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COMPLEMENTARY FINITE VOLUME SCHEME FOR THE

ANISOTROPIC SURFACE DIFFUSION FLOW∗

TOMÁŠ OBERHUBER†

Abstract. We study anisotropic surface diffusion flow of hypersurfaces in Rn. We present a
finite volume numerical scheme for the graph and the level-set formulation. The graph formulation is
applied on surfaces inR3 and with the level-set formulation we evolve curves inR2. The discretisation
in time is done by mean of the method of lines which gives us a system of ordinary differential
equations. To solve this system we apply the Merson modification of the fourth order Runge-Kutta
method. We show several qualitative results for both, the graph and the level-set formulation.
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1. Introduction. In this article we study a motion of hypersurfaces in Rn. We
assume having a closed, compact, orientable moving C1-hypersurface [10] Γ (t) ⊂ Rn

such that its outer unit normal n is defined for all x ∈ Γ (t). The change of Γ (t)
is given by a movement of each x ∈ Γ (t) in the normal direction. The speed of
this movement is so called normal velocity which we denote by V . To explain our
notation of what will follow, we first assume having a function f ∈ C2 (Γ (t)) defined
on a hypersurface Γ (t) and its arbitrary C2-extension i.e. f̄ ∈ C2 (Rn) such that
f = f̄ on Γ – see Kimura [10]. We define gradient of f on Γ (t) as

∇Γ(t)f (x) := ∇f̄ (x) −
(

∇f̄ (x) ,n (x)
)

n (x) for x ∈ Γ (t)

and the Laplace-Beltrami operator as

∆Γ(t)f := ∇Γ(t) · ∇Γ(t)f̄ for x ∈ Γ (t).

We consider an energy functional

Eγ (Γ (t)) =

∫

Γ(t)

γ (n) dA (1.1)

where γ is an admissible anisotropy i.e. γ is a function γ : Rn \ {0} → R+, γ ∈
C3 (Rn \ {0}) which is positively homogeneous of degree one and which is convex in

the sense that there exists a constant c0 > 0 such that qT D2 (γ (p))q ≥ c0 |q|
2

for all
p,q ∈ Rn with p · q = 0, |p| = 1 – see [4]. Hγ is an anisotropic mean-curvature of
Γ (t) determined by an admissible anisotropy γ and it is defined as the first variation
of the surface energy

Aγ :=

∫

Γ(t)

γ (n) dS.
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The anisotropic surface diffusion flow minimises the energy (1.1) while it preserves the
volume of the interior of Γ (t) [10, 4]. It is a fourth order geometric problem defined
as

V = −∆Γ(t)Hγ on Γ (t). (1.2)

It is a modification of the isotropic surface diffusion flow for which some theoretical
results were obtained mainly in the last decade. For example Elliott and Garcke [6]
studied the surface diffusion flow of curves. They showed the local solution existence
and global solution existence for initial curves close to circle. They also proved that
the global solution converges to a circle. Escher, Mayer and Simonett [7] proved
existence and uniqueness of the classical solution for immersed hypersurfaces in Rn.
They showed that ”if the initial surface is embedded and close to a sphere... the
solution exists globally and converges exponentially fast to a sphere”.

Mayer and Simonett [11] gave proof that self-intersections can develop. Giga and
Ito [8] showed that with smooth embedded initial data the evolved hypersurface Γ (t)
may lose the property of being embedded.

In this article we study the graph and the level-set formulation.

2. The graph formulation. To evolve a surface Γ (t) given as a graph of some
function u defined on a domain Ω ∈ Rn−1, u ∈ C4 ([0, T ] × Ω) such that

Γ (t) ≡ {(x, u (x, t)) | x ∈ Ω, t ∈ [0, T ]} ,

with respect to (1.2), we need to know what form V , ∆Γ(t) and Hγ take. We refer to
Deckelnick, Dziuk and Elliott [5] where it is shown that

V =
ut

Q
, Hγ = ∇ · Dpγ (∇u,−1) , ∆Γ(t)φ = ∇ · (P∇φ) ,

with Q =

√

1 + |∇u|2, Dp denotes a differentiation w.r. to variable p i.e. Dpγ =
(

γp1
, · · · γpn−1

)T
. For example for the isotropic problem we set γ (p,−1) =

√

1 + |p|2

which gives Dpγ = p/

√

1 + |p|2 and so Hγ = ∇ · ∇u
Q . Finally we set P = QI −

(∇u ⊗∇u) /Q where (v ⊗ w)ij = viwj for vectors v,w ∈ Rn−1. With this notation
in hand we may define the anisotropic surface diffusion flow of graphs:

