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NUMERICAL ANALYTIC AIRFOIL STABILITY INVESTIGATION

BASED ON VORTEX ELEMENT METHOD

ILIA K. MARCHEVSKY∗

Abstract. Numerical analytic method which could be effectively used for airfoil stability in
the flow investigation is suggested. The method is based on joint usage of numerical vortex ele-
ment method for incompressible flow simulation and airfoil aerodynamic coefficients calculation with
analytic instability sufficient conditions, which depend only on drag force and lift force stationary
aerodynamic coefficients.
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1. The general statement of the problem and the review of known

results.

1.1. Some examples of airfoil instability. The basic method of an airfoil
behavior in air flow investigation and its aerodynamic characteristics determination
is experiment with the airfoil or its model in wind tunnel. For some airfoils engineers
repeatedly note the following phenomenon: at some angles of incidence the airfoil
equilibrium in air flow becomes unstable and there are oscillations with sufficiently
big amplitude. Wind resonance occurrence is excluded since value of experimental
Strouhal number is less than Sh = 0,2 corresponding to wind resonance. Such an
experiment is described in details in [1].

Such phenomenon is typical, in particular, for building structures with big aspect
ratio: for some angles of incidence there are oscillations of the construction cross-
section across wind direction. The similar effect occurs with transmission lines: under
some conditions there are wind-generated oscillations of power line wires across the
stream with amplitudes up to 10 meters and more. This phenomenon is called ’gal-
loping’ and it is extremely undesirable since often involves breakage of constructions
and destruction of power transmission towers.

For some airfoils placed in a stream of gas or liquid there is also a phenomenon
of ‘autorotation’ — sharp increase in amplitude of torsional oscillations around of
an axis, which can be parallel or perpendicular to a stream. This phenomenon in
many cases also is undesirable and dangerous from the point of view of accident-free
construction service.

Occurrence of the described phenomena depends on flow features and related
with the so-called ‘loss of aerodynamic damping’ [1]. The analysis of aerodynamic
characteristics of various airfoils shows, that such phenomenon is typical both for
bluff and streamline airfoils [2].

1.2. Known instability conditions. In experimental research [3] the behavior
of biplane model in air stream was investigated provided that the model had one
degree of freedom — only torsional oscillations around a long axis of the model were
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possible. It had been noted, that there was an interval of incidences at which the
amplitude of these oscillations was sufficiently big. Experiments were processed by
H. Glauert [4] who obtained autorotation necessary condition:

G(α) = Cxa + C′

ya < 0.(1)

Here Cxa, Cya — stationary aerodynamic coefficients of drag force and lift force
correspondingly. The prime hereinafter denotes derivative on an angle of incidence α.

Investigating galloping of power line wires, J. Den-Hartog [5] has studied the be-
havior of a semicircle airfoil with one degree of freedom (oscillations across the stream).
He has obtained galloping necessary condition which has the same appearance (1).

Therefore, the inequality (1) is the necessary condition of wide oscillations with
one degree of freedom — autorotation and galloping. Glauert–Den-Hartog’s condition
is confirmed in numerous experiments [1, 6] and it is used, in particular, in construc-
tion: when designing the high-altitude constructions subjected to wind loadings, it is
necessary to orientate construction cross-section so that angles of incidence in relation
to dominating winds would be outside instability interval [7].

V. I. Vanko in [8] investigated some mechanical construction to simulate the
behavior of a power line wire under wind. That construction had three degrees of
freedom: movements along axes Ox, Oy and rotation around the center-of-mass were
considered. It was obtained, that for any wind velocity V∞ there exists a unique
solution of the equations of movement, which corresponds to the equilibrium of the
airfoil in the flow.

It was shown using Lyapunov technique of stability investigation, that for airfoil
equilibrium:

a) inequality (1) is the instability sufficient condition for the model with one
degree of freedom if we wouldn’t consider viscous resistance of constraints;

b) the equilibrium instability sufficient condition (for three degrees of freedom)
which depends only on aerodynamic coefficients of airfoil was obtained:

W (α) = Cxa(Cxa + C′

ya) + Cya(Cya − C′

xa) < 0.(2)

In this paper airfoil movements with 1, 2 and 3 degrees of freedom is investigated,
and stability criteria for its equilibrium are obtained.

