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NUMERICAL JUSTIFICATION OF ASYMPTOTIC

EDDY–CURRENTS MODEL FOR HETEROGENEOUS MATERIALS∗
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Abstract. We study electromagnetic properties of a heterogeneous material in low-frequency
case. We review briefly the corresponding eddy–currents model, which is multiscale in nature. The
homogenized model, obtained in [8], is presented. We justify the asymptotic model numerically on
number of examples.
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1. Introduction. In the manufacturing of compact electronic devices one tries
to lower the voltage and to raise the current loads in order to increase the performace
and to reduce the power consumption. Consequently there is still greater need for
a low-loss magnetic materials. The most promising are composite materials, which
combine small conducting and isolating particles together, known as “magnetic dust”
materials. An example of such an material is Fe-based metallic glass dust material
called SENNTIX developed by NEC [7], see Figure 1. The idea behind the magnetic

a) b)

Fig. 1.1. SENNTIX magnetic material: a) microscopic structure; b) electro–magnetic properties

dust materials is very simple. A piece from such an material acts as a ferromagnet with
added Mass of the ferromagnetic dust particles (in the case of SENNTIX it is ferum).
In the same time, the material has a great electrical resistivity. The eddy–currents
are induced only locally in the ferromagnetic particles.

An efficient computational model would allow engineers to study such materials
lowering the development costs. It would allow to design new materials easily, e.q.
to try different compositions. The problem is multiscale in nature. We are interested
actually only in macroscopic electro–magnetic properties of the material. However,
these are strongly dependent on the microscopic set–up. Different approaches exist to
tackle the muliscale problems. Classical multiscale modelling methods such as multi-
grid, fast multipole method or adaptive mesh refinement try to resolve details of the
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solution on the micro scale level and so the cost of the methods is the cost of full
micro scale solver.

The purpose of new multiscale methods, is to resolve the macro scale behavior
of the multiscale model with a cost that is less than the cost of full micro scale
solver. Naturally, to achieve this, we may not require to have all the information on
micro-level and we have to use special properties of the micro scale problem such as
scale separation. For the overview of modern multiscale methods we refer reader to
[5], where the heterogeneous multiscale method (HMM) is considered and references
therein. The HMM for magnetic dust materials is analyzed in [3].

In this contribution we will numerically analyze the asymptotic eddy–currents
model obtained in [8]. Not numerical concepts (like HMM) but the homogenization
theory is used to obtain this asymptotic model. It is a classical approach [4]. The
model is derived for periodic materials, however it is well-know in the homogenization
theory, that the periodic case can be generalized for e.q. materials with stochastic
structure [2, 6].

The article is organized as follows. In Section 2 we introduce the eddy–currents

model for linear heterogeneous materials, then its homogenized version in Section 3.
The Section 4 deals with numerical justification of the asymptotic model.

2. Eddy–currents model. The evolution of low-frequent electromagnetic fields
in a heterogeneous linear material is governed by the Maxwell equations

∇×EEE = −iωµHHH, (2.1)

∇×HHH = JJJa + σEEE, (2.2)

∇ · (µHHH) = 0, (2.3)

∇ · (ǫEEE) = ρ, (2.4)

where EEE, HHH , JJJa, ρ are the electric field intensity, the magnetic field intensity, the
applied current density and the electric charge density, respectively. The matrices
σ, µ and ǫ are the conductivity, the permeability and the permittivity, respectively.
We omitted the displacement current term. It can be safely neglected, when the
frequency ω is sufficiently low. The justification of this so–called eddy–current model
can be found in [1]. After elimination of HHH from the Maxwell’s equations (2.1)-(2.2)
we obtain1

∇× (ν∇×EEE) + iωσEEE = −iωJJJa in Ω, (2.5)

where ν = µ−1. We suppose that Ω is a bounded domain in R
3. We accompany (2.5)

by perfect conducting boundary condition

EEE × nnn = 000 on Γ, (2.6)

Γ being the boundary of Ω.
Usual set–up to model is sketched in Figure 2. Eddy–currents are induced in a

conducting obstacle due to an external excitation. The external field is generated
by an source – coil. We assume that the obstacle is from an periodic heterogeneous
material. In whole Ω, the material parameters are dependent on both the micro (in
the obstacle) and the macro variable (in air). For simplicity of explanation we assume
that the material parameters σ, µ and ǫ are periodic with period ε in whole Ω. The
generalization with insulator incorporated can be easily handled.

