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ROOT GROWTH SIMULATION USING L-SYSTEMS
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Abstract. Dynamic root growth simulation is an important tool when analysing the mecha-
nisms within the rhizosphere. The concentration of nutrients in the soil as well as water content is
strongly dependent on the root structure. On the other hand root growth is effected by the nutrient
concentration and water supply as well as other soil parameters. As a result realistic root growth
models are often coupled with models describing the plant-soil interactions. In this paper we present
an L-System algorithm which makes it possible to easily create 3-dimensional geometries of growing
plant root systems. Furthermore we discuss possibilities of coupling these root growth system models
with arbitrary models describing plant-soil interaction. The model is implemented in Matlab, which
makes it easy to couple it to existing Matlab or Comsol models.
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1. Introduction. In modelling and simulation of plant-soil interactions accurate
root growth models are of major importance. In many cases those models are coarse
approximations of growing root systems. Many models directly compute root length
densities without including root architecture or branching structure. These densities
then provide the basis of source and sink terms to nutrient uptake or exudation models
([1], [2]).

Considering discrete 3-dimensional time dependent root growth models has cer-
tain advantages. Firstly, it makes it easier to describe the developmental process such
as root branching, root diameter or root growth angles. Secondly, it enables us to link
the discrete model to a model which describes plant-soil interactions. This coupling
makes it possible to describe changes of plant morphology due to water content or
distributions of nutrients in the soil. Finally, such models can be used to analyse the
effects of root growth on plant nutrient uptake from soil. This is done by comparing
the total nutrient uptake to coarser models obtained by averaging or homogenisation.

There exist some powerful discrete root growth models ([3], [4], [5], [6]). However
it is hard to completely understand their behaviour and couple them to arbitrary
uptake and exudation models. Our aim is therefore to develop tools that can easily
set up root growth models and link them to arbitrary uptake or exudation models
implemented in Matlab or Comsol. It is important that global root system parameters
from literature or experiments can be included in the model. As a result the code is
kept simple by using the notation of parametrized L-Systems, and therefore it can be
easily adapted to several applications.

2. L-Systems. In computer graphics the complex geometry of plants is often
described by L-systems. L-systems achieve this very elegantly and derive amazing
pictures from simple production rules (see e.g. [7])). In this work time-dependent L-
systems are used to describe the growth of root systems. In this application it is most
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Fig. 2.1. The 2nd, 3rd and 4th generation of an L-System (reproduced from [7])

important that parameters that have been derived from literature or experiments can
be used and the time dependent growth is described accurately.

L-systems are rewriting systems. All letters of an initial word usually denoted
as ω are replaced according to production rules. The production rules are applied to
each letter of the word, this is performed recursively n times to achieve a L-system of
the nth generation. The resulting string is interpreted graphically. For example the
initiator ω and the production rule for X

ω = X (2.1)

X → F − [ [ X ] + X ] + F [ + F X ] − X (2.2)

create figure 2.1. Note that the letters F, +,−, [, ] are replaced by themselves and are
used for the graphical interpretation of the string (see appendix A for a list of turtle
graphic commands).

This is a very elegant description for a complex branched geometry. In root
growth simulations we want to describe a time dependent continuous growth, thus a
time step ∆t is needed. It must be ensured that the simulation result is independent of
the time step ∆t. Introducing time is achieved using parametrized L-Systems, where
one parameter is denoted as the time.

3. Time dependent root growth simulation. Time dependent L-Systems
are used to describe the growth of the root system. Note that in such an L-System
most of the letters are replaced by themselves. Only the tips of the root system, the
region where growth occurs, are replaced by new letters.

3.1. A single root. A single root which grows with a certain speed to a certain
length according to a continuous growth function λ(t) can be described with the
following production rule:

G(t, l) →

{

l + ∆x ≤ λ(t + ∆t) : R F∆x G(t, l + ∆x)

otherwise : G(t + ∆t, l),
(3.1)

where t represents the current time and ∆t is the time step. The length l is the
approximation of the actual root length λ(t) with |l − λ(t)| < ∆x. The letter R

describes a rotation (i.e.: describing a small turn of the root tip). The letter F∆x

produces a segment of the root with length ∆x. Note that the notation is recursive,
in one time step numerous segments can be produced (equation 3.1, upper expression).
After that the time is increased to t + ∆t (equation 3.1, lower expression).
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Fig. 3.1. An illustration of the self similar character of plant roots

Every root grows according to an predetermined growth function λi(t). In our
simulations we choose (following [8]):

λi(t) = ki

(

1 − e
−

ri

ki
t
)

, (3.2)

where i denotes the order of the root, ki is the maximal length of the root and ri is
initial growth speed. For roots of the highest order, which do not produce branches,
the rule given in 3.1 is sufficient. However, in general,branching has to be considered.