Some of instability sufficient conditions depend only on aerodynamic coefficients
of airfoil, so it is important to have an effective method, which makes it possible to
determine these coefficients with satisfactory accuracy and small computational time.
If Mach number is less than 0,4 then the stream could be considered as incompressible,
and meshless vortex element method [9, 10, 11, 12] for the flow simulating is very
effective. In order to lower computational time, the modification of vortex element
method based on Prandtl idea about boundary layer will be used.

2. Airfoil stability criteria. In the present paper movement in the flow of an
airfoil with three various viscous-elastic constraints (with three degrees of freedom) is
investigated. The design model for the considered case is shown on Fig 1.

Here V∞ — wind velocity, which supposed to be horizontal; fx, fy, fm — elastic
characteristics of constraints; νx, νy, νm — viscous characteristics of constraints; m

and J — mass and moment of inertia of the airfoil with respect to the fastening point
correspondingly.

Position of the airfoil in space is uniquely defined by three coordinates x, y and
φ, where x, y — position of the fastening point, φ — angle of incidence of the airfoil.
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Fig. 1. The design model.

Wind influence on the airfoil is considered by drag force, lift force and aerody-
namic moment, which could be calculated using following formulas:

Xa =
1

2
CxaρV 2

r S, Ya =
1

2
CyaρV 2

r S, Ma =
1

2
CmaρV 2

r S2.

Here ρ is air density; Vr — relative speed of the wind, Vrx = V∞ −
dx
dt

, Vry = −
dy
dt

;
S — typical dimension (chord) of the airfoil. We also assume, that dimensionless
aerodynamic coefficients Cxa, Cya and Cma for the given airfoil depend only on the
incidence and they are continuously differentiable functions.

In this case it is possible to write down system of the differential equations de-
scribing movement of the airfoil in a stream:
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(3)

In system (3) we denoted α = φ −
(

arctan dy
dt

)

·
(

V∞ − dx
dt

)−1

. For any wind velocity
V∞ there is at least one equilibrium of the airfoil x = x0, y = y0, φ = φ0.

We will investigate stability of airfoil equilibrium using equations of the first
approximation. Since coordinates and speeds are considered to be small, it is possible
to linearize original nonlinear system (3) near to the equilibrium point x = x0, y = y0,
φ = φ0 and reduce it to dimensionless type:
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1
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(4)

Here ξ = x−x0

S
, η = y−y0

S
, γ = φ−φ0 — airfoil dimensionless coordinates; derivatives

ξ̇, η̇, φ̇ are calculated on dimensionless time τ = V∞

S
t; µx = νx

ρ SV∞

, µy =
νy

ρ SV∞

,
µm = νm

σρ S3V∞

— dimensionless damping coefficients of constraints; σ — the factor

defined by form of the airfoil and fastening point position (for example, for circle and
square airfoils fastened by the center-of-mass, σ = 1

8
and σ = 1

6
correspondingly);



NUMERICAL ANALYTIC AIRFOIL STABILITY INVESTIGATION 287

ω2

x = fx·S
ρ0bV 2

∞

, ω2

y =
fy ·S

ρ0bV 2
∞

, ω2

m = fm

σρ0SbV 2
∞

— frequencies of free oscillations in system

without damping; b — the second typical dimension of the airfoil chosen so that
Σ = S · b — the airfoil area; ρ0 — density of the airfoil material.

The parameter ǫ = ρ
ρ0

·
S
b

is small, ǫ ≪ 1, if the airfoil has two close dimensions S

and b and density of its material is much bigger than density of the air. For example,
for typical steel-aluminium wires of power lines ǫ = 10−3 . . . 10−4. Airfoils of this kind
we call heavy and bluff. In this paper we will investigate the stability of equilibriums
of such airfoils, and we consider high degrees of ǫ as negligible in comparison with low
degrees of ǫ where it possible and correctly.