Definition 2.1. The anisotropic surface diffusion flow of graphs is the fourth
order parabolic partial differential problem defined as:

ut = −∇ · (P∇Hγ) on Ω × (0, T ] , (2.1)

Hγ = ∇ · Dpγ (∇u,−1) on Ω × [0, T ] , (2.2)

u |t=0 = uini on Ω,

u = g, Hγ = 0 on ∂Ω (the Dirichlet b.c.),

Dpγ · ν = 0, (P∇Hγ) ν = 0, on ∂Ω (the Neumann b.c.),

Let us now derive the weak formulation which will make clear the choice of the
boundary conditions. We start with the equation (2.2) and multiply it by a test
function ϕ ∈ H1

0 (Ω) to get

∫

Ω

Hγϕdx =

∫

Ω

∇ · Dpγϕdx =

∫

∂Ω

Dpγ · νϕdS −

∫

Ω

Dpγ · ∇ϕdx,
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and the integral over ∂Ω equals zero since ϕ vanishes at ∂Ω. Such a choice of ϕ
corresponds with the Dirichlet boundary conditions for Hγ i.e. Hγ = 0 on ∂Ω. If we
do not want to fix Hγ at the boundaries, we take ϕ ∈ H1 (Ω) and we set Dpγ ·ν = 0 on
∂Ω to eliminate the boundary integral. Taking now the equation (2.1) and multiply
it by a test function ξ ∈ H1

0 (Ω) we get

∫

Ω

utξdx = −

∫

Ω

∇ · (P∇Hγ) ξdx = −

∫

∂Ω

(P∇Hγ) · νξdS +

∫

Ω

(P∇Hγ) · ∇ξdS,

where the integral over the boundary of Ω is zero since ξ vanishes on ∂Ω. Such choice
of ξ corresponds with the Dirichlet boundary conditions for u i.e. u = g on ∂Ω. On
the other hand if we take ξ ∈ H1 (Ω) we need to have (P∇Hγ) · ν = 0. Thus we
get the Neumann boundary conditions for Hγ and also the weak formulation for the
anisotropic surface diffusion flow of graphs

Definition 2.2. The weak solution of the graph formulation for the anisotropic
surface diffusion flow with the Dirichlet boundary conditions

u = g on ∂Ω,

Hγ = 0 on ∂Ω,

is a couple u, H : (0, T ) → H1
0 (Ω) which for each test function ϕ, ξ ∈ H1

0 (Ω) and a.e
in (0, T ) satisfies,

∫

Ω

ut

Q
ϕdx =

∫

Ω

(P∇H) · ∇ϕdx (2.3)

∫

Ω

Hγξdx = −

∫

Ω

Dpγ · ∇ξdx. (2.4)

with the initial condition

u |t=0= uini. (2.5)

The weak solution for the problem with the homogeneous Neumann boundary condi-
tions

Dpγ · ν = 0 on ∂Ω,

(P∇Hγ) · ν = 0 on ∂Ω,

is a couple u, H : (0, T ) → H1 (Ω) which for each test function ϕ, ξ ∈ H1 (Ω) and a.e.
in (0, T ) satisfies (2.3)-(2.4) and the initial condition (2.5).

3. The level-set formulation. In very similar way we may obtain the level-set
formulation for the anisotropic surface diffusion flow. Now we assume that we have a
domain Ω ∈ Rn, auxiliary level-set function u ∈ C4 (Ω × [0, T ]) and Γ (t) is given as

Γ (t) ≡ {x ∈ Ω | u (x, t) = 0} ,

The normal to the hypersurface Γ (t) is now given by ∇u/ |∇u| instead of (∇u,−1)
|(∇u,−1)| .

Adding the regularising parameter ǫ to avoid dividing by zero in regions where the
level-set function u is flat and ∇u = 0, we get the level-set formulation.
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Definition 3.1. The level-set formulation for the anisotropic surface diffusion
flow is the fourth order parabolic partial differential equation defined as:

ut = −∇ · (P∇Hγ) on Ω × (0, T ] ,

Hγ = ∇ · Dpγ (∇u) on Ω × [0, T ] ,

u |t=0 = uini on Ω,

u = g, Hγ = 0 on ∂Ω (the Dirichlet b.c.),

Dpγ · ν = 0, (P∇Hγ) · ν = 0, on ∂Ω (the Neumann b.c.),

where we denote

Qǫ =

√

ǫ2 + |∇u|2, P = QǫI−
∇u ⊗∇u

Qǫ
. (3.1)

In the same way we may also derive the weak solution for the level-set formulation.
For more details about the level-set approach to the surface diffusion flow we refer to
Smereka [12].

