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1. Introduction. For about a decade the discontinuous Galerkin method (dG-
FEM) has become popular for the discretization of the nonlinear conservation laws of
fluid dynamics. To the desirable properties of this high-order finite element method
belong the flexibility in handling unstructured triangulations of complex geometries,
mesh adaptation and freedom in the choice of the polynomial basis. In addition, the
dGFEM can be viewed as a generalization of the finite volume method. For details
we refer to the recent studies [2, 3, 11] and the references cited therein.

As a major drawback, the discrete problems that arise from the dGFEM dis-
cretization consist of a relatively large number of unknowns. Therefore iterative
methods that require the assembly of the stiffness matrix remain limited to low-order
discretizations. Further difficulties occur in the context of computational fluid dy-
namics, such as anisotropies induced by the operator as well as by the computational
meshes. Thus there is the need for a scalable, robust and memory efficient iterative
solver for the dGFEM discretization.

The purpose of this paper is to present a solution algorithm for nonlinear prob-
lems arising for the dGFEM discretization that takes these difficulties into account.
We propose a multiplicative coupling of two different methods. The first part is con-
stituted by a nonlinear multilevel iteration that exploits the nested hierarchy of spaces
of varying polynomial degree p. The second component is a Newton-multigrid method
with the smoothed aggregation technique for the solution of the nonlinear low-order
problems. The combination of both parts yields a robust multilevel solver that does
not require the explicit introduction of a sequence of coarse meshes. We demonstrate
the feasibility of the approach for laminar two-dimensional compressible flow.

Nonlinear multigrid approaches for the dGFEM have been previously described
and demonstrated, see for example [8]. We know only one previous work on a
smoothed aggregation coarse space for a domain decomposition preconditioner for
the dGFEM [12]. The application to an algebraic type multigrid method and the
combination with a multi-p method for compressible flow are the focus of the current
work of the authors [13].

2. Continuous and discrete problems. We consider two different model
problems. Firstly, we consider as usual a scalar linear model problem. By this we
hope to get some insight for the solution of the nonlinear system of the compressible
Navier-Stokes equations. We explicitly state the dGFEM discretization for the scalar
advection-diffusion equation in the following, whereas for the Navier-Stokes equations,
we refer to [3, 11].
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2.1. Scalar model problem. The model problem under consideration is the
linear advection-diffusion equation on a polyhedral domain Ω ⊂ R

d, d = 2, 3:

−ε∆u + β · ∇u = f in Ω. (2.1)

We assume f ∈ L2(Ω), ε ≥ 0 and incompressible, Lipschitz-continuous wind β =

{βi}di=1 : R
d → R

d. The boundary Γ = ∂Ω is partitioned into sets Γ−, Γ+, ΓD, ΓN

denoting the inflow and outflow part of the boundary, respectively, and the Dirichlet
and Neumann part of the remaining edges. Boundary conditions are imposed as

u = gD on ΓD ∪ Γ−, n · (∇u) = gN on ΓN.

For the well-posedness of this problem, see for example [14].

2.2. Compressible Navier-Stokes equations. For laminar compressible flow
the conservative state is given by u = [ρ, ρv, ρE]

T
with ρ denoting the density, v

the velocity vector and E the specific total energy. The Navier-Stokes equations are
formulated in the Cartesian coordinate system as

∂u

∂t
+∇ · (Fc(u)−Fv(u,∇u)) = 0 in Ω ⊂ R

d (2.2)

with convective and viscous fluxes Fc(u) = (fc
1 , . . . , fc

d)
T

and Fv(u,∇u) = (fv
1 , . . . , fv

d )
T
,

respectively. They are given by

fc
s (u) = (ρvs, ρv1vs + δ1sp, . . . , ρvdvs + δdsp, (ρE + p)vs)

T
, s = 1, . . . , d

with p = (γ − 1)
[

ρE − 1
2‖v‖22

]

denoting the pressure, the Poisson adiabatic constant
γ = 1.4 (dry air), and

fv
s (u,∇u) = (0, τs1, . . . , τsd,

d
∑

i=1

τsivi +K ∂T

∂xs

)T , s = 1, . . . , d.

Here T denotes the temperature function, K the heat conduction coefficient and τ is
the viscous stress tensor. The Navier-Stokes equations are complemented by suitable
Dirichlet and Neumann boundary conditions, see, for example, the monograph by
Feistauer [7] for details. We use the Vijayasundaram numerical flux function. Since
we are interested in steady solutions, the variable t > 0 plays the role of a pseudo-
time variable and the temporal accuracy is irrelevant. When introducing the linearized
equations below, we will describe its role as a globalization strategy.

