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FEM SIMULATION OF BELOW GROUND PROCESSES ON A

3-DIMENSIONAL ROOT SYSTEM GEOMETRY USING DISTMESH

AND COMSOL MULTIPHYSICS

ANDREA SCHNEPF∗ AND DANIEL LEITNER†

Abstract. Understanding the underlying below-ground processes and the dynamics of plant-
soil interactions is of major importance in areas such as agriculture or phytoremediation. The
contribution of individual plant roots to the overall effect of a whole plant root system on the
soil and vice-versa is however difficult to assess and mathematical models using different upscaling
methods are currently developed. This paper presents a numerical approach for plant and soil
interaction models on a 3-dimensional root system geometry. It is based on L-system representations
of root systems, the Matlab algorithm DistMesh for meshing the geometry and the finite element
solver COMSOL Multiphysics for solving the diffusion equation with both linear and nonlinear flux
boundary conditions at the root surfaces. Although computational limits are to be expected with
regard to the complexity of the root branching structure, we propose that this approach is useful for
evaluating different homogenisation and averaging methods by comparing effective solutions to the
results of the explicit 3-dimensional solution.

Key words. 3-dimensional model, COMSOL Multiphysics, DistMesh, finite element method,
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1. Introduction. Root architecture and root branching structure have a major
impact on the functioning of root systems, for example on the plant water and nutrient
uptake from soil. In particular in low-input agricultural systems, where nutrients are
not supplied as mineral fertilizers, plant adaptations to their soil environment is crucial
for successful plant nutrition. Models of water and nutrient uptake from soil by root
systems have been based on simple empirical equations of root length densities in soil
and have recently included more sophisticated models of root architecture [2, 5, 6].
However, these models also create volumetric sink terms for nutrient uptake from
soil that are based on root length densities. To our knowledge, these models have
never been tested against truly 3-dimensional simulations. One of the reasons for
this is the complicated fibrous geometry of root systems. At increasing complexity, 3-
dimensional representations of root systems become challenging and suitable upscaling
methods are necessary. Currently, more rigorous upscaling methods such as averaging
and homogenisation are developed for root systems; they need to be assessed by
comparing against experimental data or 3-dimensional simulations, or both. In this
paper, we use a 3-dimensional L-system representation of a simple root system [3],
and model both nutrient uptake from soil and release of organic compounds into the
soil by this root system. The numerical solution of this model is based on the finite
element method (FEM) [7] and computed using COMSOL Multiphysics.

2. Methods. Starting point is the output of an L-sytem model of a root sys-
tem [3], a string which is interpreted by a turtle graphic. The result is a polyline
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along the axis of all branches in the root system with additional information for each
segment such as corresponding root radius. Importing this geometry directly into
COMSOL and meshing this geometry has proven to be difficult due to the complexity
of the branched structure. This was particularly true when the axes of the individual
branches were not straight lines but piecewise linear approximations of bent branches
that were allowed to change direction while growing. Therefore, a finite element mesh
was first created in MATLAB and then imported into COMSOL where the finite
element model was solved.

2.1. Finite element mesh generation. The MATLAB algorithm of the mesh
generator DistMesh [4] was used for meshing the region of soil around a root system.
Signed distance and step size functions are required inputs of DistMesh.Outputs are
two matrices, one containing the coordinates of the mesh nodes and one containing
the indices of the nodes which form the tetrahedrons. The geometry is represented
implicitly using signed distance functions which are negative inside the domain that
needs to be meshed. The position of the mesh nodes is determined based on a force
equilibrium in the element edges. For triangulation, the Delaunay algorithm is used.
The MATLAB m-files of the signed distance function representing the geometry of
a soil around a root system and the corresponding step size function are shown in
appendix A and are described in the following paragraphs. An example of a resulting
mesh is shown in figure 3.1.