4. Numerical scheme. Let us now proceed to the numerical approximation
of the anisotropic surface diffusion. Since the graph and the level-set formulation
differ only in the choice of the term Q resp. Qǫ we may try to use the same scheme
for both problems. Before we present the complementary finite volume scheme for
the anisotropic surface diffusion flow, we would like to mention some results of other
researchers who studied numerical schemes for the surface diffusion. A scheme based
on the finite element method for the surface diffusion of graphs together with an error
analysis can be found in Bänsch, Morin and Nochetto [1], the anisotropic problem has
been studied by Deckelnick, Dziuk and Elliott [5]. Finite element numerical scheme for
the level-set formulation of the surface diffusion flow has been presented by Smereka
[12], a scheme for the anisotropic problem was proposed by Clarenz, Hausser, Rumpf,
Voigt and Weikard [3]. The method of complementary volumes combined with finite
element method for the approximation of the mean-curvature flow has been introduced
by Walkington in [14]. However, the method of the numerical approximation, we adopt
in this article, originates rather in the article by Handlovičová, Mikula and Sgallari
[9]. The same kind of scheme has been also applied for the approximation of the
Willmore flow in Beneš, Mikula, Oberhuber and Ševčovič [2].

In this article we restrict ourselves only to a case when Ω ⊂ R2. It means that
we study either surfaces in R3 given as a graph of some function u : Ω → R or
planar curves given as a zero level set of a real function defined also on the domain
Ω. Moreover, we assume that Ω has rectangular shape i.e. Ω ≡ 〈0, L1〉 × 〈0, L2〉. Let
h1, h2 be space steps such that h1 = L1

N1

and h2 = L2

N2

for some N1, N2 ∈ N+. We
define a numerical grid, its closure and its boundary as

ωh = {(ih1, jh2) | i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1} ,

ωh = {(ih1, jh2) | i = 0 · · ·N1, j = 0 · · ·N2} ,

∂ωh = ωh \ ωh,

for u ∈ C
(

Ω
)

we define its piecewise constant approximation on ω as a grid function
uh defined as uh (ih1, jh2) := uh

ij := u (ih1, jh2). We also need a dual mesh Vh defined
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u
h
ij u

h
i+1,ju

h
i−1,j

u
h
i,j+1

u
h
i,j−1

vij ≡ p vi+1,j ≡ q1vi−1,j ≡ q3

vi,j+1 ≡ q2

vi,j−1 ≡ q4

Ωp ≡ p \ Γp

Γp ≡ Γp,q1
∩ Γp,q2

∩
Γp,q3

∩ Γp,q4

Fig. 4.1. Finite volumes on the dual mesh – p denotes finite volume we refer to (here vij), Ωp its
interior, Γp its boundary consisting of linear segments Γp,q1 , Γp,q2 , Γp,q3 and Γp,q4 where q1, q2, q3

and q4 are neighbouring finite volumes for which we also use a notation Np ≡ {q1, q2, q3, q4}.

as

Vh ≡

{

vij =

[(

i −
1

2

)

h1,

(

i +
1

2

)

h1

]

×

[(

j −
1

2

)

h2,

(

j +
1

2

)

h2

]

|

i = 1 · · ·N1 − 1, j = 1 · · ·N2 − 1

}

. (4.1)

For 0 < i < N1, 0 < j < N2, i and j fixed, consider a volume p = vij of the dual mesh
υh, denote its interior as Ωp, its boundary as Γp and let µ (Ωp) be the volume of Ωp.
We also denote all neighbouring volumes of the volume p as Np. For all inner finite
volumes p of the dual mesh Vh, the boundary Γp consists of four linear segments. We
denote them as Γpq for q ∈ Np. It means that Γpq is a boundary between the finite
volumes p and q – see the Figure 4.1. Let lpq be the length of this part of Γp. To
approximate the anisotropic mean-curvature Hγ , we take the equation (2.2), integrate
it over the finite volume p and apply the Stokes theorem

