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AN ITERATIVE SUBSTRUCTURING METHOD FOR THE

DISCRETIZED STOKES EQUATIONS BY A STABILIZED FINITE

ELEMENT METHOD∗

ATSUSHI SUZUKI†

Abstract. A simple algorithm of iterative substructuring method as the same way of elasticity
problem is proposed for a discretized Stokes equation by P1/P1 element and penalty stabilization
technique. Owing to the stability term, solvabilities of local Dirichlet problem, of local Neumann
problem for preconditioner, and of the coarse space problem are ensured. Conjugate gradient method
with preconditioner constructed by a balancing technique is used to solve the linear system of the
discretized Stokes equations whose matrix is symmetric but indefinite.
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1. Introduction. An iterative substructuring method with balancing Neumann-
Neumann preconditioner [3, 7] is known as an efficient parallel algorithm for elasticity
problem. This method is extended to the Stokes equation by Pavarino and Widlund [4]
and to the Oseen equations by Lube et al.[2]. In contrast to elasticity equations whose
coefficient matrix is symmetric positive definite, discretized Stokes equations consist
of an indefinite matrix. Therefore, they use P2/P0-discontinuous pressure element to
construct Schur complement system with “benign space” where incompressibility of
the velocity is satisfied in discrete sense, and solve it by Conjugate Gradient (CG)
method within the benign space. For construction of the coarse space, supplementary
inf-sup condition is considered to ensure solvability of the Schur complement on the
space.

In this paper, we introduce a simple algorithm, which is same as elasticity prob-
lem, for discretized Stokes equation with P1/P1 element for the velocity and the
pressure unknowns and penalty stabilization technique [1]. Owing to the stability
term, solvabilities of local Dirichlet problem for Schur complement system, of local
Neumann problem for preconditioner, and of the coarse space problem are ensured.
We employ CG method to solve linear system with symmetric indefinite matrix and
here we also use a preconditioner whose matrix is indefinite. This solver plays a key
role in the simple construction of the iterative substructuring method for the Stokes
equations. We consider the case that a solution has some ambiguity, e.g. rigid body
rotations and pressure constant.

The contents of this paper are as follows. First, we describe governing equations
and finite element approximation. Second, we introduce non-overlapping domain
decomposition, construct Schur complement system, and propose a direct solver for
local problem. Finally we show a balancing Neumann-Neumann preconditioner with
a numerical example.
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2. Stabilized finite element approximation to Stokes equations. We con-
sider the Stokes equations in spherical shell domain with slip boundary conditions
which appears in numerical simulation of the Earth’s mantle convection problem [6] .
Here we consider the velocity and pressure in a function space with constraints to
remove ambiguity of rigid body rotations and pressure constant. We show a finite
element approximation and linear equations with stiffness matrix which is a main
target of parallel solver.

2.1. Stokes equations with slip boundary conditions. Let Ω be a spherical
shell domain, Ω := {x ∈ R

3 ; R1 < |x| < R2} and Γk(k = 1, 2) be its boundary,
Γk := {x ∈ ∂Ω ; |x| = Rk}. We consider the Stokes equations with slip boundary
conditions on the boundary:

−2∇ · D(u) + ∇p = f, (2.1a)

∇ · u = 0 (2.1b)

in the domain and

u · nΩ = 0, (2.1c)

D(u)nΩ × nΩ = 0 (2.1d)

on the boundary ∂Ω = Γ1 ∪ Γ2. Here D(u) is the strain rate tensor [D(u)]k l :=
(∂uk/∂xl + ∂ul/∂xk)/2 and nΩ is an outer normal to the boundary.

We prepare function spaces where velocity and pressure are found,

V := {v ∈ H1(Ω)3 ; v · nΩ = 0 on Γ1 ∪ Γ2, (v, vk) = 0 (k = 1, 2, 3)},

Q := {q ∈ L2(Ω) ;

∫

Ω

q dx = 0} ,

and bilinear forms

a(u, v) := 2

∫

Ω

D(u) : D(v) dx for u, v ∈ V,

b(u, p) := −

∫

Ω

∇ · u p dx for u ∈ V and p ∈ Q .