1 Gauss’s magnetic law (2.3) is a consequence of (2.1).
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Coil
Air

Obstacle

Ω

Fig. 2.1. Domain.

We assume ǫ, σ, ν are matrices and that there exist constants 0 < ǫmin, ǫmax < ∞,
0 < σmax < ∞, 0 < νmin, νmax < ∞ such that

ǫmin|ξξξ|
2 ≤ ξξξ∗ · (ǫ + ǫ∗) · ξξξ ≤ ǫmax|ξξξ|

2 (2.7)

0 ≤ iωξξξ∗ · (σ − σ∗) · ξξξ ≤ σmax|ξξξ|
2 (2.8)

νmin|ξξξ|
2 ≤ ξξξ∗ · (ν + ν∗) · ξξξ ≤ νmax|ξξξ|

2 (2.9)

for all ξξξ ∈ R
3. Moreover we assume that ǫ, σ, ν are Y − periodic, where Y = [0, 1]3.

Thus ǫε := ǫ(xxx/ǫ), σε := σ(xxx/ǫ), νε := ν(xxx/ǫ) are periodic with period ǫ.

3. Homogenized model. In [8] we studied the homogenization of (2.5). First,
we used an Hodge decomposition to write the electric field as EEE = AAA −∇p, where AAA
is a vector potential and p is a scalar potential. The homogenization was performed
componentwise in suitable functional spaces. The homogenization of the scalar poten-
tial is classical. We focus on the vector potential, in the case of zero electric charges
the solution to

∇× (νε∇×AAAε) + iωσεAAAε = −iωJJJa in Ω, (3.1)

AAAε ×nnn = 000 on Γ. (3.2)

This is virtually the same system as (2.5)–(2.6) for electric field, however considered
in a different functional space. We moreover have

∇ · (ǫεAAAε) = 0 a.e. in Ω. (3.3)

We denoted the corresponding unique solution as AAAε to emphasize the dependence on
ε.

For a sufficiently smooth JJJa the vector potential AAAε converges in a weak sense to
AAA, the unique solution to the homogenized vector potential formulation

∇× (νh∇×AAA) + iωσhAAA = −iωJJJa in Ω, (3.4)

AAA ×nnn = 000 on Γ (3.5)

as ε → 0. We moreover have

∇ · (ǫhAAA) = 0 a.e. in Ω. (3.6)
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The homogenized ǫh, νh and σh are given by

ǫh :=
1

|Y |

∫

Y

ǫ(yyy)[I −∇yyyχχχ(yyy)] dyyy, (3.7)

σh :=
1

|Y |

∫

Y

σ(yyy)[I −∇yyyχχχ(yyy)] dyyy (3.8)

and by

νh :=
1

|Y |

∫

Y

ν(yyy)[I −∇yyy×E(yyy)] dyyy, (3.9)

where χχχ is a unique solution to

∇yyy · {ǫ(yyy) [I −∇yyyχχχ(yyy)]} = 000 a.e. in Y (3.10)

and matrix E is a unique solution to

∇yyy×{ν(yyy) [I −∇yyy×E(yyy)]} = {0} a.e. in Y, (3.11)

∇yyy·E(yyy) = {0} a.e. in Y, (3.12)

1

|Y |

∫

Y

E(yyy) = {0}. (3.13)

4. Numerical analysis. The solution of the homogenized problem goes as fol-
lows

1. Solve microproblems (3.10) and (3.11)–(3.13) on the cell Y.
2. Obtain the homogenized coefficients by integration according to (3.7)–(3.9).
3. Solve asymptotic macro problem (3.4)–(3.5).