2.3. Discontinuous Galerkin discretization. For the dGFEM discretization,
we assume that Ω can be subdivided into a mesh Th, consisting of quadrilaterals
(elements) κj 6= ∅, j = 1, . . . , nt, of characteristic size h > 0.

We consider a parametric discretization with piecewise discontinuous finite ele-
ments. Let nc stand for the number of equation components, i. e. nc = 1 for the scalar
model problem and nc = d + 2 for the Navier-Stokes equations. The global discrete
function space is given by

V
p
h := {v ∈

[

L2(Ω)
]nc

: v
∣

∣

κ
◦ σκ ∈ [Qp(κ̂)]nc ∀κ ∈ Th},

where σκ : κ̂ → κ denotes a sufficiently smooth mapping from a reference element
κ̂ := [−1, 1]d to the triangulation and Qp(κ̂) is the set of polynomials of degree less
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than or equal to p in each variable. By nh,p = nc(p + 1)d cardTh we denote the
dimension of the vector space V

p
h .

The statement of the discrete problem requires some notation for the inter-element
face terms [2]. We define the set E of all intersections between neighboring elements
of the partition and between elements and the boundary Γ. Furthermore, we define
the set of interior faces Eint = {e ∈ E : e ⊂ Ω} and its union Γint := {x ∈ Ω : ∃e ∈
Eint with x ∈ e}.

As functions v ∈ V
p
h are double-valued on x ∈ Γint, we define v+

κ , κ ∈ Th, to
be the inner trace of v on ∂κ. The outer trace v−κ is defined as the inner trace v+

κ

relative to the neigboring element. With this notation the jump and mean value of
v ∈

[

H1(Th)
]nc

on an edge e ∈ Eint are given by

JvKe = v+
κ ⊗ n+

κ + v−κ ⊗ n−
κ , {v}e =

1

2

(

v+
κ + v−κ

)

,

where n±
κ is the outer unit normal vector. In the following we will omit the subscript

(·)e for the sake of simplicity.
We also introduce a jump notation for the inflow part ∂−κ of an element bound-

ary that is defined as ∂−κ = {x ∈ ∂κ : β(x) · n < 0}. Then the jump of u across
∂−κ \ Γ is defined by [v]κ := v+

κ − v−κ . At the boundary Γ the jump and average
operators have to be modified, see [2].

For the scalar model problem (2.1) the discrete problem is given as follows: Find
uh ∈ V

p
h such that

L(uh, vh) ≡ B1(uh, vh) + B2(uh, vh) = ℓ(vh) ∀vh ∈ V
p
h (2.3)

with bilinear forms B1, B2 corresponding to the diffusion and convection part, respec-
tively. The latter uses a standard upwind term and is given by

B2(u, v) := (β · ∇hu, v)Ω −
∑

κ∈Th

∫

∂
−

κ

(β · n)[u]v+ ds,

ℓ(v) := −
∑

κ∈Th

∫

∂
−

κ∩(Γ
−
∪ΓD)

(β · n)gDv+ ds + (f, v)Ω,

where we used the notation ∇h for the broken gradient (∇hu)
∣

∣

κ
= ∇

(

u
∣

∣

κ

)

, κ ∈ Th.
The formulation of the elliptic operator is the following:

B1(u, v) := ε(∇hu,∇hv)Ω − ε〈JuK, {∇hv}〉Γ∪Γint

−ε〈{∇hu}, JvK〉Γ∪Γint
− ηe{re(JuK)}.

Here we have chosen the (modified) scheme of Bassi and Rebay [3], where ηe, e ∈ Eint,
is a stabilizing constant and re denotes a local lifting operator which is defined in a
weak manner by

∫

Ω

re(ϕ) · τ dx = −ε

∫

e

ϕ · {τ} ds ∀τ ∈ [V p
h ]

d
.

Various other consistent and stable dGFEM have been collected in [2].
A semi-linear form L(uh,vh) which is vector-valued, however similar in structure,

can be derived for the compressible flow problem (2.2) via reformulation as a first order
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system and the substitution of stabilizing numerical fluxes [3, 11]. With a basis in V
p
h

denoted by {φp
ℓ}1≤ℓ≤nh,p

and an isomorphism Pp : R
nh,p → V

p
h , Ppx =

∑nh,p

i=1 xiφ
p
i ,

the discrete problem is then given in terms of coefficient vectors as

Lp(x) = fp, (2.4)

where Lp : R
nh,p → R

nh,p , Lp(x)j = L(Ppx, φ
p
j ), j = 1, . . . , nh,p. The right-hand side

vector is expressed with the dual functional P ∗ as fp = P ∗ℓ ∈ R
nh,p .