It’s necessary to note, that in system (4) values of aerodynamic coefficients and
their derivatives are calculated for the airfoil at the equilibrium (when γ = 0), i.e.
they are constants. If we prove asymptotic stability or instability for zero solution
of system (4), equilibrium point x = x0, y = y0, φ = φ0 of system (3) also will be
asymptotically stable or unstable correspondingly. This follows directly from Lya-
punov’s theorem on connection between stability of nonlinear and linearized systems.

In this paper we will investigate stability of zero solution of system (4), and also
consider the special cases corresponding to the system on Fig. 1 with one and two
degrees of freedom. In all cases we will consider system with viscous-elastic constraints
(with factors ǫ ≪ µx, µy, µm ≪ ǫ−1) as well as with perfectly elastic constraints (when
µx = µy = µm = 0). We will also consider separately cases of equal and different
frequencies ωx and ωy. Under these assumptions the right parts of equations in system
(4) are proportional to small parameter ǫ. Zero solution at every case is asymptotically
stable if and only if all minors of Gurvit’s matrix corresponding to the characteristic
polynome of system (4) are positive. In view of unhandiness of calculations, we will
show only results in this paper. For systems with one, two and three degrees of
freedom results of equilibrium point stability investigation are presented in Table 1.

Table 1

Stability criteria for airfoil movements with 1, 2 and 3 degrees of freedom for systems under
perfectly elastic constraints and systems under viscous-elastic constraints.

Generalized Stability criteria for systems under constraints:
coordinates perfectly elastic viscous-elastic

Movements with 1 degree of freedom

x Equilibrium point is always asymptotically stable
y G > 0 Gµ > 0
φ F > 0 F > 0

Movements with 2 degrees of freedom

x − φ

{

Px > 0
F > 0

F > 0

y − φ

{

G > 0
Py > 0
F > 0

{

Gµ > 0
F > 0

x − y
ωx = ωy

{

M > 0
W > 0

{

Mµ > 0
Wµ > 0

ωx 6= ωy G > 0 Gµ > 0
Movements with 3 degrees of freedom

x − y − φ

ωx = ωy







M > 0
P > 0
W > 0
F > 0

{

Mµ > 0
Wµ > 0
F > 0

ωx 6= ωy

{

G > 0
P > 0
F > 0

{

Gµ > 0
F > 0
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In Table 1 we have denoted:

G = Cxa + C′

ya, Gµ = G + 2µy,

M = G + 2Cxa, Mµ = Gµ + 2(Cxa + µx),

W = Cxa(Cxa + C′

ya) + Cya(Cya − C′

xa),

Wµ = (Cxa + µx)(Cxa + C′

ya + 2µy) + Cya(Cya − C′

xa),

Px =
C′

xaCma

ω2
x − ω2

m

, Py =
C′

yaC′

ma

ω2
y − ω2

m

, P = Py + 2Px,

F =
2fm

ρS2
− V 2

∞
C′

ma.

For each case, the inequality or system of inequalities at which airfoil equilibrium
point is asymptotically stable is obtained. At the same time, if even one inequality
changes sense on opposite, from Gurvits’s criterion and Lyapunov’s theorem follows,
that equilibrium point becomes unstable. In this sense we can say, that we have
obtained necessary and sufficient conditions (criteria) of airfoil stability in a stream.

Within the bounds of the considered model, analytical expressions for necessary
and sufficient stability conditions of equilibrium of heavy bluff airfoils in the flow
are obtained. These conditions generalize known conditions [4, 6, 8], in particular,
Glauert–Den-Hartog’s and Vanko’s instability conditions.

If the airfoil has rotational degree of freedom condition F > 0 is the necessary
condition of stability, so the equilibrium point is unstable when F < 0, or

V∞ >

√

2fm

ρS2C′

ma

= Vcr.(5)

Formula for Vcr in (5) is similar to formula for critical speed of flutter, which is
well-known.

