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STABILIZED DDFV SCHEMES FOR STOKES PROBLEM

STELLA KRELL ∗

Abstract. “Discrete Duality Finite Volume” schemes (DDFV for short) on general meshes are
studied here for the linear Stokes problem with Dirichlet boundary conditions. The aim of this work
is to analyze the wellposedness of different DDFV schemes and their convergence properties. We
first consider the natural extension of the DDVF scheme classically used for the Laplace problem.
Unfortunately, its wellposedness is still an open problem on general meshes. To overcome this
difficulty, we propose to stabilize the mass conservation equation. We present that stabilized schemes
are wellposed for general meshes and we derive some error estimates. Finally, the different schemes
(stabilized and unstabilized) are compared on numerical test cases.
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1. Introduction. The DDFV schemes have been first introduced and studied
in [H 00, DO 05] to approximate the Laplace equation on a large class of 2D meshes
including non-conformal and distorted meshes. Such schemes require unknowns on
both vertices and “centers” of primal control volumes. This allows to reconstitute
two-dimensional discrete gradient and divergence operators which are in duality in a
discrete sense. The discrete gradient denoted by ∇D is defined to be constant on each
diamond cell which is a quadrangle whose vertices are two vertices of an edge and the
two control volume centers corresponding to this edge. This framework is recalled in
section 2.

The DDFV schemes have then been applied for several linear and non-linear
problems. In the case of the linear anisotropic Laplace equation, the DDFV schemes
have been studied with mixed boundary conditions [BHK] on general grids. The
div curl problems have been discretized with DDFV schemes in [DDO 07]. Also in
the case of non-linear diffusion equations for Leray-Lions operators, they have been
successfully extended in [ABH 07, BH 08]. In the benchmark [HH 08] of the FVCA5
conference, we see that the DDFV method is a good way to approach the gradient of
the solution compared to other finite volume schemes.

For the sake of simplicity, we restrict the presentation to the Stokes equation
with Dirichlet boundary conditions and a regular source term. The aim is to find
u : Ω → R

2 and p : Ω → R such that:

−∆u + ∇p = f, in Ω,

div(u) = 0, in Ω,

u = g, on ∂Ω,

∫

Ω

p(x)dx = 0.

(1.1)

where Ω is a polygonal open bounded connected subset of R
2, f is a function in

(L2(Ω))2 and g is a function in (L2(∂Ω))2 which verifies the compatibility condition:
∫

∂Ω

g(s) · ~nds = 0. (1.2)
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For the Stokes problem, it seems to be natural to approximate the velocity on
both vertices and centers of primal control volumes and the pressure on the diamond
cells. This scheme is known to be wellposed [D 07] only for particular classes of
meshes. Indeed, the wellposedness of the scheme relies on an uniform discrete inf-sup
condition, which is still an open problem for general meshes. Under usual regularity
assumptions about the exact solution, we state here that the convergence rate of the
velocity gradient ||∇u − ∇DuT ||2, in L2 norm, is equal to 1

2 , when this scheme is
wellposed.

Two strategies can be considered to overcome the difficulty of the wellposedness:
approximate the velocity on the diamond cells and the pressure on both vertices and
centers of primal control volumes (see [DDO 07]) or stabilize the mass conservation
equation as for finite elements schemes. The stabilized schemes are proven to be
wellposed for general meshes. Error estimates are studied for several kind of stabi-
lizations. In particular, we propose a first order convergent scheme in the L2 norm
for the velocity ||u − uT ||2, for its gradient ||∇u − ∇DuT ||2 and for the pressure
||p− pD||2 provided that the exact solution satisfies usual regularity assumptions. Fi-
nally, in section 4, theoretical error estimates are illustrated with numerical results.
The complete proofs of all the results in this paper and further numerical experiments
are presented in [K].

2. The DDFV framework. The meshes: we recall here the main notations
and definitions taken from [ABH 07]. A DDFV mesh T is constituted by a primal
mesh M ∪ ∂M and a dual mesh M

∗ ∪ ∂M
∗ (Figure 2.1).
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Fig. 2.1. The mesh T

The primal mesh M is a set of disjoint polygonal control volumes K ⊂ Ω such
that ∪K = Ω. We denote by ∂M the set of edges of the control volumes in M included
in ∂Ω. Edges in ∂M are considered as degenerate control volumes. Then, to each
control volume and degenerate control volume K ∈ M ∪ ∂M, we associate a point
xK ∈ K. This family of points is denoted by X = {xK, K ∈ M ∪ ∂M}.