Here vk is a rigid rotation vector defined by vk(x) := ek × x with [ek]l = δk l (1 ≤
k, l ≤ 3).

A weak formulation of (2.1) is to find (u, p) ∈ V × Q such that

a(u, v) + b(v, p) = (f, v) for any v ∈ V, (2.2a)

b(u, q) = 0 for any q ∈ Q . (2.2b)

2.2. Finite element approximation with penalty stabilization. We em-
ploy an equal order approximation to the velocity and pressure with P1/P1 element
and a penalty stabilization [1].

Let Ωh be a polyhedral approximation to Ω and Th be a partition of Ω̄h by
tetrahedra. Let Sh be the P1 finite element space defined by

Sh := {v ∈ C0(Ω̄h) ; v|K ∈ P1(K),K ∈ Th} ,
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where P1 is the set of polynomials of degree 1. In the following expression, we omit
subscript h of the approximated domain Ωh for simplicity. We prepare function spaces,

Vh := {v ∈ S3
h ; v(P ) · nΩ(P ) = 0, (v, vk) = 0 (k = 1, 2, 3)},

Qh := {q ∈ Sh ;

∫

Ω

q dx = 0} .

Here P is a node on Γ1 ∪ Γ2, and nΩ is the unit outer normal to the domain Ω not
to Ωh. As a stabilization technique for a remedy to insufficiency of satisfaction of the
inf-sup condition, we use the following bilinear form,

d(p, q) :=
∑

K∈Th

h2
K

∫

K

∇p · ∇q dx .

A finite element approximation to (2.2) is to find (uh, ph) ∈ Vh × Qh such that

a(uh, vh) + b(vh, ph) = (f, vh) for any vh ∈ Vh , (2.3a)

b(uh, qh) − δ d(ph, qh) = 0 for any qh ∈ Qh . (2.3b)

Here δ > 0 is called as the stabilization parameter.

2.3. Finite element equation with matrix and orthogonal projection.

We use finite element bases, {ϕα}α∈ΛY
for the velocity and {ψµ}µ∈ΛX

for the pressure
to show a matrix form of (2.2). Here ΛX := {1, 2, · · · , nX} is an index set of the nodes
Pµ in the domain and on the boundary, Pµ ∈ Ω ∪ ∂Ω (µ ∈ ΛX). Let ΛΓ ⊂ ΛX be
an index set of the node on the boundary ∂Ω = Γ1 ∪ Γ2. ΛY := {1, 2, · · · , nY } with
nY = 3 nX . We associate a pair [α0, α1] of a node number and a component number
with an index α ∈ ΛY and identify them

α = [α0, α1] (α0 ∈ ΛX , α1 ∈ {1, 2, 3}) . (2.4)

We assume that the association of [α0, α1] with α ∈ ΛY is put as

α0 = ⌊(α − 1)/3⌋ + 1, α1 = ((α − 1) mod 3) + 1 , (2.5)

where ⌊ · ⌋ denotes the greatest integer less than or equal to the argument. This means
the numbering of the degrees of freedom is done as (3(α0−1)+1, 3(α0−1)+2, 3(α0−
1) + 3) at a node Pα0 . The basis ϕα satisfies that

[ϕα(Pβ0)]β1 = δα β (α, β = [β0, β1] ∈ ΛY ) .

Let {~nµ}µ∈ΓΛ ⊂ R
NY correspond to outer normals, [~nµ ]α = δα0 µ[nΩ(Pµ)]α1 , and let

~1 ∈ R
NX be defined by [~1]µ = 1 (µ ∈ ΛX). MY and MX denote mass matrices on

S3
h and Sh, respectively. We introduce subspaces of R

NY and R
NX for finite element

solutions,

~V := {~v ∈ R
NY ; ~v · ~nµ = 0, (µ ∈ ΛΓ), (MY ~v,~vk) = 0 (k = 1, 2, 3)},

~Q := {~q ∈ R
NX ; (MX~q,~1) = 0} ,

where (·, ·) is ℓ2-inner product of R
NY or R

NX . Let A, B and D be stiffness matrices
defined by

[A]α β := a(ϕβ , ϕα) for α, β ∈ ΛY ,

[B]µ β := b(ϕβ , ψµ) for µ ∈ ΛX , β ∈ ΛY ,

[D]µ ν := d(ψν , ψµ) for µ, ν ∈ ΛX .
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A matrix form of the finite element equations (2.3) is to find (~u, ~p) ∈ ~V × ~Q such that

([

A BT

B −δD

] [

~u
~p

]

,

[

~v
~q

])

=

([

~f
0

]

,

[

~v
~q

])

.