∫

Ωp

Hγdx =

∫

Ωp

∇ · (Dpγ) dx =

∫

Γp

Dpγ · νdS =
∑

q∈Np

∫

Γpq

Dpγ · νdS. (4.2)

For the inner finite volume p ∈ Vh, there are four different neighbours q ∈ Np.
Each boundary between p and q (Γpq) is linear segment and so νpq is constant there.
Moreover we assume that the vector Dpγ = Dpγpq is constant on Γpq too. It gives

∑

q∈Np

∫

Γpq

Dpγ · νdS ≈
∑

q∈Np

lpqDpγpq · νpq, (4.3)

where the subindexes pq denote quantity evaluated on Γpq. Assuming that Hh
γ is
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p = vij

q1 = vi+1,jq3 = vi−1,j

q2 = vi,j+1

q4 = vi,j−1

νp,q1
= (1, 0)νp,q3

= (−1, 0)

νp,q2
= (0, 1)

νp,q4
= (0,−1)

Fig. 4.2. This figure illustrates how the neighbouring finite volumes of p are determined by a
form of the unit normal νpq = νrs = (r, s) for r, s ∈ {−1, 1} and |r| + |s| = 1.

constant on the finite volume p and equal to Hh
γ,ij we may write

∫

Ω

Hh
γ dx = µ (Ωp) Hh

γ,ij (4.4)

where µ (Ωp) denotes the measure of the finite volume p. Putting (4.3) and (4.4)
together we get

Hh
γ,p =

1

µ (Ωp)

∑

q∈Np

lpqDpγpq · νpq. (4.5)

For the dual mesh Vh given by (4.1), we may substitute µ (Ωp) = h1h2. For p, q such
that νpq = (±1, 0), we have lpq = h2 and if νpq = (0,±1) then lpq = h1. It is easy
to see, that for a fixed finite volume p, one of its neighbours is determined by the
form of the normal νpq of the boundary Γpq. For r, s ∈ {−1, 1} and |r| + |s| = 1 the
unit outer normal νpq can take the values νpq = νrs = (r, s) when q = vi+r,j+s – see
the Figure 4.2. We can see that Γpq is uniquely determined by indexes i, j, r and s.
We will therefore also denote the quantities evaluated on Γpq by subindexes ij and
superindexes rs. By this mean we also write lpq = lrs (the boundary length does not
depend on ij and so we omit these indexes).

We may now approximate Dpγ on Γpq as

Dpγ ≈ Dpγpq = Dpγrs
ij =

(

γrs
p1,ij , γ

rs
p2,ij

)T
on Γpq

we obtain

Hh
γ,ij =

1

h1h2

∑

r,s∈{−1,1}
|r|+|s|=1

lrsDpγrs
ij · νrs =

γ1,0
p1,ij − γ−1,0

p1,ij

h1
+

γ0,1
p2,ij − γ0,−1

p2,ij

h2
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for i = 2, · · ·N1−2, j = 2, · · ·N2−2. In the case of the Neumann boundary conditions,
from Dpγ · ν = 0 we set:

if i = 1 then ν = (−1, 0) ⇒ γ−1,0
p1,1,j = 0, (4.6)

if i = N1 − 1 then ν = (1, 0) ⇒ γ1,0
p1,N1−1,j = 0, (4.7)

if j = 1 then ν = (0,−1) ⇒ γ0,−1
p2,i,1 = 0, (4.8)

if j = N2 − 1 then ν = (0, 1) ⇒ γ0,1
p2,i,N2−1 = 0. (4.9)

The Dirichlet boundary conditions for Hγ are trivial to approximate.
We may now proceed to the approximation of the equation (2.1). Integrate it

over Ωp and applying again the Stokes theorem we have
∫

Ωp

utdx = −

∫

Γp

∇ · (P∇Hγ) dx,

which gives

µ(Ωp)
d

dt
uh

p = −
∑

q∈Np

lpq

(

QpqI−
∇uh

pq ⊗∇uh
pq

Qpq

)

∇Hh
γ pq

νpq. (4.10)

The last relation may be also written as

d

dt
uh

ij = −
1

h1h2

∑

r,s∈{−1,1}
|r|+|s|=1

lrs

(

Qrs
ij I−

∇uhrs
ij ⊗∇uhrs

ij

Qrs
ij

)

∇Hh
γ

rs

ij
νrs. (4.11)

To approximate Qrs
ij we set

Qrs
ij =

√

1 +
∣

∣∇uhrs
ij

∣

∣

2
, resp. Qrs

ǫ,ij =

√

ǫ2 +
∣

∣∇uhrs
ij

∣

∣

2
,

for

∇uhr,0

ij =

(

r
uh

i+r,j − uh
ij

h1
,
ur,1

ij − ur,−1
ij

h2

)

,∇uh0,s

ij =

(

u1,s
ij − u−1,s

ij

h1
, s

uh
i,j+s − uh

ij

h2

)

,

(4.12)

where urs
ij is an average defined as (see the Figure 4.3):

urs
ij =

1

4
(uh

ij + uh
i+r,j + uh

i,j+s + uh
i+r,j+s).

