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NONLINEAR INTERACTION OF INCOMPRESSIBLE FLOW AND A

VIBRATING AIRFOIL WITH THREE DEGREES OF FREEDOM∗

MARTIN RŮŽIČKA† , MILOSLAV FEISTAUER‡ , JAROMÍR HORÁČEK§ , AND PETR

SVÁČEK¶

Abstract. The subject of the paper is the numerical simulation of the interaction of two-
dimensional incompressible viscous flow and a vibrating airfoil with large amplitudes. A solid airfoil
with three degrees of freedom performs rotation around an elastic axis and oscillations in the vertical
direction and rotation of a flap. The numerical simulation consists of the finite element solution of
the Navier-Stokes equations coupled with a system of ordinary differential equations describing the
airfoil motion. The time-dependent computational domain and a moving grid are treated by the
Arbitrary Lagrangian-Eulerian formulation of the Navier-Stokes equations. High Reynolds numbers
require the application of a suitable stabilization of the finite element discretization.
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1. Introduction. The interaction of fluids and structures plays an important
role in many fields of science and technology. The research in aero-elasticity or hydro-
elasticity focuses on the interaction between flowing fluid and vibrating structures.
The aero-elastic stability of aerospace vehicles and the aero-elastic responses rep-
resented by dynamic load prediction and vibration levels in wings, tails and other
aerodynamic surfaces have a great impact on the design as well as in the cost and
operational safety.

In the contribution we consider a two-dimensional viscous incompressible flow
past a moving airfoil, which is considered as a solid flexibly supported body with three
degrees of freedom, allowing its vertical and torsional oscillations and the rotation of
a flap. The numerical simulation consists of the finite element solution of the Navier-
Stokes equations coupled with the system of ordinary differential equations describing
the airfoil motion. The time dependent computational domain and a moving grid
are taken into account with the aid of the Arbitrary Lagrangian-Eulerian (ALE)
formulation of the Navier-Stokes equations.

In order to avoid spurious numerical oscillations, the SUPG and div-div stabi-
lization is applied. The solution of the ordinary differential equations is carried out
by the Runge-Kutta method. Special attention is paid to the construction of the
ALE mapping of a reference domain on the computational domain at individual time
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Fig. 2.1. Model scheme

instances. The resulting nonlinear discrete algebraic system is solved by the Oseen
iterative process. All components of the realization of the solution are assembled to-
gether by a coupling procedure. As the result we obtained a sufficiently accurate and
robust method for the numerical simulation of flow induced vibrations of an airfoil.
The method was tested on a problem for which the results computed in NASTRAN
program code are available. The comparison of our computations and the NASTRAN
results shows good agreement.

2. Mathematical model. The two-dimensional non-stationary flow of viscous,
incompressible fluid is considered in the time interval [0, T ], where T > 0. The symbol
Ωt denotes the computational domain occupied by the fluid at time t. The boundary
∂Ωt = ΓD∪ΓO∪ΓWt

, where the sets ΓD, ΓO a ΓWt
are mutually disjoint and boundary

conditions of different types are used there. The symbol ΓD represents the inlet, where
the fluid flows into the domain Ωt, or a fixed, impermeable wall. ΓO represents the
outlet, where the fluid leaves Ωt and ΓWt

is the moving airfoil boundary at time t.
We assume that ΓD and ΓO are independent of time in contrast to ΓWt

. The flow is
characterized by the velocity field u = u(x, t), and the kinematic pressure p = p(x, t),
for x ∈ Ωt and t ∈ [0, T ]. The kinematic pressure is defined as P/ρ, where P is the
pressure and ρ = const. > 0 is the density of the fluid. The aim is to find functions
α(t), β(t) and h(t), describing the rotation of the whole airfoil ΓWt

, the rotation of the
flap K of the airfoil and the vertical displacement of the airfoil, respectively. Hence,
the shape of the domain Ωt depends on the functions α(t), β(t) and h(t) as shown in
Figure 2.1, where EO represents the elastic axis of the whole airfoil and EF represents
the elastics axis of the flap. The elastic axis EO can move along the line p.