Here [~f ]α := (f, ϕα). This discrete variational form is expressed as a usual linear

system with orthogonal projections. We prepare PV from R
NY onto ~V and PQ from

R
NX onto ~Q. They are expressed as follows.

PV ~u = ~u −
∑

µ∈ΛΓ

(~v, ~nµ)~nµ −
∑

1≤k≤3

(~v, ~mk)~mk ,

PQ~p = ~p − (~p, ~m0)~m0 ,

where {~mk} satisfy span[ { ~mk }1≤k≤3, {~nµ}µ∈ΛΓ ] = span[ {MY ~vk }1≤k≤3, {~nµ}µ∈ΛΓ ]

and { ~mk }1≤k≤3, {~nµ}µ∈ΛΓ are orthonormal. We set ~m0 := MX
~1/||MX

~1||. A matrix
form with orthogonal projection of the finite element equations (2.3) is to find (~u, ~q) ∈
~V × ~Q such that

[

PV 0
0 PQ

] [

A BT

B −δD

] [

PV 0
0 PQ

] [

~u
~p

]

=

[

PV 0
0 PQ

] [

~f
0

]

. (2.6)

Remark 1. A preconditioned conjugate gradient (PCG) method can solve (2.6),
though the stiffness matrix is indefinite. When procedure of the PCG does not meet a
breakdown, the solution is found in the largest Krylov subspace generated from initial
residual and preconditioned coefficient matrix [5].

From coercivity of the bilinear forms a(·, ·) on Vh ×Vh and d(·, ·) on Qh ×Qh, we
obtain following properties on the stiffness matrices of the discretized Stokes equations
with the penalty-type stabilization method.

Proposition 1. We have

A ∈ R
NY ×NY is symmetric and positive definite on ~V ,

D ∈ R
NY ×NY is symmetric and positive definite on ~Q .

Lemma 1. Let ~U ⊂ ~V and ~R ⊂ ~Q. The stiffness matrix of the discretized

Stokes equations by the penalty-type stabilization method is regular on the product of

subspaces, ~U × ~R.

Proof. Let (~u, ~p) ∈ ~U × ~R. We have (~u,−~p) ∈ ~U × ~R. The positivity of the skewed
stiffness matrix,

([

A BT

B −δD

] [

~u
~p

]

,

[

~u
−~p

])

= (A~u, ~u) + δ (D~p, ~p) > 0

leads to the result.

3. Non-overlapping domain decomposition and iterative substructur-

ing method. We describe an iterative substructuring method which is obtained by
decomposition of the stiffness matrix according to non-overlapping domain decompo-
sition. In case of the Stokes equations, since stiffness matrix is not positive definite,
solvability of subproblems has to be considered.
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3.1. Decomposition of domain and stiffness matrices. We decompose the
domain Ω into a union of D non-overlapping subdomains,

Ω̄ =
⋃

1≤i≤D

Ω̄(i), Ω(i) ∩ Ω(j) = ∅ ( 1 ≤ i < j ≤ D ) .

We introduce an interface among the subdomains by

F :=
⋃

1≤i≤j≤D

∂Ω(i) ∩ ∂Ω(j) .

Here F contains both original boundary ∂Ω and the artificial boundary induced from

the non-overlapping domain decomposition. We define index sets Λ
(i)
X (1 ≤ i ≤ D)

and Λ
(F)
X by

Λ
(i)
X :=

{

µ ∈ ΛX ; Pµ ∈ Ω(i)
}

(1 ≤ i ≤ D) , n
(i)
X := #Λ

(i)
X ,

Λ
(F)
X := {µ ∈ ΛX ; Pµ ∈ F} , n

(F)
X := #Λ

(F)
X ,

Λ
(F),i
X :=

{

µ ∈ ΛX ; Pµ ∈ F ∩ ∂Ω(i)
}

, n
(F),i
X := #Λ

(F),i
X .