3.2. The branched root system. Considering a root system, it is important
to exploit its self similar structure (see figure 3.1). Every single root of a certain order
produces branches of successive order and is divided into three zones: the basal and
apical zones near the base and the tip of the root where no branches are produced,
and the branching zone where new roots of the next order are created. The corre-
sponding parameter values depicted in figure 3.1 determine the length of each zone
predetermined for every order i.

According to this branching structure, our L-System model has a production rule
for the basal zone, which is followed by the production rules for the branching zone
and the apical zone. When new branches are created they begin to grow after a cer-
tain time delay in order to wait for the apical zone to develop. The production rule to
create a new branch sets up the production rules describing the different root zones.
In doing so more basic production rules are used. A hierarchy of production rules is
given in the following table:

ruleCreateRoot basal zone ruleSegmentGrowth

branching zone ruleSegmentGrowth

ruleBranching

ruleDelay

ruleCreateRoot

ruleGrowth

apical zone ruleSegmentGrowth

It would go beyond the scope of this article to describe every production rule in
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detail, but we emphasise that the Matlab code is freely available1 and can be easily
analysed and adapted. Every production rule has an Matlab file with corresponding
name. In the following we discuss the parameters which are used within the production
rules.

3.3. Parameters. For every order of the root system several parameters are
needed. In our model for every parameter the mean and standard deviation must be
predetermined. If the standard deviation of a value is not known it can be simple set
to zero. The parameters describing the dynamic, length and interconnection of the
root system are given by:

Mean SD Description Dimension

r rs initial growth speed [cm/s]
lb lbs length of basal zone [cm]
la las length of apical zone [cm]
ln lns spacing between branches [cm]
nob nobs number of branches -

To obtain a 3-dimensional geometry the following geometrical parameters are
needed:

Mean SD Description Dimension

a as root radius [cm]
θ θs branching angle from predecessor radian
color - colour of the root RGB

Note that the root radius can be a function of root length, e.g. getting smaller
towards the root tip. However for many applications it is sufficient to assume a
constant radius per root order because variation of root radius is small compared to
plant scale. Moreover quantitative values are often not available.

With these basic parameters an idealized root system is described, where every
root tip grows straight ahead. To include effects that arise from gravitation, soil
properties or nutrient availability more parameters are included. This parameters are
discussed in the following section.

4. Plant morphology. The root system has a temporal resolution (∆t) and
spatial resolution along a root (∆x). The spatial resolution means that no root
contains a segment which is longer than ∆x. In front of every segment F∆x is rotation
Ri (see for example equation 3.1, the other rules are defined in a similar way). This
rotation changes the growth direction of the root tip. The subscript i indicates that
the mechanism how the rotation is created can be different for each order i. In this
way different mechanisms like geotropism or chemotaxis can be included into root
growth model.

4.1. Labelling the root tips. If complex mechanisms like geotropism or chemo-
taxis are implemented, every root tip has to know its position and growth direction.
Therefore additional parameters are used within the production rules of the growing
tips to take note of the tips position, growth direction and radius. Thus if a tip is

1A link can be found on www.boku.ac.at/rootmodel/further
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Fig. 4.1. A single 0th order branch of a 25 days old maize root system: (a) without any rotation
(b) random rotation (σ0 = pi/20, σ1,2 = π/10) (c) gravitropism (N0 = 7, N1 = 3, N2 = 4)

replaced by a rule like

tip → . . . RiF∆x
︸ ︷︷ ︸

transformations T

tip, (4.1)

the relevant parameters have to be updated corresponding to the transformation T .

4.2. Gravitropism. If the rotations Ri do not change the heading of the root
tips they just grow straight ahead, resulting in figure 4.1(a).

The simplest way to modify the direction of the growth of a root tip is to do
it randomly. First the root tip rolls left or right with an uniform random angle δ1

between 0 and π. Next the tip turns to the left with a normally distributed random
number δ2 with standard deviation σ. The parameter σ controls how fast the root
can bend per ∆x. This yields in a root system as represented in figure 4.1(b).

The simplest way to implement gravitropism is to favour rotations which will lead
to a downward movement of the root tip. Therefore the parameter N is introduced
denoting the number of trials for pairs of angles δ1 and δ2. The best pair of angles is
then used for the rotation. Figure 4.1(c) shows the effect of gravitropism implemented
this way.

4.3. Coupling with a soil model. In many applications it is important to
couple the root growth model to a soil model, because they mutually affect each
other. For example root growth affects the nutrient distribution and water content
of soil, while the growth itself is dependent on these parameters. The coupling of the
root growth model with a model describing the mechanisms within the rhizosphere
can be achieved by calculating both models in turn with an sufficiently small time
step ∆t.

