified Gram–Schmidt for each cluster. In such case, time complexity becomes
O(n2 +nk2) flops, where k is the size of the largest cluster. For any type of matrices,
dDC needs only O(n) working memory, in contrast, D&C requires O(n2). A hybrid
implementation of dDC and D&C can be effective because their speed is complemen-
tary to each other depending on the existence of strong clusters.
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