The discretisation of (4.11) in time is done by mean of the method of lines and result-
ing system of ODE’s is solved using the fourth order Runge-Kutta-Merson method
with adaptive choice of the time step – see Vitásek [13]. The approximation of
the Dirichlet boundary conditions is trivial. The Neumann boundary conditions are
more difficult to discretise because of their implicit nature. The boundary conditions
Dpγ · ν = 0 might be discretised by the following linear system

γ∗,n−1

11,i− 1

2
,j

h1

(

uh
ij − u∗

i−1,j

)

+

γ∗,n−1

12,i− 1

2
,j

4h1h2

(

uh
i,j+1 + u∗

i−1,j+1 − uh
i,j−1 − u∗

i−1,j−1

)

= 0 for i = 1, (4.13)
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u
h
ij u

h
i+1,ju

h
i−1,j

u
h
i,j+1 u

h
i+1,j+1u

h
i−1,j+1

u
h
i,j−1 u

h
i+1,j−1u

h
i−1,j−1

u
1,0
iju

−1,0
ij

u
1,1
iju

−1,1
ij u

0,1
ij

u
1,−1
iju

−1,−1
ij u

0,−1
ij

Fig. 4.3. Figure demonstrates a notation used for the grid functions.

γ∗,n−1

11,i+ 1

2
,j

h1

(

u∗
i+1,j − uh

i,j

)

+

γ∗,n−1

12,i+ 1

2
,j

4h1h2

(

u∗
i+1,j+1 + uh

i,j+1 − u∗
i+1,j−1 − uh

i,j−1

)

= 0 for i = N1 − 1,

(4.14)

γ∗,n−1

21,i,j− 1

2

4h1h2

(

u∗
i+1,j−1 + uh

i+1,j − u∗
i−1,j−1 − uh

i−1,j

)

+

γ∗,n−1

22,i,j− 1

2

h2

(

uh
ij − u∗

i,j−1

)

= 0 for j = 1, (4.15)

γ∗,n−1

21,i,j+ 1

2

4h1h2

(

u∗
i+1,j+1 + uh

i+1,j − u∗
i−1,j+1 − uh

i−1,j

)

+

γ∗,n−1

22,i,j+ 1

2

h2

(

u∗
i,j+1 − uh

ij

)

= 0 for j = N2 − 1,

(4.16)

where u∗
ij are uknown values representing the boundary values of uh

ij . The same holds

for the boundary condition
(

Prs
ij ∇Hh

γ,ij

)

ν = 0 on ∂Ω where we obtain the following
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system

P11,i− 1

2
,j

h1

(

Hh
γ,i,j − H∗

γ,i−1,j

)

+ (4.17)

P12,i− 1

2
,j

4h1h2

(

Hh
γ,i,j+1 + H∗

γ,i−1,j+1 − Hh
γ,i,j−1 − H∗

γ,i−1,j−1

)

= 0 for i = 1,

P11,i+ 1

2
,j

h1

(

H∗
γ,i+1,j + Hh

γ,ij

)

+ (4.18)

P12,i+ 1

2
,j

4h1h2

(

Hh
i,j+1 + H∗

i+1,j+1 − Hh
i,j−1 − H∗

i+1,j−1

)

= 0 for i = N1 − 1,

P21,i,j− 1

2

4h1h2

(

Hh
γ,i+1,j + H∗

γ,i+1,j−1 − Hh
γ,i−1,j − H∗

i−1,j−1

)

+

P22,i,j− 1

2

h2

(

Hh
γ,ij − H∗

γ,i,j−1

)

= 0 for j = 1, (4.19)

P21,i,j+ 1

2

4h1h2

(

Hh
γ,i+1,j + H∗

γ,i+1,j+1 − Hh
γ,i−1,j − H∗

γ,i−1,j+1

)

+ (4.20)