2.1. ALE formulation of the Navier-Stokes equations. In order to take
into account the dependence of the computational domain on time, we introduce
the ALE (Arbitrary Lagrangian–Eulerian) description, which is based on a smooth,
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one-to-one mapping

At : Ω0 7→ Ωt, X 7→ x(X , t) = At(X), t ∈ [0, T ].(2.1)

At is the identity in the part of the boundary ∂Ωt, where there is no interaction with
the body and also there is no deformation of the boundary. The reference domain
Ω0 is identical with the domain occupied by the fluid at the initial time t = 0. The
coordinates of points x ∈ Ωt are called spatial coordinates, the coordinates of points
X ∈ Ω0 are called ALE coordinates or reference coordinates.

First, we define the domain velocity

w̃(X, t) =
∂

∂t
x(X , t).(2.2)

This velocity can be expressed in the spatial coordinates as

w = w̃(X, t) ◦ A−1
t , i.e. w(x, t) = w̃

(
A−1

t (x), t
)
.(2.3)

Let us consider a function f = f(x, t), x ∈ Ωt, t ∈ [0, T ], f(x, t) ∈ IR, where IR is the
set of real numbers. Let us set f̃(X , t) = f(At(X), t). We define the ALE derivative
of the function f by

DA

Dt
f(x, t) =

∂f̃

∂t
(X , t), X = A−1

t (x).(2.4)

The application of the chain rule gives

DA

Dt
f =

∂f

∂t
+ w · ∇f.(2.5)

Using the relation (2.5), we obtain the Navier-Stokes equations in the ALE form

DA

Dt
u + [(u − w) · ∇] u + ∇p − ν∆u = 0

div u = 0
in Ωt.(2.6)

The symbol ν is a positive constant denoting the kinematic viscosity of the fluid.

2.2. Equations for the moving airfoil. The nonlinear equations of the motion
describing the vibrations of the airfoil given by the functions α, β and h read

mḧ + [(Sα − Sβ) cosα + Sβ cos(α + β)] α̈

+Sβ cos(α + β)β̈ − (Sα − Sβ) sin αα̇2

−Sβ sin(α + β)(α̇ + β̇)2 + Dhhḣ + khhh = L,

[(Sα − Sβ) cos α + Sβ cos(α + β)] ḧ
+ [(Iα − 2x1T Sβ) + 2x1T Sβ cosβ] α̈

+ [Iβ + x1T Sβ cosβ] β̈ − x1T Sβ sin ββ̇2

−2x1T Sβ sin βα̇β̇ + Dααα̇ + kααα = Mα,

Sβ cos(α + β)ḧ + [Iβ + x1T Sβ cosβ] α̈

+Iβ β̈ + x1T Sβ sin βα̇2 + Dβββ̇ + kβββ = Mβ .

(2.7)

For the derivation, see [4]. The symbol L stands for the component of the force acting
on the whole profile in the vertical direction, Mα is the torsional moment of the force
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acting on the whole airfoil with respect to the axis EO, Mβ is the torsional moment
of the force acting on the flap of the airfoil with respect to the flap axis EF, Dhh,
Dαα, Dββ are the coefficients of a structural damping, Sα, Iα and m denote the static
moment of the whole airfoil around the elastic axis EO, the moment of inertia of the
whole airfoil around the elastic axis EO and the mass of the whole profile, respectively.
The coefficient Sβ is the static moment of the flap of the airfoil around the flap axis
EF and Iβ is the moment of inertia of the flap of the airfoil around the flap axis
EF. Constants khh, kαα, kββ denote the spring stiffness of the flexible support of the
airfoil and x1T is the distance between the elastic axis EO and the flap axis EF. For
simplification we shall use linearized equations in the matrix form

K̂d(t) + B̂ḋ(t) + M̂d̈(t) = f̂ (t),(2.8)

where the stiffness matrix K̂, the viscous damping matrix B̂ and the mass matrix M̂

have the form

K̂ =




khh 0 0
0 kαα 0
0 0 kββ


 , B̂ =




Dhh 0 0
0 Dαα 0
0 0 Dββ


 ,(2.9)