Let X∗ be the set of the vertices of the primal control volumes in M. It can be
split into X∗ = X∗

int ∪ X∗
ext where X∗

int ∩ ∂Ω = ∅ and X∗
ext ⊂ ∂Ω. To any point

xK∗ ∈ X∗
int (resp. xK∗ ∈ X∗

ext), we associate the polygon K∗ whose vertices are
{xK ∈ X, such that xK

∗ ∈ K, K ∈ M} (resp. {xK
∗} ∪ {xK ∈ X, such that xK

∗ ∈
K, K ∈ (M ∪ ∂M)}) sorted with respect to the clockwise order of the corresponding
control volumes. This defines the set M

∗ ∪ ∂M
∗ of dual control volumes.

We assume that if (K∗, L∗) ∈ M
∗ ∪ ∂M

∗ such that K∗ 6= L∗, we have
o
K∗ ∩

o
L∗ = ∅.
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For all neighbour control volumes K and L, we assume that ∂K∩ ∂L is an edge of the
primal mesh denoted by σ = K|L. We note E the set of such edges. We also note
σ∗ = K∗|L∗ and E∗ for the corresponding dual definitions. Given the primal and dual
control volumes, we define the diamond cells Dσ,σ∗ as the quadrangles whose diagonals
are a primal edge σ = K|L = (xK

∗ , xL
∗) and the corresponding dual edge σ∗ = K∗|L∗ =

(xK, xL), (see Figure 2.2). Note that the diamond cells are not necessarily convex. If
σ ∈ E ∩ ∂Ω, the quadrangle Dσ,σ∗ degenerate into a triangle. The set of the diamond
cells is denoted by D and we have Ω = ∪

D∈D

D.

xL

~n
σ

∗
K

∗

~nσK

xK

σ = K|L

σ∗ = K
∗|L∗

~τK,L

αD

~τK∗,L∗

xK

σ = K|L

σ∗ = K
∗|L∗

dK∗,L

dL∗,L

xK∗

xL
∗xL∗

xK∗

xL

xD

Fig. 2.2. Notations in the diamond cells. (Left) Interior cell. (Right) Boundary cell.

For any primal control volume K ∈ M ∩ ∂M, let mK be its Lebesgue measure,
EK the set of its edges if K ∈ M, or the one-element set {K} if K ∈ ∂M. We note
by DK = {Dσ,σ∗ ∈ D, σ ∈ EK}, and ~nK the outward unit normal vector to K. We
introduce the open ball BK := B(xK, ρK)∩Ω for K ∈ M and BK := B(xK, ρK)∩∂Ω ⊂ K

for K ∈ ∂M. The value ρK is chosen such that the inclusion is verified. We will also
use the corresponding dual notations: mK∗ , EK∗ , DK∗ , ~nK

∗ , BK∗ and ρK∗ .
For a diamond cell D = Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗), we note by

mD its measure, xD the center of the diamond cell D, that is the intersection of the
primal edge σ and the dual edge σ∗, mσ the length of the primal edge σ, mσ∗ the
length of the dual edge σ∗, dD its diameter, s its edges (for example s = [xK, xK∗ ]),
ms the length of a diamond edge s, ms∗ the length between xD and xD′ if s = D|D′,
~n

σK the unit vector normal to σ oriented from xK to xL, ~n
σ

∗
K

∗ the unit vector normal
to σ∗ oriented from xK∗ to xL∗ , ~τ K,L the unit vector parallel to σ∗ (oriented from xK

to xL), ~τ K
∗,L∗ the unit vector parallel to σ (oriented from K∗ to L∗), αD the angle

between ~τ K,L and ~τ K
∗,L∗ , dK∗,L the length between xK∗ and xL for any boundary

degenerate diamond cell and ρD is the diameter of the greatest open ball BD which
contains D and its neighbours. Finally, we define the outward unit normal field vector
~nD ∈ (R2)D such that ~nD = ~n

σK for D = Dσ,σ∗ .