We note ΛΓ ⊂ ΛF
X . Λ

(i)
X corresponds to unknowns of Dirichlet problems and Λ

(i)
X ∪

Λ
(F),i
X corresponds to unknowns of Neumann problems.

Remark 2. This decomposition way of nodes, where nodes in subdomains and
ones on boundaries are separated, differs from usual way of iterative substructuring
method. In this way, all subdomains are treated as floating subdomains [7] and
original boundary conditions are separately treated from subproblems.

Index sets Λ
(i)
Y (1 ≤ i ≤ D) and Λ

(F)
Y are defined from Λ

(i)
X (1 ≤ i ≤ D) and

Λ
(F)
X with the association rule (2.4), respectively. We have decomposition of indices

without overlapping,

ΛX = Λ
(1)
X ⊕ Λ

(2)
X ⊕ · · · ⊕ Λ

(D)
X ⊕ Λ

(F)
X ,

ΛY = Λ
(1)
Y ⊕ Λ

(2)
Y ⊕ · · · ⊕ Λ

(D)
Y ⊕ Λ

(F)
Y .

We define restriction operators R
(i)
X : ΛX → Λ

(i)
X , R

(F)
X : ΛX → Λ

(F)
X , and R

(i)
Y for the

velocity unknowns by the same way. Now we decompose the stiffness matrix A,

[A(i) ]α β := 2

∫

Ω(i)

D(ϕβ) : D(ϕα) dx α, β ∈ Λ
(i)
Y (1 ≤ i ≤ D) ,

[ A(i,F) ]α β := 2

∫

Ω(i)

D(ϕβ) : D(ϕα) dx α ∈ Λ
(i)
Y , β ∈ Λ

(F),i
Y (1 ≤ i ≤ D) ,

[A
(F)
i ]α β := 2

∫

Ω(i)

D(ϕβ) : D(ϕα) dx α, β ∈ Λ
(F),i
Y (1 ≤ i ≤ D) ,

[A(F) ]α β := 2

∫

Ω

D(ϕβ) : D(ϕα) dx α, β ∈ Λ
(F)
Y .

We note that [ A(F) ]α β =
∑

1≤i≤D[A
(F)
i ]α β (α, β ∈ Λ

(F)
Y ) . Other matrices B and D

are decomposed in the same way. We decompose the stiffness matrix of the Stokes
equations,

K(i) :=

[

A(i) B(i)T

B(i) − δD(i)

]

, K(i,F) :=

[

A(i,F) B(i,F)T

B(i,F) − δD(i,F)

]

, K
(F)
i :=

[

A
(F)
i B

(F)
i

T

B
(F)
i − δD

(F)
i

]

.
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We obtain decomposition of the stiffness matrix as usual way of iterative substruc-
turing method,















K(1) K(1,F)

K(2) K(1,F)

. . .
...

K(D,F) K(D,F)

K(F,1) K(F,2) · · · K(F,D)
∑

1≤i≤D K
(F)
i















.

However, (2.6) contains the orthogonal projection. So we need to prepare a decom-

position of the orthogonal projection into local projections on subdomains. Let ~V (i)

and ~Q(i) be subspaces defined by

~V (i) := {~v(i) ∈ R
N

(i)
Y ; (~v(i), R

(i)
Y ~mk) = 0 (1 ≤ k ≤ 6) } ,

~Q(i) := { ~q(i) ∈ R
N

(i)
X ; (~q(i), R

(i)
X ~m0) = 0 } ,

where {~mk}4≤k≤6 are generated from rigid body displacement modes and mass-matrix
weight as the same way of rigid body rotation modes. We introduce orthogonal projec-

tions P
(i)
Y : R

N
(i)
Y → ~V (i), and P

(i)
Q : R

N
(i)
X → ~Q(i). Let P (i) denote

[

P
(i)
Y

P
(i)
Q

]