3. The hp-multilevel method. We are now concerned with the solution of
equation (2.4). Algebraic type Newton-multigrid methods have been applied to
discontinuous Galerkin discretizations on unstructured meshes with promising re-
sults [13]. However, for higher polynomial degrees and finer meshes the number of
unknowns is too large for a standard Newton-type approach. A matrix-free Newton-
Krylov method could be employed which uses finite differences and avoids the as-
sembly of the complete Jacobian matrix Ah,p ∈ R

nh,p×nh,p . Still, the question of an
optimal preconditioner for the unstructured triangulation would remain open.

An alternative is the direct application of a multigrid (MG) method to the non-
linear system of equations. This requires a hierarchy of nonlinear discrete problems
of varying complexity. The high-order dGFEM provides a nested sequence of vector
spaces V

p
h , V

p−1
h , . . . of decreasing polynomial degree in a natural way. The approach

gives rise to a family of discrete nonlinear operators Lp, Lp−1, . . ., Lpmin
.

Still, there is a drawback in this approach, since for many applications of mod-
erate degree of approximation the number of levels is limited and the direct solution
x ∈ R

nh,pmin on the coarsest level pmin remains expensive. A remedy is to employ
an h-optimal, algebraic type Newton-multigrid for the low-order solution on the un-
structured mesh together with the nonlinear multigrid.

3.1. Nonlinear multigrid. As intergrid transfer operators in the nested level
hierarchy V

p
h , V

p−1
h , . . ., we choose the prolongation by natural injection ιl : V l−1

h → V l
h,

and the canonical restriction operator ι∗l , where the matrix formulation is given by

Ĩ l
l−1 = P−1

l Pl−1 and Ĩ l−1
l = (Ĩ l

l−1)
T . The dGFEM allows for arbitrary basis functions,

thus a hierarchical basis {φl−1
ℓ }ℓ ⊂ {φl

ℓ}ℓ can be employed which makes the injection
particularly simple and memory efficient in implementation.

A major difference between the nonlinear multigrid algorithm and its linear coun-
terpart is the need for a restricted nonlinear state vector. For this we take the orthog-
onal projection onto the space V l−1

h with respect to the L2-norm. The corresponding

restriction matrix is denoted by Î l−1
l .

Further we define a nonlinear smoothing iteration

vl 7→ Sl(vl) := vl + γW−1
l (fl − Ll(vl)) (3.1)

with a damping factor γ > 0 and preconditioner matrix W l, which will be described
in more detail in Section 3.3. We now state the

Nonlinear V-cycle Multigrid Algorithm. Given fl ∈ R
nh,l and an initial

guess ul,0 ∈ R
nh,l , the output NMGV(l, fl,ul,0; ν, µ) of the nonlinear V-cycle algorithm

is an approximate solution of (2.4) obtained recursively as follows.
For l = pmin, we take NMGV(pmin, fl,ul,0; ν, µ) to be L−1

pmin
(fl).

For l > pmin, we obtain NMGV(l, fl,ul,0; ν, µ) in three steps.
1. (Pre-Smoothing)

Apply the block Jacobi scheme (3.1) ν times to compute ul,ν ∈ R
nh,l .
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2. (Coarse Grid Correction) Restrict the solution approximation ul−1,0 = Î l−1
l ul,ν .

Compute the right-hand side

fl−1 = Ĩ l−1
l fl +

[

Ll−1(ul−1,0)− Ĩ l−1
l Ll(ul,ν)

]

,

and solve the coarse grid equation Ll−1(v) = fl−1 using the (l − 1)-st level
V-cycle with ul−1,0 as the initial guess. Then transfer the coarse level error
back to the l-th level, and update the solution approximation. In total,

ul,ν+1 = ul,ν + Ĩ l
l−1 [NMGV(l − 1, fl−1,ul−1,0; ν, µ)− ul−1,0] .

3. (Post-Smoothing)
Apply the block Jacobi scheme (3.1) µ times to compute ul,ν+µ+1.

Finally, set NMGV(l, fl,ul,0; ν, µ) = ul,ν+µ+1.