The unknowns: the DDFV method associates to all primal control volumes
K ∈ M ∪ ∂M an unknown value uK ∈ R

2 for the velocity, to all dual control volumes
K∗ ∈ M

∗ ∪ ∂M
∗ an unknown value uK

∗ ∈ R
2 for the velocity and to all diamond

cells D ∈ D an unknown value pD ∈ R for the pressure. We denote the approximate
solution on the mesh (T , D) by (uT , pD) ∈

(
R

2
)T

× R
D:

uT =
(
(uK)

K∈(M∪∂M) , (uK
∗)

K
∗∈(M∗∪∂M∗)

)
, pD =

(
(pD)

D∈D

)
.

Whenever it is convenient, we associate to the discrete function uT the piecewise
constant function

uT ∼
1

2
(uM + uM

∗

),
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where uM =
∑

K∈M

uK1K and uM
∗

=
∑

K
∗∈M∗∪∂M∗

uK
∗1K∗ . As a consequence, one can define

the L2 norm of uM,uM
∗

,uT .

Discrete gradient: we define a consistent approximation of the gradient oper-
ator denoted by ∇D : uT ∈

(
R

2
)T

7→ (∇DuT )
D∈D

∈ (M2(R))D, as follows:

∇DuT =

(
(∇DuT

1 )
t

(∇DuT

2 )
t

)
, ∀D ∈ D.

and for i = 1, 2

∇DuT

i =
1

2mD

[(ui,L − ui,K)mσ~nσK + (ui,L∗ − ui,K∗)mσ∗~n
σ

∗
K

∗ ] .

By using the value of the diamond cell measure 2mD = sin αDmσmσ∗ , it can be
written as follows:

∇DuT

i =
1

sin αD

[
ui,L − ui,K

mσ∗

~n
σK +

ui,L∗ − ui,K∗

mσ

~n
σ

∗
K

∗

]
.

Discrete divergence: we define a consistent approximation of the divergence
operator applied to discrete tensor fields denoted by
divT : ξ = (ξD)D∈D ∈(M2(R))D 7→ divT ξ ∈

(
R

2
)T

, as follows:

divKξ =
1

mK

∑

σ∈∂K

mσξD~n
σK, ∀K ∈ M, and divKξ = 0, ∀K ∈ ∂M,

divK
∗

ξ =
1

mK
∗

∑

σ∗∈∂K∗

mσ∗ξD~n
σ

∗
K

∗ , ∀K∗ ∈ M
∗ ∪ ∂M

∗.

These two operators are in discrete duality (giving its name to the scheme) since they
can be linked by a discrete Stokes formula (see [DO 05, DDO 07, ABH 07]). In order
to write a such formula, we define trace operators and inner products.

Trace operators: we define two trace operators. The first one is denoted by
γT : uT ∈

(
R

2
)T

7→ γT (uT ) ∈ (R2)∂M, as follows:

γσ(uT ) =
dK∗,L(uK

∗ + uL) + dL∗,L(uL
∗ + uL)

2mσ

, ∀ σ ∈ ∂M.

This trace operator will impose the Dirichlet boundary conditions in a weak way. The
second one is denoted by γD : φD ∈ (R2)D 7→ (φD)D∈Dext

∈ (R2)Dext .

Inner products: we define the three following inner products

JvT ,uT KT =
1

2




∑

K∈M

mKuK · vK +
∑

K∗∈(M∗∪∂M∗)

mK∗uK
∗· vK

∗



 , ∀uT ,vT∈
(
R

2
)T

,

(γD(φD), γT (uT ))∂Ω =
∑

Dσ,σ∗∈Dext

mσφD · γσ(uT ), ∀ φD ∈ (R2)D,uT ∈
(
R

2
)T

,

(ξD, ηD)D =
∑

D∈D

mD(ξD : ηD), ∀ξD, ηD ∈ (M2(R))D,
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where (ξD : ηD) =
∑

1≤i,j≤2

ξD

i,jη
D

i,j .

Theorem 2.1 (Discrete Stokes formula). For all ξD ∈ (M2(R))D, uT ∈
(
R

2
)T

:

JdivT ξD,uT KT = −(ξD : ∇DuT )D + (γD(ξD~n
D), γT (uT ))∂Ω ∈ R.