2.1.1. Signed distance function for root systems. The signed distance func-
tion representing the geometry of a soil around a root system was created in the fol-
lowing way: The root system created by the L-system algorithm was represented by
a polyline along the axes of the roots. All segments of the polyline were stored in a
list, where each item had the following format:

Notation Sample value Meaning
r 0.1 root radius (cm)
p [0 0 0] starting point of line segment
u [0.015836 -0.076214 -0.99697] vector between start and end point

of line segment

The main idea was to calculate the distance of a given point from the closest polyline
segment and subtract the corresponding root radius. If the result is negative, the
point lies inside the root and otherwise it lies outside the root. For each arbitrary
point q, we check whether the base of the perpendicular from q to the extended line
is inside the range of the segment (Fig. 2.1(a)), in which case the distance to the

line segment is given by d = |(q−p)×u|
|u| . Otherwise, it is given by the direct distance

between the two points p and q or p + u and q (Fig. 2.1(b)). The corresponding
MATLAB function distLinePoint is given in appendix A. The points of the re-
sulting discrete description of the domain lie inside the roots. However, we would
like to describe the influence of nutrient fluxes across the root surfaces on the sur-
rounding soil. Hence, we need to build a signed distance function where the points
of the domain lie outside of the roots. This geometry was created by using another
signed distance function which describes a box. Then, the difference between the
two sets of points (DistMesh function ddiff, [4]) represents those points which lie
outside the root system but within a given bounding box. Our MATLAB function
distTree creates this domain and is given in appendix A.



FEM SIMULATION OF BELOW GROUND PROCESSES 323

(a) Base of the perpendicular from q lies on
the line segment

(b) Base of the perpendicular from q lies out-
side the line segment

Fig. 2.1. Distance between a point of the domain and a line segment of the root system

2.1.2. Varying step size function. By default, a uniform step size is used by
DistMesh. In our problem, we expect most changes to happen close to the surface
of the roots where nutrient uptake occurs. Therefore, a nonuniform stepsize function
myfh (appendix A) was created where the step size near the root surface was set to
a smaller value than in the rest of the domain. Since the initial mesh is iteratively
improved by solving for a force equilibrium in the element edges, the relative step size
at the bounding box boundaries was set to 0.7. This acts as a counterforce to the
small element sizes near the root surface boundaries.

2.1.3. Mesh quality. The quality of each element in the mesh is determined by
the ratio between the largest inscribed sphere and the smallest circumscribed sphere,
i.e.,

q = 3
rin

rout

. (2.1)

The factor 3 ensures that the maximum quality is equal to 1 (equilateral tetrahedron);
the lowest quality is equal to zero.

2.2. Solution of the finite element model in COMSOL Multiphysics.

We consider two scenarios. In the first example, we study the effect of a branched
root system which takes up nutrients everywhere on the root surfaces. The initial
nutrient concentration in soil is assumed to be homogeneous. Nutrients are taken up
at the root surface according to Michaelis-Menten kinetics. Furthermore, nutrients in
soil solution are assumed to be in equilibrium with the nutrients adsorbed to the soil
solid phase and to move within the soil liquid phase due to diffusion only. The model
thus is based on the diffusion equation with non-linear flux boundary conditions at
the root surfaces and zero Neumann boundary conditions at the bounding box as well
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as homogeneous initial conditions (equations (2.2)-(2.5)).

(b + θ)
∂c

∂t
= ∇ · (Dθf∇c) , (2.2)

Dθf∇c =
Fmaxc

Km + c
when x is on a root surface, (2.3)

Dθf∇c = 0 when x is on the bounding box, (2.4)

c = c0 at t = 0, (2.5)

where c is the nutrient concentration in soil solution, b is the buffer power which
describes the partition of nutrient between solution and solid phases of the soil, D is
the nutrient diffusion coefficient in free water, θ is the volumetric water content, f is
the impedance factor, Fmax is the maximal nutrient influx into the root, Km is the
Michaelis-Menten constant, the concentration at which half the maximum influx is
reached, c0 is the initial nutrient concentration in soil solution, x is the space variable
and t is the time.

In the second example, we study the effect of a branched root system which
releases photosynthate carbon as root exudates into the soil everywhere on the root
surfaces. As in the previous example, exudates in soil solution is assumed to be in
equilibrium with the exudates adsorbed to the soil solid phase and to move within
the soil liquid phase due to diffusion only. The difference to the previous example
is a different boundary condition for the root surfaces where we assume a constant
exudation flux. Furthermore, root exudates are decomposed by micoorganisms, thus
there is an additional first order reaction term in the equation. The model is based on
a diffusion-reaction equation with linear flux boundary conditions at the root surfaces
and zero Neumann boundary conditions at the bounding box. Initially, we assume
that there are no exudates present in the soil. The model is given by equations
(2.6)-(2.9).