P22,i,j+ 1

2

h2

(

H∗
γ,i,j+1 − Hh

γ,ij

)

= 0 for j = N2 − 1,

solution of which gives us an extension H∗
γ,ij of Hh

γ,ij on ∂ωh.
An advantage of the explicit solver is in fact that during the evaluation of the

right-hand side of (4.11) we always meet the same terms as the left-hand sides of
(4.13)–(4.20) which equal zero. Therefore we do not need to know uh

ij and Hh
γ,ij on

∂ωh to be able to construct correct approximation of u on ωh. If we do not need
these quantites explicitly, we may simplify the system (4.13)–(4.20) to ∇uh

ij · ν = 0
and ∇Hh

γ ij
· ν = 0 on ∂ωh. In fact, this is how we handled the boundary conditions

because the explicit scheme leads to small time step and it would require a lot of
CPU time to solve linear systems (4.13)–(4.20) at each iteration. In the case of the
level-set formulation we impose simplified Neumann boundary conditions in a form
∇uh

ij · ν = 1 and ∇Hh
γ ij

· ν = 0 on ∂ωh which better reflect the shape of the signed

distance function.

5. Computational studies. For the numerical experiments we chose an anisotropy
induced by a quadratic form G : R2 ×R2 → R, G (p1,p2) = pT

1Gp2 given by a pos-
itive definite matrix G ∈ R2,2. This anisotropy, which might be also understood as a
weighted Euclidean norm, is defined as

γG (p,−1) :=
√

1 + pTGp, resp. γG (p) :=
√

ǫ2 + pTGp. (5.1)

The Figure 5.1 shows an evolution of an initial surface given as a graph of function
uini (x, y) := sin (2πx) sin (2πy) on the domain Ω ≡ [0, 1]

2
. The matrixG inducing the

anisotropy (5.1) takes a form G :=

(

10 0
0 1

)

. We set the zero Neumann boundary

conditions and space step h1 = h2 = 0.01. The Figure 5.2 demonstrates the level-set
formulation for the surface diffusion flow. As an initial condition we took a square
given by uini := (|x| − 0.75) (|y| − 0.75) = 0 on the domain Ω ≡ [−2, 2]

2
and we let it

evolve until the time t = 0.2. We set the same anisotropy function as in the previous

numerical experiment but induced by a matrix G :=

(

10 8
8 10

)

. The regularising
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Fig. 5.1. The evolution obtained using the initial condition uini (x, y) := sin (2πx) sin (2πy)
and an anisotropy induced by (5.1) at times t = 0, t = 3.2 · 10−5, t = 2.56 · 10−4 and t = 5.6 · 10−3.
The Neumann boundary conditions were imposed.

Fig. 5.2. Evolution of a square obtained by the level-set method – graphs of the level-set function
at times t = 0, t = 0.1, t = 0.2 and evolution of the initial curve until the time t = 0.2.

parameter was equal to ǫ = 0.01. We set the space step h1 = h2 = 0.04 The last
Figure 5.3 shows evolution of an astroid given as x2/3 + y2/3 = 0.752/3 on the domain
Ω ≡ [−1, 1]

2
with h1 = h2 = 0.016, regularisation ǫ = 0.01 and anisotropy indices by

G :=

(

10 0
0 1

)

.
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Fig. 5.3. Evolution of an astroid obtained by the level-set method – graphs of the level-set
function at times t = 0, t = 0.025, t = 0.05 and evolution of the initial curve until the time t = 0.05.

Acknowledgements. The author was partly supported by the Research Direc-
tion Project of the Ministry of Education of the Czech Republic No. MSM6840770010.

REFERENCES
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[9] A. Handlovičová, K. Mikula, and F. Sgallari, Semi-implicit complementary volume
scheme for solving level set like equations in image processing and curve evolution, Nu-
merische Mathematik, 93 (2003), pp. 675–695.

[10] M. Kimura, Topics in mathematical modeling, vol. 4, Matfyzpress, Prague, Czech Republic,
2008, lecture notes Geometry of hypersurfaces and moving hypersurfaces in Rm for the
study of moving boundary problems, pp. 39–94.

[11] U. F. Mayer, G. Simonett, Self-intersections for the surface diffusion and the volume-
preserving mean curvature flow, Differential and Integral Equations, 13 (2000), pp. 1189–
1199.

[12] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, Jour-
nal of Scientific Computing, 19 (2003), pp. 439–456.



164 T. OBERHUBER
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