We also need a discrete divergence of a vector field of
(
R

2
)T

, which is defined

by using the discrete gradient: divD : uT ∈
(
R

2
)T

7→ (divDuT )D∈D ∈ R
D, such that

divDuT = Trace(∇DuT ).

One of the stabilization term will be a non-consistent discrete form of ∆p, denoted
by ∆D : pD ∈ R

D 7→ ∆DpD ∈ R
D, and defined as follows:

∆DpD =
1

mD

∑

s=D|D′∈∂D

d2
D

+ d2
D

′

d2
D

(pD
′

− pD), ∀ D ∈ D.

Note that we do not need a consistent discrete form of a Laplacian.

For simplicity, we consider a family of meshes with convex diamond cells. We note
size(T ) the maximum of the diameters of the diamond cells in D. To measure how

flat the diamond cells are, we note αT the unique real in ]0, π
2 ] such that sin αT :=

min
D∈D

| sin αD|. We introduce a positive number reg(T ) that quantifies the regularity

of a given mesh and is useful to perform the convergence analysis of finite volume
schemes like in [ABH 07] and [BH 08].

reg(T ) := max

(
1

αT

, max
D∈D

max
s∈ED

dD

min(ms, ms∗)
, max

K∈M

D∈DK

dK

dD

, max
K

∗
∈M∗∪∂M∗

D∈D
K

∗

dK
∗

dD

max
K∈M

dK

ρK

+
ρK

dK

, max
K

∗∈M∗∪∂M∗

dK
∗

ρK
∗

+
ρK

∗

dK
∗

, max
D∈D

dD

ρD

+
ρD

dD

)
.

For instance, this constant reg(T ) is involved in the following geometrical result:
there exists two constants C1 and C2 depending on reg(T ) such that for any K ∈ M,
K∗ ∈ M

∗ ∪ ∂M
∗ and D ∈ D such that D ∩ K 6= ∅ and D ∩ K∗ 6= ∅, we have

C1mK ≤ mD ≤ C2mK, C1mK∗ ≤ mD ≤ C2mK∗ .

3. DDFV schemes for the Stokes equations. We denote by fK (resp. fK
∗)

the mean-value of the source term f on K ∈ M (resp. on K∗ ∈ M
∗ ∪ ∂M

∗) and by
gσ the mean-value of the Dirichlet boundary conditions g on σ ∈ ∂M. With these
choices and the compatibility condition (1.2), we have the two following equalities:

∑

K∈M

mKfK =
∑

K
∗∈(M∗∪∂M∗)

mK∗fK
∗ ,

∑

Dσ,σ∗∈Dext

mσgσ · ~n
σK = 0.
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The scheme for the problem (1.1) is written as follows :

Find uT ∈
(
R

2
)T

and pD ∈ R
D such that,

∀ K ∈ M, divK(−∇DuT + pDId) = fK,

∀ K∗ ∈ M
∗ ∪ ∂M

∗, divK
∗

(−∇DuT + pDId) = fK
∗ ,

∀ D ∈ D, divD(uT ) + λ size(T )pD − µ size(T )2∆DpD = 0,

∀ σ ∈ ∂M, γσ(uT ) = gσ,∑

K∈M

mKuK −
∑

K
∗∈(M∗∪∂M∗)

mK
∗uK

∗ = 0,

∑

D∈D

mDpD = 0.

(3.1)

with an appropriate choice of λ ≥ 0 and µ ≥ 0.
We will study three schemes depending on the values of λ ≥ 0 and µ ≥ 0:
• λ = 0, µ = 0, (US) scheme: it seems to be the more natural way to approxi-

mate the system. This unstabilized scheme is studied in [D 07].
• λ = 0, µ > 0, (BPS) scheme: this is a stabilized scheme inspired by the well

known Brezzi-Pitkäranta scheme [BP 84] in the finite element framework.
• λ > 0, µ = 0, (PS) scheme: it corresponds to a stabilized scheme with the

pressure [BEH 05].

3.1. Wellposedness of the scheme.
Unstabilized scheme: the (US) scheme (λ = µ = 0) is proved in [D 07] to

be wellposed only for some particular classes of meshes described in the following
condition. We will say that a given mesh T satisfies the condition (HM):





If T is a conformal triangular mesh whose angles are less than
π

2
,

or if T a non-conformal rectangular mesh.
(HM)

Stabilized scheme: the stabilized scheme (3.1) with λ + µ > 0 is wellposed for
all meshes.