M̂ =




m Sα Sβ

Sα Iα Iβ + x1T Sβ

Sβ Iβ + x1T Sβ Iβ


(2.10)

and the force vector f̂ and the vector of the generalized coordinates d are given by

f̂(t) =




L(t)
Mα(t)
Mβ(t)


 , d =




h(t)
α(t)
β(t)


 .(2.11)

The components of the force vector f̂ are given by

L = −
∫
ΓWt

∑2
j=1 T2jnj dS,

Mα = −
∫
ΓWt

∑2
i,j=1 Tijnj(−1)i(x1+δ1i

− xEO
1+δ1i

) dS,

Mβ = −
∫
ΓWt∩∂K

∑2
i,j=1 Tijnj(−1)i(x1+δ1i

− xEF
1+δ1i

) dS,

(2.12)

where n = (n1, n2) is the outer unit normal to ΓWt ⊂ ∂Ωt. The stress tensor Tij is
computed from the velocity and pressure fields of the flow:

Tij = ̺

[
−pδij + ν

(
∂ui

∂xj

+
∂uj

∂xi

)]
.(2.13)

2.3. Initial and boundary conditions. The Navier-Stokes equations are com-
pleted by the initial condition

u(x, 0) = u0, x ∈ Ω0,(2.14)

and the following boundary conditions. On ΓD we prescribe the Dirichlet condition

u|ΓD
= uD.(2.15)
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On the outlet ΓO we consider the so-called do-nothing boundary condition

−(p − pref )n + ν
∂u

∂n
= 0 on ΓO,(2.16)

where pref is a given reference pressure and n denotes the unit outer normal to ∂Ωt.
On ΓWt

we consider the condition

u|ΓWt
= w|ΓWt

.(2.17)

Moreover, we equip the system (2.8) with the initial conditions

α(0) = α0, α̇(0) = α1,

β(0) = β0, β̇(0) = β1,

h(0) = h0, ḣ(0) = h1,

(2.18)

where α0, α1, β0, β1, h0, h1 are input parameters of the model.
The initial value problem (2.8), (2.18) is transformed to a problem for a first-order

system and then discretized by the fourth-order Runge-Kutta method.
The interaction of a fluid and an airfoil consists in the solution of the flow prob-

lem (2.6), (2.14) – (2.17) coupled with the structural model (2.8), (2.18). In what
follows we shall be concerned with the discretization of the flow problem and describe
the algorithm for the numerical solution of the complete fluid-structure interaction
problem.

3. Discretization of the problem. We use equidistant partition of the time
interval [0, T ], formed by 0 = t0 < t1 < · · · < T , tk = kτ , where τ > 0 is a time step.
On each time level we approximate the ALE derivative by the second-order backward
difference formula and obtain the problem to find functions un+1 : Ωtn+1

7→ IR2 and
pn+1 : Ωtn+1

7→ IR such that

3un+1
−4û

n

+û
n−1

2τ
+
(
(un+1 − wn+1) · ∇

)
un+1

−ν∆un+1 + ∇pn+1 = 0
div un+1 = 0

in Ωtn+1
.(3.1)

This system is considered with the boundary conditions (2.15), (2.16), (2.17). The
symbols û

n and û
n−1 mean the functions un and un−1 transformed from the domain

Ωtn
and Ωtn−1

to the domain Ωtn+1
using the ALE mapping: û

i = ui◦Ati
◦A−1

tn+1
, i =

n − 1, n
The starting point for the approximate solution in space is the weak formulation

of problem (3.1). For this purpose we use the appropriate function spaces W =
(H1(Ω))2, X = {v ∈ W ; v|ΓD∪ΓWt