In case of viscous-elastic constraints all stability conditions (with the exception
of condition F > 0) depend only on airfoil aerodynamic coefficients Cxa and Cya and
damping coefficients µx and µy.

In case of perfectly elastic constraints there are instability sufficient conditions
G < 0, M < 0 and W < 0, which depend only on aerodynamic coefficients of the
airfoil Cxa and Cya. These conditions are invariant to a choice of the airfoil fastening
point, mass and the moment of inertia of the airfoil, rigidity of constraints. Therefore,
change of these mechanical parameters of construction does not influence on character
of stability of its equilibrium point.

The results of stability investigation, especially invariant instability sufficient con-
ditions, could be used for equilibrium stability analysis of heavy bluff airfoils in the
flow.

3. Vortex element method for airfoil aerodynamic coefficients deter-

mination. In order to simulate the flow around the airfoil we use vortex element
method, which is very similar to method [10, 12]. But following L. Prandtl, we con-
sider that it is possible to split the flow into two domains: inviscid flow far from
the airfoil and boundary layer near it. So we consider vortex elements moving along
fluid lines, and viscosity influence we consider only as the vorticity generation fac-
tor. This simplification of the vortex element method allows to lower computational
time, but the accuracy of calculated values of lift force and drag force remains high.
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Calculated results are close to experimental data for flows with Reynolds number
about 104 . . . 105. Pressure in the flow and aerodynamic coefficients therefore could
be calculated using Bernulli and Cauchy-Lagrange integral analog [12].

Results of flow simulation around the circular airfoil are shown on Fig. 2. Calcu-
lated nonstationary aerodynamical coefficients time dependencies are shown on Fig. 3.
Experimental values for its mean values (stationary aerodynamic coefficients) are
Cxa ≈ 1,2, Cya ≈ 0.

Fig. 2. Flow around the circular airfoil at t = 0,8, t = 1,6, t = 3,2, t = 11,0, t = 13,5, t = 18,0
(t – dimensionless time).

Fig. 3. Nonstationary aerodynamic coefficients for the circular airfoil. Stationary values (ex-
perimental) are Cxa ≈ 1,2, Cya ≈ 0.

Some results of flow simulation around the semicircular airfoil for different angles
of incidence are shown of Fig. 4.
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Fig. 4. Flow around the semicircular airfoil at α = 0◦, α = 30◦, α = 60◦ for t = 15,0 (α –
angle of incidence, t – dimensionless time).

On Fig. 5 calculated and experimental stationary aerodynamic coefficients depen-
dencies on angle of incidence are shown for the semicircular airfoil.

Fig. 5. Stationary aerodynamic coefficients dependencies on angle of incidence for the semi-
circular airfoil. Cxa(α) – drag coefficient, Cya(α) – lift coefficient (α – angle of incidence).

Modified vortex element method could be used not only for flow simulation around
bluff airfoils, but also for flow simulation around streamline airfoils. For example,
TSAGI RII-18 wing airfoil was investigated, and results of stationary coefficients
Cxa(α) and Cya(α) calculation in comparison with experimental data are shown on
Fig. 6.

Fig. 6. Stationary aerodynamic coefficients dependencies on angle of incidence for TSAGI
RII-18 wing airfoil. Cxa(α) – drag coefficient, Cya(α) – lift coefficient (α – angle of incidence).
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These results prove that modified vortex element method could be used as ap-
proximate engineering approach for flow simulation and aerodynamic coefficients cal-
culation.

4. Numerical analytic airfoil stability investigation. The numerical ana-
lytic method could be effectively used for stability investigation of an airfoil in the
flow. The basis of this method is joint usage of numerical method for flow simulation
and airfoil aerodynamic coefficients calculation with analytic instability sufficient con-
ditions, which are invariant and depend only on drag force and lift force coefficients.
Main steps of the numerical analytic method are the following.

1) Simulation of the flow around the airfoil at different angles of incidence and
its stationary aerodynamic coefficients of drag force and lift force calculation using
modified vortex element method.

2) Approximation of obtained values with smooth functions. Chebyshev poly-
nomials and least square method are very useful for solving of this problem.