. Let

{ ~̃m
(i)
k }0≤k≤6 be orthonormal vectors satisfying span[{ ~̃m

(i)
k }1≤k≤6] = span[{R

(i)
Y ~mk}1≤k≤6],

and G(i) be a constraint matrix defined by G(i)T
:= [ ~̃m

(i)
0 , ~̃m

(i)
1 , · · · , ~̃m

(i)
k ]. We intro-

duce (N
(i)
Y + N

(i)
X + 7) × (N

(i)
Y + N

(i)
X + 7) matrix defined by







P (i)K(i)P (i) P (i)K(i,F) P (i)K(i)G(i)T

K(F ,i)P (i) K
(F)
i K(F,i)G(i)T

G(i)K(i)P (i) G(i)K(i,F) G(i)K(i)G(i)T






,

which operates to [~x(i)T ~x
(F)
i

T ~x
(0)
i

T ]T ∈ (V (i) × Q(i)) ⊕ R
N

(i)
Y

+N
(i)
X ⊕ R

7.

3.2. Local and global Schur complement matrices. Assuming regularity
of P (i)K(i)P (i) on V (i) × Q(i), we can define local Schur complement,

S(i) :=

[

K
(F)
i K(F,i)G(i)T

K(F,i)G(i)T
G(i)K(i)G(i)T

]

−

[

K(F,i)

G(i)K(i)

]

P (i)[(P (i)K(i)P (i))†]P (i)
[

K(i,F) K(i)G(i)T
]

,

which operates to [~x
(F)
i

T ~x
(0)
i

T ]T ∈ R
N

(i)
Y

+N
(i)
X ⊕R

7. Here † means the pseudo inverse
(the Moore-Penrose inverse) operator. This assumption of regularity is satisfied in
the case of the discretized Stokes equation by the stabilized finite element method of
penalty type, which is shown in the next section.

Let Λ(0) := {1, 2, · · · , 7D} be an index set of unknowns of rigid body movements
and pressure constant (~u(0), ~p(0)) ∈ R

6D+D, and R̃(i) be a restriction operator from

R
N

(F)
Y

+N
(F)
X ⊕ R

7 D onto R
N

(F),i

Y
+N

(F),i

X ⊕ R
7 . We finally define Schur complement

system to (2.6) by

S := P̃





∑

1≤i≤D

R̃(i)T S(i)R̃(i)



 P̃ .
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Here P̃ is an orthogonal projection from R
N

(F)
Y

+N
(F)
X ⊕R

7 D onto ~W which is defined
by

~W :=























~u(F)

~p(F)

~u(0)

~p(0)









∈ R
N

(F)
Y

+N
(F)
X

+6 D+D ; (~u(F), ~nµ) = 0 (µ ∈ ΛΓ) ,

(~u(F), R
(F)
Y ~mk) +

∑

1≤i≤D

∑

1≤l≤6

( ~̃m
(i)
l , R

(F)
Y ~mk)[~u(0)]6i+l = 0 (1 ≤ k ≤ 6) ,

(~p(F), R
(F)
X ~m0) +

∑

1≤i≤D

( ~̃m
(i)
0 , R

(F)
X ~m0)[~p

(0)]i = 0







.

Remark 3. Since the Schur complement matrix S is symmetric and regular
on ~W , a preconditioned conjugate gradient (PCG) method can be employed. We
note that S is indefinite and a Balancing Neumann-Neumann preconditioner which
is constructed in the similar manner to elasticity problems is also indefinite. In the
iterative procedure, PCG generates approximate solutions in Krylov subspaces with
initial residual in the space of both velocity and pressure unknowns not within so-
called “benign space”[4].

3.3. Regularity of Dirichlet subproblems and direct factorization solver.

Since A(i) is defined with inner nodes of Ω(i), it corresponds to homogeneous Dirichlet
boundary data. The stabilized matrix D(i) has the same property of pressure Poisson
equation.

Proposition 2. We have

A(i) is symmetric and positive definite on R
N

(i)
Y ,

D(i) is symmetric and positive definite on R
N

(i)
X .