Theorem 3.1. If λ = µ = 0, we assume that T verified the condition (HM),
otherwise we just assume that T is a mesh as described in section 2, the finite volume
scheme (3.1) admits a unique solution (uT , pD) ∈

(
R

2
)T

× R
D.

3.2. Error estimates.

3.2.1. First estimates. Under regularity assumptions of the solution of the
problem (1.1), one can derive error estimates for the scheme (3.1):

Theorem 3.2. We assume that the solution (u, p) of the Stokes problem (1.1)
belongs to (H2(Ω))2 × H1(Ω). For any values of (λ ≥ 0, µ ≥ 0), under the existence
assumptions of the discrete solution (uT , pD) of the scheme (3.1) (see Theorem 3.1),
there exists a constant C > 0 depending only on reg(T ), on the norms of the functions
f , g, u and p, such that:

||u− u
M||2 + ||u− u

M
∗

||2 + ||∇u−∇DuT ||2 ≤ C size(T )
1

2 .

Remark 3.3. We do not have any error estimate on the pressure, we can just
prove that ||pD||2 ≤ C.
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Remark 3.4. The boundedness of reg(T ) imposes only local restriction on the
mesh. It is easy to construct a family of locally refined mesh such that reg(T ) is
bounded independently on the level of the refinement.

3.2.2. Higher order error estimates for (BPS) scheme (µ > 0). In this
section, we assume that µ > 0. We improve the error estimates for the (BPS) scheme,
and gain the pressure error estimate. These error estimates rely on stability results of
the scheme, that we emphasized in Theorem 3.5. The complete proof tooks inspiration
from the work of [EHL 06].

Theorem 3.5 (Stability of the scheme). Let uT , ũT and pD, p̃D be two elements

of respectively
(
R

2
)T

and R
D, we note:

B(uT , pD; ũT , p̃D)=JdivT (−∇DuT +pDId), ũT K+(divD(uT )−µsize(T )2∆DpD, p̃D)D

with µ > 0. Then there exists C1 > 0 and C2 > 0 such that for each pair (uT , pD) ∈(
R

2
)T

× R
D such that γT (uT ) = 0, there exists ũT ∈

(
R

2
)T

such that γT (ũT ) = 0,
p̃D ∈ R

D:

||∇DũT ||2 + ||p̃D||2 ≤ C1

(
||∇DuT ||2 + ||pD||2

)
,

and

||∇DuT ||22 + ||pD||22 ≤ C2B(uT , pD; ũT , p̃D).

We apply the stability Theorem to the difference between some projection of u
and uT and to the difference between some projection of p and pD where (u, p) is the

solution of the Stokes problem (1.1) and (uT , pD) ∈
(
R

2
)T

×R
D is the solution of the

scheme (3.1) with µ > 0.
Theorem 3.6. We assume that the solution (u, p) of the Stokes problem (1.1)

belongs to (H2(Ω))2 × H1(Ω). Let (uT , pD) ∈
(
R

2
)T

× R
D be the solution of the

scheme (3.1) with µ > 0. There exists a constant C > 0 depending only on reg(T ),
on the norms of the functions f , g, u and p, such that:

||u− u
M||2 + ||u− u

M
∗

||2 + ||∇u −∇DuT ||2 ≤ C size(T ),
and

||p − pD||2 ≤ C size(T ).

4. Numerical results. We show here some numerical results obtained on a
rectangular domain Ω =]0, 1[2. We compare the (US), (BPS) and (PS) schemes on
two different tests. The first one is the Green-Taylor vortex on a non-conformal
rectangular mesh (Figure 4.1). In the second one, the exact solution is a polynomial
function on a general quadrangle mesh (Figure 4.2).

The exact solution (u, p) being chosen, we define the source term f and the bound-
ary data g in such a way that (1.1) is satisfied.

4.1. Test 1 (Green-Taylor vortex). Let us consider the following exact solu-
tion:

u(x, y) =

(
1
2 sin(2πx) cos(2πy)

− 1
2 cos(2πx) sin(2πy)

)
, p(x, y) =

1

8
cos(4πx) sin(4πy).
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The mesh considered is a non-conformal rectangular mesh (see Figure 4.1(a)). Recall
that the (US) scheme is proved to be wellposed on such a rectangular mesh.