3) Derivation of Cxa(α) and Cya(α) dependencies and calculation G(α) and
W (α) functions values. Airfoil equilibrium is unstable at those angles of incidence,
for which G(α) < 0 or W (α) < 0.

There is experimental data for rhombic and square airfoil [8], which allows to
verify this numerical analytic airfoil stability investigation method.

4.1. Rhombic airfoil stability investigation. We will investigate stability in
the flow of rhombic airfoil with diagonal ratio 1 : 0,75. Because of airfoil symmetry it
is sufficient to investigate it only for angles of incidence 0◦ ≤ α ≤ 90◦.

Using modified vortex element method, 46 calculations of flow around the airfoil
were made with angle of incidence increment 2◦. Some results of flow simulation for
different angles of incidence are shown on Fig. 7

Fig. 7. Flow around the rhombic airfoil at α = 0◦, α = 30◦, α = 60◦ for t = 14,0 (α – angle
of incidence, t – dimensionless time).

Obtained values of stationary aerodynamic coefficients are marked on Fig. 8 by
black circles. Smooth curves on Fig. 8 are the plots of approximating functions Cxa(α)
and Cya(α), which are linear combinations of 16 Chebyshev polynomials with coeffi-
cients, calculated using least square method. Derivations C′

xa(α) and C′

ya(α) could be
found and values of functions G(α) and W (α) (see Table 1) also could be calculated.
Their plots are also shown on Fig 8.
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Fig. 8. Stationary aerodynamic coefficients dependencies on angle of incidence for the rhombic
airfoil (left graph). Functions G(α) and W (α) plots for the rhombic airfoil and experimental airfoil
oscillation amplitude dependence on angle of incidence (right graph). Cxa(α) – drag coefficient,
Cya(α) – lift coefficient (α – angle of incidence).

We can see from Fig. 8 that the region of angles of incidence 23◦ < α < 43◦, where
functions G(α) and W (α) are negative, corresponds to the region, where oscillation
amplitude of this airfoil is sufficiently big. Experimental research have been made in
wind tunnel [8].

4.2. Square airfoil stability investigation. Now we will investigate square
airfoil stability in the flow in much the same way. Because of its symmetry, it is
necessary to simulate the flow around it only for 0◦ ≤ α ≤ 45◦. Some results are
shown on Fig. 9

Fig. 9. Flow around the square airfoil at α = 0◦, α = 20◦, α = 40◦ for t = 10,0 (α – angle of
incidence, t – dimensionless time).

Obtained values of stationary aerodynamic coefficients are marked on Fig. 10 by
black circles. Smooth curves on Fig. 10 are the plots of approximating functions
Cxa(α) and Cya(α), which are linear combinations of 7 Chebyshev polynomials with
coefficients, calculated using least square method. Plots of functions G(α) and W (α)
are also shown on Fig 10.

We can see from Fig. 10 that the region of angles of incidence 0◦ < α < 15◦, where
functions G(α) and W (α) are negative, corresponds to the region, where oscillation
amplitude of this airfoil is sufficiently big.
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Fig. 10. Stationary aerodynamic coefficients dependencies on angle of incidence for the square
airfoil (left graph). Functions G(α) and W (α) plots for the square airfoil and experimental airfoil
oscillation amplitude dependence on angle of incidence (right graph). Cxa(α) – drag coefficient,
Cya(α) – lift coefficient (α – angle of incidence).

5. Conclusion. The numeric analytic method of stability investigation of an
airfoil in the flow is developed. This method allows to find intervals of angles of inci-
dence corresponding to instable equilibrium points of the airfoil in the flow. Analytic
instability sufficient conditions depend only on stationary aerodynamic coefficients of
drag force and lift force. These coefficients could be calculated using modified vortex
element method, which allows to simulate the flow around the airfoil.

Good agreement between regions of instability, found using numeric analytic
method, and obtained in experiment for rhombic and square airfoils proves that this
numeric analytic method could be effectively used for stability investigation of an
airfoil in the flow.
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