The purpose of this contribution is to study the homogenized model numerically
on number of examples. To take into account the most of phenomena occuring in the
eddy–currents modelling, we have to work at two dimensions. We consider vector po-
tentials of the form AAA = (AAA1,AAA2, 0). Let us consider the permittivity, the conductivity
and the permeability matrices respectively in the following form





ǫ 0 0
0 ǫ 0
0 0 0



 ,





σ 0 0
0 σ 0
0 0 0



 ,





0 0 0
0 0 0
0 0 ν



 . (4.1)

We do not distinguish between the scalars and the matrices by notation. It will be
always clear from the context what we refer to.

Both the micro problems and the macro eddy–currents problem are solved by
finite element method. Lagrange elements of the first order are used. The domain
Ω is the unite square [0, 1]2. At both the micro and the macro level regular meshes
are taken. Let us call H the diameter of the macro and h the diameter of the micro
mesh. The “exact” solutions are computed on a very fine mesh.

4.1. Example 1. Let us first assume that νε is only one periodic and let us take
zero conductivity, i.e.,

ǫε = 1, σε = 0, νε = sin(2πx1/ε)(x1/ε− [x1/ε]) + sin(2πx2/ε)(x2/ε− [x2/ε]) + 3,
(4.2)
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where ε = 0.05 is taken. Since ǫε = 1 microproblem (3.10) has trivial solution zero.
As the source we take −iωJJJa =: fff = (1, 1, 0), where ω = 1. The “exact” solution is
computed on a fine mesh with h = 0.005. Microproblem (3.11)–(3.13) is solved on
a mesh with h = 0.01. The resulting homogenized νh is approximately 2.57. Merely
taking the average of νε through cell gives around 2.68. The asymptotic problem is
again solved on a mesh with H = 0.01. The relative L2−errors are 0.0276 for the
average νε and 0.0074 for the homogenized νh. The results are depicted in Figure 4.1.
The real part of the solutions is rendered. Color depicts amplitude.

a) b)

c) d)

Fig. 4.1. Example 1 : a) ν for ε = 0.1; b) AAAε; c) difference between AAA and AAAε using νh; d)
difference between AAA and AAAε using the Y -average of νε

4.2. Example 2. In the second example we consider that only the conductivity
is periodic, such that

ǫε = 1, σε = sin(2πx1/ε) + sin(2πx2/ε) + 3, νε = 0. (4.3)

The source is JJJa = (1, 0, 0). The meshes are set up as in Example 1. ε = 0.05. The
relative error between AAAε and AAA is rather big - 0.232. From the Figure (4.2) we can
see that the fine solution has significant periodic component. We can not expect the
homogenized solution to resolve the microscopic nature of the fine solution. Thus,
we consider the Y −averaged fine solution ĀAAε. The relative error between ĀAAε and
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the homogenized solution is 0.064. Moreover, in all examples we use homogeneous
Dirichlet boundary condition for the fine and the homogenized problem. Considering
the natural Dirichlet boundary conditions AAA = (1, 0, 0) and AAAε = (1, 0, 0) on Γ (taking
into account JJJa) gives the relative error 0.03.

a) b)

c) d)

Fig. 4.2. Example 2 : a) AAAε; b) difference between AAA and AAAε; c) ĀAAε d) difference between
Y -averaged AAAε and AAA

4.3. Example 3. Let both the permeability and the conductivity be periodic
such that

ǫε = 1, σε = sin(2πx1/ε) + sin(2πx2/ε) + 3, νε = sin(2πx1/ε) + sin(2πx2/ε) + 3.
(4.4)

Again, all the set up is the same as in the examples above. The results are depicted
in Figure 4.3. The relative error between AAAε and AAA is 0.014.

Conclusion. We analyzed numerically homogenized eddy–currents model for lin-
ear periodic heterogeneous materials. The experiments confirmed that macroscopic
electro–magnetic behavior of such materials is well described by the homogenized
model. This was done for conductivity and permeability being periodic. Further
investigation is necessary to confirm the theoretical result for general case when per-
mittivity is periodic as well.
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a) b)

Fig. 4.3. Example 3 : a) AAAε; b) difference between AAA and AAAε
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