(a) Locally refined rectangular mesh.
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Fig. 4.1. Green-Taylor vortex, on a rectangular mesh.

In Figures 4.1(b), 4.1(c) and 4.1(d), we compare the L2 norm of the error obtained
with the three (US), (BPS) and (PS) schemes, for the pressure ||p − pD||L2 , for the
velocity gradient ||∇u −∇DuT ||L2 and for the velocity ||u − uT ||L2 respectively.

Note that the convergence rates obtained in this numerical test are greater than
the theoretical one given in the Theorem 3.2 and 3.6. For the velocity, its gradient
and the pressure, we numerically obtain convergence rates equal to 1.5, 2 and 1.7
respectively for the three schemes.

For the (PS) scheme, the convergence rate in L2 norm for the velocity and the
gradient of the velocity is smaller than for the other two schemes even if the (PS)
scheme seems to be more precise for the velocity. Nevertheless, for the pressure, the
(PS) scheme is less precise than the other two schemes.

The results obtained with the (BPS) and (US) schemes are essentially the same
as far as the velocity is concerned. However, for the pressure, the (BPS) scheme is
more precise than the (US) scheme.

As a result, the stabilization induces a precision gain on the velocity for the (PS)
scheme, or on the pressure for the (BPS) scheme. Because of the damaging of the
error on the pressure, the (PS) scheme does not seem to give important improvements.
That is the reason why for the second test, we only compare the (US) scheme and the
(BPS) scheme.
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4.2. Test 2. The exact solution on the second test is the following polynomial
function:

u(x, y) =

(
1000x2(1−x)22y(1−y)(1−2y)

−1000y2(1−y)22x(1−x)(1−2x)

)
, p(x, y) = x2 + y2 −

2

3
.

We use the distorted quadrangle mesh, shown on Figure 4.2(a). With such a mesh, we
are not able to prove the existence and uniqueness of the solution of the (US) scheme.
Nevertheless, numerically the scheme seems to be wellposed and convergent.

(a) Distorted quadrangle mesh.
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Fig. 4.2. Polynomial function, on a distorted quadrangle mesh.

In Figures 4.2(b), 4.2(c) and 4.2(d), we compare the L2 norm of the error obtained
with the two (US) and (BPS) schemes, for the pressure ||p − pD||L2 , for the velocity
gradient ||∇u −∇DuT ||L2 and for the velocity ||u − uT ||L2 respectively.

As in the first test case, the two schemes give essentially the same results as far
as the velocity is concerned and the (BPS) scheme is more precise for the pressure.

As predicted by the Theorem 3.6, we observe a first order convergence for the
(BPS) scheme, which seems to be optimal.

5. Conclusion. In this paper, we propose stabilized DDFV finite volume schemes
with Dirichlet boundary conditions for the Stokes problem. One can prove a first
order convergence of the (BPS) scheme in the L2 norm for the velocity gradient
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||∇u − ∇DuT ||2, for the velocity and for the pressure. We compare the scheme for
different sets of stabilization parameters (λ, µ) on numerical tests. We bring to light
some differences. The (PS) scheme gives some precision on the velocity, nevertheless
it damages the approximation of the pressure. The (BPS) scheme is as well precise on
the velocity as the (US) scheme but its improves the error of the pressure. Therefore,
the stabilization induces a precision gain on the velocity for the (PS) scheme, or on
the pressure for the (BPS) scheme.

Such an approach will be extended in [K] for the general multifluid Stokes prob-
lem:

−div
(
η(∇u + (∇u)

t
)
)

+ ∇p = f, in Ω,

div(u) = 0, in Ω,

u = g, on ∂Ω,

∫

Ω

p(x)dx = 0.

with η ∈ L∞(Ω), inf η > 0, which can be discontinuous. The discontinuities of η

bring us to use the definition of a new discrete gradient like in [BH 08]. We build a
new discrete operator corresponding to ∇u + (∇u)

t
and we prove in [K] a discrete

Korn inequality. Finally, the corresponding stabilized DDFV scheme is proved to
be wellposed and first order convergent on general meshes, even for discontinuous
viscosity.
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