We obtain the regularity of the local stiffness matrix as a corollary of Lemma 1.
Corollary 1. K(i) is regular on V (i) × Q(i).

Advantage of iterative substructuring method in computational costs is that the
algorithm allows to use combination of fast direct solver for the subproblems whose size
are small, and fast iterative solver with preconditioner for unknowns on the artificial
interface. We will show a block-wise LDLT factorization can be used to solve the
subproblem to find ~x(i) ∈ V (i) × Q(i) satisfying

P (i)K(i)P (i)~x(i) = P (i)~g(i) . (3.1)

The subproblem (3.1) equals to the problem with Lagrange multiplier ~λ, to find

(~x(i), ~λ) ∈ R
N

(i)
Y

+N
(i)
X × R

7 satisfying

[

K(i) G(i)T

G(i) 0

] [

~x(i)

~λ

]

=

[

~g(i)

0

]

. (3.2)

To proceed a block-wise LDLT factorization, we first introduce re-ordering of indices

of Λ
(i)
Y ⊕ Λ

(i)
X . Re-ordered index is defined as

Λ̂(i) := {α = [α0, α1], α0 ∈ Λ
(i)
X , 0 ≤ α1 ≤ 3} ,
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where 0-th index of the component is for the pressure. Let K̂(i) be the re-ordered
matrix of K(i) with Λ̂(i) and

Ḡ(i)T := [m̂
(i)
0 , m̂

(i)
1 , m̂

(i)
2 , m̂

(i)
3 ] ,

Ĝ(i)T := [m̂
(i)
0 , m̂

(i)
1 , m̂

(i)
2 , m̂

(i)
3 , m̂

(i)
4 , m̂

(i)
5 , m̂

(i)
6 ] .

Theorem 1. Re-ordered subproblem to find (~̂x(i), ~λ, λ0) ∈ R
N

(i)
Y

+N
(i)
X × R

8 satis-

fying





K̂(i) Ĝ(i)T 0

Ĝ(i) 0 0
0 0 1









~̂x(i)

~λ
λ0



 =





~̂g(i)

0
0



 (3.3)

can be solved by 4 × 4 block-LDLT factorization. Here, the last column and the last

row are added to make the matrix size be 4× (N
(i)
X +2) and λ0 is a dummy variable.

Proof. Let Rm be a restriction from R
N

(i)
Y

+N
(i)
X onto R

4m for m = 1, 2, · · · , N
(i)
X .

From Lemma 1, we have RmK̂(i)RT
m is regular on R

4m that is equivalent to K̂(i) is

regular on KerRm. For the (N
(i)
X + 1)-th step of factorization, we deal with a linear

system with constraint matrix Ḡ(i),

[

K̂(i) Ḡ(i)T

Ḡ(i) 0

]

.

This system can be factorized by 4 × 4 block because K̂(i) is regular on KerḠ(i). At
the finial stage, K̂(i) is also regular on KerĜ(i).

4. Balancing Neumann-Neumann preconditioner. The balancing Neumann-
Neumann preconditioner [3] is known as an optimal preconditioner for iterative sub-
structuring method for elasticity problems. In the balancing preconditioner, a coarse
space is added to local Neumann-Neumann preconditioner for global communication
among subdomains. This preconditioner is extended to the Stokes equations with
P2/P0-discontinuous pressure element by Pavarino and Widlund [4]. However, in the
case of the Stokes equations, supplementary inf-sup condition should be satisfied in the
coarse space. In our method using P1/P1 element with stabilizing technique, Schur
complement matrix is regular on a coarse space which is generated in the same way
of elasticity problems. We can directly apply PCG method to the Schur complement
system with Balancing Neumann-Neumann preconditioner which is also indefinite.

4.1. Feasibility of algorithm. We construct a coarse space from rigid body
modes and pressure constant with weight of mass matrices and a partition of unity
[7].