= 0} and M = L2(Ω), where t = tn+1 and
Ω = Ωtn+1

. Here H1(Ω) denotes the Sobolev space and L2(Ω) is the Lebesgue space
of square integrable functions. We introduce the notation

a(U∗, U, V ) = 3
2τ

(u, v) + ν((u, v)) + (((u∗ − wn+1) · ∇)u, v)
−(p, ∇ · v) + (∇ · u, q)

f(V ) = 1
2τ

(
4û

n − û
n−1, v

)
−
∫
ΓO

v · ndS
(3.2)

where

(a, b) =

∫

Ω

ab dx(3.3)
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and U = (u, p) ∈ W × M, U∗ = (u∗, p) ∈ W × M, V = (v, q) ∈ X × M . The solution
is U = (u, p) such that

U ∈ W × M, a(U, U, V ) = f(V ), ∀V = (v, q) ∈ X × M,(3.4)

and u satisfies the boundary conditions (2.15) and (2.17).
Now we define an approximate solution. We approximate the spaces W, X, M by

their finite dimensional subspaces W∆, X∆, M∆, ∆∈(0, ∆0), ∆0 >0, where

X∆ =
{
v ∈ W∆; v|ΓD∪ΓWt

= 0
}

.(3.5)

This means that for each ∆ ∈ (0, ∆0) we assign finite dimensional subspaces W∆, X∆,
M∆, with dimensions dimW∆ = nW (∆), dimX∆ = nX(∆), dimM∆ = nM (∆). The
approximate solution is defined as a couple U∆ = (u∆, p∆) ∈ W∆ × M∆ such that

a(U∆, U∆, V∆) = f(V∆), ∀V∆ = (v∆, q∆) ∈ X∆ × M∆(3.6)

and u∆ satisfies a suitable approximation of the boundary conditions (2.15) and
(2.17). The finite elements spaces X∆ a M∆ must satisfy the Babuška-Brezzi (BB)
condition, which guarantees the stability of the used scheme. In practical computa-
tions we use the Taylor-Hood P 2/P 1 elements. This means that the velocity compo-
nents are piecewise quadratic functions and the pressure is a piecewise linear function.
These elements satisfy the BB condition.

3.1. Stabilization of the finite element method. For high Reynolds num-
bers approximate solutions can contain nonphysical spurious oscillations. In order to
avoid them, we shall apply the streamline upwind Petrov-Galerkin (SUPG) method
together with div-div stabilization based on the forms

L∆(U∗, U, V ) =
∑

K∈T∆
δK

(
3
2τ

u − ν∆u + (w · ∇)u + ∇p, (w · ∇)v
)
K

F∆(V ) =
∑

K∈T∆
δK

(
1
2τ

(4û
n − û

n−1), (w · ∇)v
)

K
,

P∆(U, V ) =
∑

K∈T∆
τK(∇ · u, ∇ · v)K ,

(3.7)

where

U = (u, p) U∗ = (u∗, p) V = (v, q),

δK , τK ≥ 0 are suitable parameters, w = u∗ − wn+1 is the transport velocity and
(·, ·)K is the scalar product in the space L2(K) or [L2(K)]2.

The solution of the stabilized discrete problem is U∆ = (u∆, p∆) ∈ W∆ × M∆,
such that the velocity u∆ satisfies the approximation of the boundary conditions
(2.15) on ΓD and (2.17) on ΓWtn+1

and

a∆(U∆, U∆, V∆) + L∆(U∆, U∆, V∆) + P∆(U∆, V∆) = f∆(V∆) + F∆(V∆),(3.8)

∀V∆ = (v∆, q∆) ∈ X∆ × M∆.

If we solve the problem (3.8), we obtain the approximate solution at time tn+1, i.e.
uh = un+1

h and ph = pn+1
h defined in the domain Ω = Ωtn+1

.
The choice of parameters δK and τK follows the works [3] and [6]. The parameter

δK is based on the transport velocity w = u − w(tk+1) and the viscosity ν. We put

δK = δ∗
hK

2‖w‖L∞(K)
ξ(ℜw

K ),(3.9)



262 M. RŮŽIČKA, M. FEISTAUER, J. HORÁČEK, P. SVÁČEK,

where

ℜw
K =

hK‖w‖L∞(K)

2ν
(3.10)

is the so-called local Reynolds number and hK is the size of the element K measured

in the direction of w. The function ξ(·) is non-decreasing in dependence on ℜw
K in

such a way, that for local convective dominance (ℜw
K > 1) ξ → 1 and for local diffusion

dominance (ℜw
K < 1) ξ → 0. The function ξ(·) can be defined, e.g. by

ξ(ℜw
K ) = min

(
ℜw

K

6
, 1

)
.(3.11)

The parameters τK are defined by

τK = τ∗hKmaxΩ|w| ξ(RewK ), τ∗ ∈ (0, 1].(3.12)

In practical computations we use the values δ∗ = 0.025 and τ∗ = 1.