The root growth model supplies the 3-dimensional geometry of the root system
and therefore all resulting parameters (e.g. total length or root densities). The soil
model uses the parameters of interest and supplies the root system model with results
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Fig. 4.2. The time dependent growth of a 7, 14, 21 and 28 days old maize root system

about nutrient concentration or water content. Note that using the 3-dimensional
geometry in a mechanistic soil model is tricky since the structures are highly branched.
An introduction and discussion how to mesh these structures along with a simulation
of the effect of this root system on nutrient concentration in soil and overall plant
nutrient uptake can be found in [9].

If a nutrient concentration is simulated, chemotaxis can be easily implemented in
analogy to gravitropism but in contrast by favouring pairs of δ1 and δ2 so that the
root tip heads to the highest nutrient concentration.

4.4. Example: Maize root systems. As an example how to set up a root
growth model a maize root system is simulated. This has already been done by [8]
and [10]. In this simulation parameters are used from these two works. Note that
it is very easy to include parameters from literature or experiments in the model.
Parameters that are not known have to be guessed or fitted to existing data.

The model is set up by basically writing all parameters into a Matlab file. After
the choice of time step ∆t and spatial resolution along the root ∆x the initiator of
the L-System is created:

p(1).r = 2; % 0st order

p(1).rs = 0;

p(1).lb = 1;

p(1).lbs = 0;

p(1).la = 15;

p(1).las = 0;

p(1).ln = 0.35; % by [10]

p(1).lns = 0;

p(1).nob = 50;

p(1).nobs = 0;

p(1).a = 0.05;

p(1).as = 0;

p(1).theta = 0

p(1).thetas = 0;

p(1).color = [110/255,100/255,50/255];

p(1).N = 6;

p(1).sigma = pi/20;

p(1).initialNumber = 7; %# 0 roots

p(1).initialAngle = 50/360*2*pi;

p(2).r = 6.4; % 1st order

p(2).rs = 0;
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p(2).lb = 0.4;

p(2).lbs = 0;

p(2).la = 2;

p(2).las = 0;

p(2).ln = 0.24; % by[10]

p(2).lns = 0;

p(2).nob = 8;

p(2).nobs = 0;

p(2).a = 0.02;

p(2).as = 0;

p(2).theta = 68/360*2*pi; % by [10]

p(2).thetas = 0/360*2*pi;

p(2).color = [140/255,125/255,40/255];

p(2).N = 3;

p(2).sigma = pi/10;

p(3).r = 2; % 2nd order

p(3).rs = 0;

p(3).k = 0.5;

p(3).ks = 0;

p(3).a = 0.01;

p(3).as = 0;

p(3).theta = 68/360*2*pi; % by [10]

p(3).thetas = 3/360*2*pi; % by [10]

p(3).color = [200/255,200/255,10/255];

p(3).N = 0;

p(3).sigma = pi/10;

numparameters.dx = 0.5; %[cm]

numparameters.dt = 7; %[days]

rules = ruleDefinition();

initiator = createRootSystem(p,...

numparameters,rules);

After the initiator is created the production rules are applied four times (the
time step ∆t is set to seven days). The resulting 3-dimensional maize root system is
represented in figure 4.2.

5. Conclusion. In this article we have presented a dynamic root architecture
model that is based on time-dependent L-Systems. It has been shown that it is
easy to set up arbitrary models of a growing root systems and to derive their 3-
dimensional geometries. This is done by using parameters found in literature or
obtained by experiments. Further we have discussed the possibility of coupling the
model to plant-soil interaction models, which are implemented in Matlab or Comsol.
In this way it is possible to include effects of plant morphology which are dependent
on the environment of the roots. The Matlab code is freely available1 and can be
easily adapted and extended by changing parameters or by adding or rewriting of
production rules.
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Appendix A. The resulting string of a parametric L-System can be graphically
represented using a Turtle graphics. The letters of the string represent the following
commands (after [7]):

Letter Description Parameter names

F Draws a segment and moves to new position length
# Sets the width of the following segments width
C Sets the colour of the following segments color
+, - Turns left or right delta
&, ˆ Pitch down or up delta
\, / Roll left or right delta
| Turn around -
[, ] Pushes and pops the turtle state -

The segments are normally straight cylindrical tubes or lines. The results can
be either plotted to a Matlab figure (drawString3D.m or drawString3Dtube.m), or
to DXF or STL files (drawString3DDXF.m, drawString3DSTL.m). Further COMSOL
Multiphysics geometry can be produced directly (drawString3DComol.m) or by first
meshing the geometry externally (ImportMeshComsol.m) and then importing resulting
the mesh.