(bex + θ)
∂cex

∂t
= ∇ · (Dexθf∇cex) − kcex, (2.6)

Dexθf∇cex = Fex when x is on a root surface, (2.7)

Dexθf∇cex = 0 when x is on the bounding box, (2.8)

cex = 0 at t = 0, (2.9)

where cex is the exudate concentration, bex is the buffer power of the exudate, Dex is
the exudate diffusion coefficient in free water and Fex is the constant flux of exudates
per unit surface area of root surface.

Equations (2.6)-(2.9) were solved using the finite element solver and analysis
package COMSOL Multiphysics and using the same mesh as in the first example.
Simulation time was 1 day.

3. Results.

3.1. Finite element mesh. Finite element meshes of a soil boxes surrounding
a plant root systems were created with DistMesh (e.g. see figure 3.1). The algorithm
generally produced meshes of high quality. The quality of each element was calculated
according to equation (2.1). In table 3.1, the arithmetic mean and variance of all
element qualities is shown for different initial step sizes and for different relative sizes
near the root boundaries. The results also show that the difference between the
relative step size at the outer boundaries, the faces of the box, and the root system
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Fig. 3.1. Finite element mesh of a soil surrounding a root system (split view)

h0=0.05 h0=0.03 h0=0.03 h0=0.021

hroot=0.1 hroot=0.1 hroot=0.05 hroot=0.1

# nodes 5,845 25,731 11,177 39,784
# tetrahedrons 27,377 132,263 50,162 213,957
mean quality 0.817 0.860 0.777 0.877
variance 0.018 0.015 0.021 0.014

Table 3.1

Meshing the region of soil surrounding a root system - Quality for different initial step sizes h0

and relative sizes near the root boundaries hroot

boundaries should not be too big. Otherwise, both the mesh quality and number
of nodes are decreased. This appears to be due to the force equilibrium method
used by DistMesh to calculate the positions of the nodes such that many of the
initial nodes of the equilateral mesh of the bounding box will be drawn outside the
domain and removed. Further improvement of the step size function is required. In
this work, the step size function was varied by specifying a smaller relative step size
near the root surface boundaries. However, the complicated structure of the geometry
requires more sophisticated distance functions which are based on curvature or feature
size adaptations and/or gradient limiting methods [4]. However, the meshes were
of sufficient quality in order to solve the diffusion-reaction equation with nonlinear
boundary conditions in COMSOL . This mesh is suitable to solve arbitrary parabolic
equations in any finite element solver. As a result, it is possible to solve state of the
art models for plant and soil interactions on realistic root geometries.

3.2. Example 1: Nutrient uptake. The classical model of nutrient uptake by
a single cylindrical root is applied to this 3-dimensional geometry of a root system with
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bent roots. Nutrient uptake from soil is not accounted for by an averaged sink term but
by considering nutrient flux into each individual root. Figure 3.2 shows the nutrient
concentration in a soil around a root system according to equations (2.2)-(2.5). The
parameter values where chosen such that they represent uptake of phosphate from soil
by maize. The initially homogeneous concentration is decreased near the roots due to
nutrient uptake which leads to the formation of, partly overlapping, depletion zones.
Figure 3.3(a) shows the nutrient depletion zone around an individual root which is
not influenced by a neighbouring root. The result is the same as usually predicted by
1-D axial symmetric calculations [5]. Figure 3.3(b) shows the effect when depletion
zones overlap. The nutrient concentration between two roots is plotted along the line
shown in the upper right corner. It can be seen that the concentration remains at its
initial value far away from the root when there is no competition. Otherwise, when
roots are competing for nutrients, the concentration between two roots is much lower
than the initial value. This situation can only be investigated in detail using full 3-
dimensional simulation of the root system. Depending on the shape of the geometry
and the extent of the depletion zones, this may have a major influence on simulated
overall nutrient uptake by the root system.