3.2. Treatment of the nonlinearity in the flow model. The nonlinear prob-
lem (3.8) is (on each time level) solved with the aid of the Oseen iterative process.
Starting from an initial approximation Un+1

∆,0 at time tn+1 and assuming that already

iterate Un+1
∆,m has been computed, we define Un+1

∆,m+1 ∈ W∆ × M∆ by

a∆(Un+1
∆,m, Un+1

∆,m+1, V∆) + L∆(Un+1
∆,m, Un+1

∆,m+1, V∆) + P∆(Un+1
∆,m+1, V∆)

= f∆(V∆) + F∆(V∆), ∀V∆ = (v∆, q∆) ∈ X∆ × M∆

.(3.13)

We obtain a sequence Un+1
∆,m, m = 0, 1, . . ., which converges to the solution Un+1

∆ of

the equation (3.8). For each time level tn+1 we set Un+1
∆,0 = (2û

n
∆ − û

n−1
∆ , pn

∆). As
numerical experiments show, only a few iterations (3.13) have to be computed on each
time level. Problem (3.13) is equivalent to a linear algebraic system, which is solved
by the direct solver UMFPACK ([1]), which works sufficiently fast for systems with
up to 105 equations.

3.3. Construction of the ALE mapping. For the construction of the ALE
mapping we employ the linear elasticity equations for small deformations

(λ + µ)∇div m + µ∆m = 0 in Ω0,(3.14)

where λ and µ are the Lamé coefficients and the displacement m is defined in Ω0.
The boundary conditions for the displacement m is prescribed by m|ΓD∪ΓO

= 0 and
m|ΓW0

is computed from the movement of the airfoil, which is given for each time t
by the knowledge of the functions h(t), α(t), β(t). Solving equation (3.14) gives us
the ALE mapping of the domain Ω0 onto Ωt by the relation

X 7→ x(X , t) = At(X) = X + m(3.15)

for each time t. From the displacement m we construct the domain velocity w with
the aid of the backward difference formula.
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Fig. 4.1. Anisotropically adapted mesh for NACA 0012 airfoil inserted into a wind tunnel

4. Results. We performed computations for a number of configurations. Here
we present results obtained for the airfoil NACA 0012 0.3 m long. The axis EO is
placed at one third of the length of the airfoil measured from the leading edge and
the axis EF is placed at 80 % of the length. The numerical simulation was carried
out for the following data:

m = 0.086622 kg, khh = 105.109 N/m,
kαα = 3.69558 Nrad/m, kββ = 0.2 Nrad/m,
Sα = 0.000779598 kgm, Sβ = 0 kg m,
Iα = 0.000487291 kgm2, Iβ = 0.0000341104 kgm2,

x1T = 0.140001 m, Dhh = 0 Ns/m,
Dαα = 0 Ns rad/m, Dββ = 0 Ns rad/m.

For the computation we used an anisotropically adapted mesh, see Figure 4.1, which
was obtained by the use of the software [2]. In Figure 4.2, the velocity isolines are
shown for the inlet velocity 5 m/s for several time instants t marked in Figure 4.3
with graphs of the functions h, α, β in dependence on time.
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Snapshot 1 Snapshot 2

Snapshot 3 Snapshot 4

Snapshot 5 Snapshot 6

Snapshot 7 Snapshot 8

Fig. 4.2. The velocity isolines for several time instants
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Fig. 4.3. Graphs of functions h, α, β in dependence on time with positions of snapshots from

Figure 4.2