A nested iteration strategy NMGV(pmin, ·), NMGV(pmin + 1, ·), . . . can be em-
ployed to obtain an initial solution approximation up,0. Experiments indicate that
the method scales with the polynomial degree p, cf. Section 4. A closer look at the
method, however, reveals that the computational cost of the nonlinear smoothing
iteration (3.1) is not independent of p. Nevertheless, in practice this scaling issue
remains rather theoretical for moderate degrees of approximation, e. g. p ≤ 10.

3.2. Newton-multigrid solver. The multigrid algorithm NMGV poses a non-
linear low-order equation

Lpmin
(v) = fpmin

,v ∈ V
p
h , (3.2)

that remains a challenging problem especially on unstructured meshes.
We choose a Newton-multigrid iteration to solve (3.2), i. e. we approximate the

solution u ∈ V
pmin

h with a sequence of linearized problems. More precisely, we linearize
equation (2.2) with the semi-implicit Euler scheme,

Adi ≡
[

1

∆t
M + Ah,pmin

(un)

]

di = bi, ui+1 := ui + sdi, i = 1, 2, . . . ,

where Ah,pmin
(un) is the coarse-level Jacobian, M is the block diagonal mass matrix

and bi := fpmin
− Lpmin

(ui). Further, s ∈ R
+ is a suitable damping factor and ∆t

is a time step which is increased during the nonlinear iteration. This ensures that a
standard Newton scheme is recovered after an initial transient period. Each linearized
problem Adi = bi is solved only approximately by a few V-cycles of a linear multigrid
method, resulting in an inexact Newton method with a linear rate of convergence.

We resort to the smoothed aggregation (SA) approach [15] to construct a sequence
of coarse vector spaces M1 ⊂ M2 ⊂ · · · ⊂ MJ ≡ R

nh,pmin , since a natural hierarchy
of spatial discretizations is not available for unstructured tesselations. The basic idea
of the SA variational multigrid method is to partition the elements of the mesh Th

into small disjoint clusters am, m = 1, . . . , nk, and to construct the (coefficient vec-
tor) spaces Mk from the basis of characteristic functions χam

, whose energy norm is
improved by a suitable smoothing polynomial. Additionally, we get a family of coarse
grid operators and right-hand side vectors Ak, bk, k = 1, . . . , J .

More precisely, we employ a Petrov-Galerkin SA technique [9, 13], i. e. we set the
coarse level operators Ak−1 recursively as

Ak−1 = Ik−1
k Ak(Id− λ−1

k Ak)Ik
k−1, k = J, . . . , 1, AJ := A,
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where Ik−1
k ∈ R

nk−1×nk denotes the trivial zero-one restriction onto the agglomerates,
Ik
k−1 the corresponding prolongation, λk is an approximation of the spectral radius

̺(Ak) obtained via the Lanczos method, and Id is the identity matrix. We state the

Linear V-cycle Multigrid Algorithm. Given a right-hand side bl ∈ Ml and
an initial solution xl ∈Ml, the iterate MGV(l,bl,xl; µ̄, ν̄) of the nonsymmetric linear
V-cycle algorithm is obtained as follows.

For l = 1, perform a direct solution MGV(l,bl,xl) := A−1
1 b1.

For l > 1, take MGV(l,bl,xl; µ̄, ν̄) as the result xl of the following steps.
1. Perform ν̄ iterations of xl ← (Id−W lAl)xl + W lbl (Pre-Smoothing).
2. Set bl−1 = I l−1

l (bl −Alxl) and compute xl ← xl + I l
l−1xl−1,

where xl−1 := MGV(l − 1,bl−1,0) (Coarse Grid Correction).
3. Perform µ̄ iterations of xl ← (Id−W lAl)xl + W lbl (Post-Smoothing).

If Ll denotes a linear operator, the nonlinear multigrid NMGV coincides with this
algorithm. The algorithm may be used as a preconditioner for a Krylov subspace
method like GMRES to increase robustness. For elliptic problems on unstructured
grids, the regularity-free theory of Bramble [6] can be applied to prove the optimality
of the algorithm. However, for advection-diffusion systems convergence theory is much
less developed even in the linear case.

3.3. Block-implicit smoothing iteration. Finally, we describe the smoothing
iteration (3.1) in more detail. The block Jacobi iteration is known to be efficient in
damping out the oscillatory part of the error for the classical geometric multigrid. We
assume that the same holds true for the nonlinear multigrid algorithm, as well as for
the aggregation multigrid method discussed in Section 3.2.