Fig. 3.2. Nutrient depletion near a root system

3.3. Example 2: Release of organic compounds from root into the soil.

Roots can release a significant part of their photosynthate carbon into the soil (exuda-
tion). This mechanism supports a higher microbial community near the root surface
and effects the availability of poorly mobile nutrients to the root. In this example,
we assume a constant flux of exudates across the surfaces of all roots within the root
system into the soil. Figure 3.4 shows the exudate concentration in the soil around
the root system according to equations (2.6)-(2.9). The exudates accumulate near
the root surface. Figure 3.5(a) shows the exudate concentration around an individual
root which is not influenced by a neighbouring root. The result is again the same as
usually predicted by 1-D axial symmetric calculations. Figure 3.5(b) shows the effect
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(a) no overlapping depletion zones (b) overlaping depletion

Fig. 3.3. Exudation concentration around a single root

when accumulation zones overlap. The exudate concentration between two roots is
plotted along the line shown in the bottom right corner. Again, this situation can only
be investigated in detail using full 3-dimensional simulation of the root system. De-
pending on the shape of the geometry and the extent of the depletion zones, this may
have a major influence on simulated overall effect on nutrient availability or microbial
populations.

Fig. 3.4. Release of organic compounds by a root system

4. Summary. In this work we presented a method to generate finite element
meshes of soil around plant roots in three dimensions. The root system geometry was
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(a) No overlapping accumulation zones (b) Overlapping accumulation of exudates

Fig. 3.5. Exudate concentration around a single root

created with a root growth model using an L-system algorithm. Meshing of highly
branched structures is not trivial, e.g. it was not possible to perform meshing with
the COMSOL Multiphysics meshing tool. Our approach is based on the DistMesh al-
gorithm. The geometry is described implicitly by creating a signed distance function.
The resulting mesh is suitable for arbitrary parabolic equations and therefore it is
possible to solve state of the art models for plant and soil interactions on realistic
root geometries. As examples we presented both nutrient uptake and root exudation
by a three-dimensional root system. Both cases highlight the possibly significant com-
petition between the individual roots within a root system. This approach provides
a tool to compare and assess different averaging methods.
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Appendix A. Code of MATLAB functions.

%

% Distance between line and point

%

% line is given by [p,p+u], point q;

%

function d = distLinePoint(p,u,q)

p0 = ones(size(q,1),1)*p;

t = ((q-p0)*u’)/(norm(u)^2);

i0 = t<0;

i1 = t>1;

ie = t>=0 & t<=1;

u0 = ones(size(q,1),1)*u;

d(i0) = sqrt(sum( (p0(i0,:)-q(i0,:)).^2, 2));

d(i1) = sqrt(sum( (p0(i1,:)+u0(i1,:)-q(i1,:)).^2, 2));

d(ie) = sqrt(sum( cross(q(ie,:)-p0(ie,:),u0(ie,:)).^2, 2))/norm(u);

function D = distTree(p)

%

global tree; %list of segments making up the root system

D = distBox(p); % p ... vector of mesh nodes

for i = 1 : length(tree)

d = distLinePoint(tree{i}.p, tree{i}.u,p) - tree{i}.r;

D = ddiff(D,d);

end

function h = myfh ( p, varargin )

global tree; %list of segments making up the root system

h = min(abs(distBox(p)) + ones(size(p,1),1)*0.7,1);

for i = 1: length(tree)

h = min(abs(distLinePoint(tree{i}.p, tree{i}.u, p) - tree{i}.r) ...

... + ones(size(p,1),1)*0.1, h);

end
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Commands are described in [1].
% m-file Mesh2Comsol

% Taken from COMSOL Scripting Guide, p. 129

%1 Load the external mesh data to the command line:

load nodes.txt

load tetra.txt

%2 Create an initial mesh object from the external mesh data:

el = cell(1,0);

%tet = treeMesh_t+1; % only needed if lowest mesh point index is zero

el{1} = struct(’type’,’tet’,’elem’,tetra’);

m = femmesh(nodes’,el);

%(Note the transpositions of the matrices tet and coord.)

%3 Enrich the initialized mesh object with information required for

% forming a valid mesh, and finally visualize the mesh:

m = meshenrich(m);

meshplot(m);

% Taken from COMSOL Scripting guide, p. 128

%4 Import mesh into COMSOL GUI

clear fem

fem.mesh = m;