~Z(i) := span





{

~m
(F),i
k

[

{( ~̃m
(i)
l , ~m

(i)
k )}0≤l≤6

]

}

0≤k≤6



 ( 1 ≤ i ≤ D ) ,

~Z :=
{

~z ∈ R
N

(F)
Y

+N
(F)
X ⊕ R

7 D ; ~z =
∑

1≤i≤D

R̃(i)T D̃(i)~z(i), ~z(i) ∈ ~Z(i)
}

.
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Here D̃(i) =

[

D(i) 0
0 I7

]

and {D(i)}1≤i≤D is a partition of unity corresponding to the

domain decomposition. A coarse space is defined by ~Y := ~Z ∩ ~W . Let PY be an

orthogonal projection from R
N

(F)
Y

+N
(F)
X ⊕ R

7 D onto ~Y and S0 := PY SPY . We have
regularity properties of local Schur matrix S(i) on ~Z(i) and of global Schur complement
matrix S0 on ~Y .

Lemma 2. Local Schur matrix S(i) is regular on ~Z(i)⊥.

This is obtained from a property of local Neumann problem,

[

K(i) K(i,F)

K(F ,i) K
(F)
i

]

is regular on span

{[

~m
(i)
k )

~m
(F),i
k

]}⊥

.

Remark 4. Local Neumann problem is expressed as to find (~x(i), ~x(F),i, ~λ) ∈

R
N

(i)
Y

+N
(i)
X × R

N
(F),i

Y
+N

(F),i

X × R
7 satisfying





K(i) K(i,F) G(i)T

K(F,i) K
(F)
i G(F),iT

G(i) G(F),i 0









~x(i)

~x(F),i

~λ



 =





0
~g(F),i

0



 . (4.1)

We can also employ the 4 × 4 block-LDLT factorization as Dirichlet local problem.
Theorem 2. S0 is regular on ~Y .

This follows from the fact that the total Stokes stiffness matrix is regular on (~V1 ×
~Q1) ⊕ (~V2 × ~Q2) ⊕ · · · ⊕ (~VD × ~QD) ⊕ ~Y , which is obtained from Lemma 1.

Finally we can define a balancing Neumann-Neumann preconditioner QBNN which
operates to [~x(F)T ~x(0)T ]T ∈ ~W .

QBNN := P̃ (I − S†
0S)





∑

1≤i≤D

R̃(i)T D̃(i)S(i)†D̃(i)R̃(i)



 (I − S S†
0)P̃ + S†

0 .

Here S(i)† is a pseudo-inverse of S(i) on ~Z(i) and S†
0 is a pseudo-inverse of S0 on ~Y .

4.2. Numerical results. We consider the Stokes problem in the spherical do-
main with R1 = 0.5 and R2 = 1. Fig. 4.1 shows the domain and way of domain
decomposition into a union of 8 subdomains, where one subdomain is removed to
show domain decomposition. We prepared mesh subdivisions with three different
mesh sizes, and observed number of iterations for convergence of approximate solu-
tion with relative residual less than 10−6. Table 4.1 shows meshes, degrees of freedom,
number of iterations of preconditioned CG method to the original linear system (2.6)
with incomplete modified Cholesky method (incomplete LDLT-factorization) as the
preconditioner, and number of iterations of iterative substructuring method with the
balancing Neumann-Neumann preconditioner. While number of iterations of ICCG
increases with the rate of O(1/h) as the elasticity problem, number of iterations of
iterative substructuring method increases slowly.

5. Concluding remarks. We proposed an iterative substructuring method with
a balancing Neumann-Neumann preconditioner for the discretized Stokes equations
with penalty type stabilization. Solvability of the Schur complement matrix on the
coarse space is ensured by the property of the stiffness matrix of the Stokes equations
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Fig. 4.1. Finite element mesh and domain decomposition with 8 subdomains

Table 4.1

Number of iterations of ICCG and iterative substructuring solver

mesh h D.O.F. ICCG iterative
velocity pressure subtstucturing

a 0.2056 12,512 + 4,692 130 13
b 0.1081 96,134 + 34,126 194 13
c 0.0556 754,922 + 259,962 431 16

with stabilization. Convergence of the iterative solver is verified by a preliminary nu-
merical experiment. Efficient implementation of the coarse space solver and evaluation
of the computational cost on parallel computers are future works.
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