For the problems (2.1), (2.2), where advection terms are present, the blocks are
formed as follows. First, the elements of Th are organized as sequences (lines). Only
face integrals between elements of a common line are considered. This corresponds
to a block-diagonal approximation of the Jacobian Ah,l = ∂uLl,

W−1
l := blockdiag

(

A−1
h,l,i

)

i=1,...,N
,

where each Ah,l,i is a block tridiagonal system and N denotes the number of lines.
It is observed experimentally, and has been supported by local Fourier analysis, that
lines should follow strong couplings in the stiffness matrix, where by strong coupling
we mean a measure for interdependencies between the elements of the triangulation.
We employ a heuristic similar to Okusanya [8] to determine the blocks of the itera-
tion matrices W l. Figure 4.1 shows an example decomposition in the vicinity of a
NACA 0012 airfoil.

For difficult cases the stability of the nonlinear smoother can be improved by ap-
plying a sequence of smoothing steps with varying damping parameters. The resulting
semi-iterative method is interpreted as an s-stage Runge-Kutta scheme

vl,0 := vl,
[

(αi∆t)−1M + W l

]

(vl,i − vl,i−1) =

(αi∆t)−1M(vl − vl,i−1)− (fl − Ll(vl,i−1)) , i = 1, . . . , s,

vl ← vl,s.

For the laminar flow example in Section 4.2 we choose s = 5 coefficients from [4] as
{αi}i=1,...,5 =

{

1
5 , 1

4 , 1
3 , 2

5 , 1
}

.
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4. Numerical results. We now turn to the numerical experiments. For the sake
of simplicity we have applied the simple V-cycle forms of the proposed algorithms and
restricted ourselves to the case of hexahedral meshes and straight boundary geome-
tries. The computational results were obtained using the DLR PADGE code [10] on
a parallel computer with distributed memory. CPU time results are not included in
the description of the numerical tests because no attempt was made to optimize the
performance of the current solver for the problems considered.

4.1. Linear model problem. We consider (2.1) and choose the parameters of
a three-dimensional example problem from [5]. The vector field β, which is locally
varying in the computational domain Ω = (0, 1)3 and not grid-aligned, is given by

β(x) =
w(x)Pe√

3
[1, 1, 1]

T
, where w(x) :=











1 x1 + x2 − 2x3 ≤ 0

0 x1 + x2 − 2x3 ≥ 1

(x1 + x2 − 2x3)
2 elsewhere

and Pe := 10 denotes the Péclet number. We further assume isotropic diffusion ε = 1
and a constant right hand side f = 1. The boundary conditions are of the Dirichlet
type with

gD :=

{

1 0 ≤ x1, x2 ≤ 1
2 , x3 = 0

0 elsewhere.

Figure 4.2 shows the contour lines of the approximate solution of equation (2.1) on a
slice along the main diagonal. The computational domain contains areas of diffusion
as well as of dominating convection.

For the convergence study we use uniform partitionings of the domain into tensor
product elements, though the algorithm does not exploit this regular structure. The
considered grid sizes and polynomial degrees are h ∈

{

1
8 , 1

16 , 1
32

}

, p ∈ {0, . . . , 3}, i.e.
the number of unknowns nh,p grows up to 2.1 · 106. The behavior of the two different
solver components is demonstrated by separate computations.

Figure 4.1. NACA0012 test case. Compu-
tational mesh (zoom) and example of a typical
line decomposition for viscous flow.

Figure 4.2. Linear advection-diffusion
test case. Contour lines of the solution on a
slice along the main diagonal.
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Smoothed Aggregation Multigrid. Table 4.1a shows the result of GMRES-
accelerated V-cycles with 1 pre- and post-smoothing step. The table contains both

the average residual reduction in the ℓ2-norm, ravg :=
(

‖rN‖2

‖r0‖2

)
1

N

, and the condition

number of the preconditioned system estimated during the Krylov iteration. When
looking at each row separately, one observes that the results reflect the expected
behavior of a multigrid method fairly well, i. e. the number of iterations is more or less
bounded. This holds true despite the presence of an advection term, where optimal
convergence is no longer covered by variational multigrid theory. On the finest level
with bilinear elements, however, a slight deviation from the exact boundedness occurs.
We interpret this as a result of the heuristic agglomeration strategy. On the other
hand, the convergence of the SA multigrid is getting slow with increasing polynomial
degree.

Multi-p method. We now investigate the behavior of the multi-p method for
the linear test case. The V-cycle with 1 pre- and post-smoothing step (element-wise
Jacobi smoother with damping γ := 0.75) is applied up to a polynomial degree p = 3
with a coarse level problem for pmin = 0. Table 4.1b contains the average residual
convergence rate ravg , where a fixed number of 20 smoothing steps is performed to
approximate the solution of the coarse level equation (3.2). Additionally Table 4.1b
shows the convergence rates for the case that problem (3.2) is solved up to machine
accuracy (denoted by 1(ǫ), 2(ǫ) 3(ǫ)).

The convergence rates clearly indicate that the number of V-cycles does not in-
crease with the polynomial degree. On the other hand the algorithm does not scale
with the grid size, if the coarse level problem is not solved accurately. Even when
computing the coarse level problem to machine accuracy, a slight h-dependence is
observed on the relatively coarse meshes. Further computations however show that
this effect disappears on finer grids. Thus the multi-p algorithm constitutes a feasible
approach to solve high-order numerical systems, provided that a scalable coarse level
solver is at hand. This motivates the combination of both algorithms in the next
example.

4.2. Flow past NACA 0012 airfoil. In the second test case the subsonic
flow past a NACA 0012 airfoil was computed for the Mach number Ma∞ = 0.5,
with the Reynolds number Re = 500 and an angle of attack α = 2◦. The walls of
the airfoil are adiabatic and we choose freestream conditions upmin,0 ∈ R

nh,l as the
initial guess. On the far field boundary, which is of circular shape with a radius of
50 chord lengths, subsonic inflow and outflow conditions are prescribed, cf. [7]. The
conditions for this simple but well investigated numerical experiment are identical to
the ADIGMA MTC3S test case [1]. Figure 4.1 shows the unstructured computational
mesh that contains 2304 hexahedral elements and was constructed based on data
from [1]. Equation (2.2) was discretized using discontinuous elements with a piecewise
quadratic boundary.

The computation employed a nested sequence of nonlinear V-cycles up to a uni-
form polynomial degree p = 5 with ca. 3.3 · 105 unknowns. A single Newton step was
performed on the coarse level pmin = 0 to solve equation (3.2) with 10 linear multigrid
cycles. The resulting Mach number distribution at the leading and the trailing edge
of the airfoil is depicted in Figure 4.3. In terms of the flow physics the resolution is
overly fine, however, it is the purpose of this numerical test to show the convergence
behavior of the iterative method which proves to be sufficiently stable.

Instead of employing a relative stop criterion in each stage of the nested multilevel
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iteration, a fixed number of 7 V-cycles with 2 pre- and post-smoothing steps was
performed. Figure 4.4 shows a graph of the (continuous) L2(Ω) norm of the residual
r := fp − Lp(x) with respect to the V-cycle iteration index. The absolute residual
measured in the Euclidean norm converges in about 35 V-cycles (tol ≤ 10−8), 14 steps
of them are performed on the fine level p = 5. Additionally, the plot contains the plots
of lower-order approximations iterating to full convergence (dotted lines). The CFL
number of the linearized implicit smoother is adapted according to the development of
the residual. As a consequence the convergence of the multilevel algorithm accelerates
during the solution process.
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H
H

H
H

p

h 1

8

1

16

1

32

0 0.004 (1.04) 0.016 (1.07) 0.020 (1.09)
1 0.387 (4.50) 0.444 (5.11) 0.492 (5.92)
2 0.404 (5.20) 0.426 (5.30) 0.437 (5.48)
3 0.664 (23.94) 0.694 (20.74) 0.702 (25.32)

(a) SA multigrid algorithm.

H
H

H
H

p

h 1

8

1

16

1

32

– – –

1 0.60 0.67 0.86

2 0.57 0.65 0.85

3 0.55 0.64 0.84
1(ǫ) 0.60 0.60 0.60
2(ǫ) 0.57 0.58 0.58
3(ǫ) 0.54 0.57 0.57

(b) Multi-p method.
Table 4.1

Separate convergence study of the two solver components for the linear test case. The tables
show the average reduction of the residual w. r. t. the ℓ2-norm. The left table also contains the
condition number estimates of the preconditioned system (in parentheses).
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Figure 4.3. NACA0012 test case. Mach number distribution with details around the leading
and trailing edges (right).
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Figure 4.4. NACA0012 test case. Residual convergence history.


