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PERIODS OF PERIODIC POINTS FOR TRANSITIVE DEGREE

ONE MAPS OF THE CIRCLE WITH A FIXED POINT

M. C. HIDALGO

Abstract. A map of a circle is a continuous function from the circle to itself. Such
a map is transitive if there is a point with a dense orbit. For degree one transitive
maps of the circle with a fixed point, we give all possible sets of periods and the
best lower bounds for topological entropy in terms of the set of periods.

0. Introduction

A map of a space X is a continuous function f : X → X. We say f is transitive

if there is a point with a dense orbit. We denote by P (f) the set of periods of the

periodic points under f , and by ent (f) its topological entropy.

Consider the following ordering of the set N of natural numbers: 3, 5, 7, . . . ,

2 ·3, 2 ·5, . . . , . . . , 2k ·3, 2k ·5, . . . , . . . , 23, 22, 2, 1. Let S(n) be the set consisting

of n and all integers standing to the right of n in the above order, and S(2∞) the

set of all powers of 2. In [9], Sarkovskii showed that for maps of the real line, the

sets of periods of periodic points are of the form S(n) for some n ∈ N ∪ {2∞}.
Block [2] proved the following result for degree one maps of the circle.

Theorem 0.1. [2]. Let f be a continuous degree one map of the circle with a

fixed point. Then P (f) = S(n) ∪ {j ∈ N : j ≥ k} for some positive integer k and

some n ∈ N ∪ {2∞}. (Note: One of the sets may be empty).

In this paper, we consider transitive maps of the circle and show how the above

result changes when we impose this dynamical restriction. Our main result is:

Theorem 3.1. Let f be a transitive degree one map of the circle with a fixed

point. Then P (f) = {1} ∪ {j ∈ N : j ≥ k} for some positive integer k and

ent (f) ≥ log (largest zero of xk+1 − xk − x− 1).

Moreover, if k = 2 and there is a periodic point of periodic point of period two

with rotation number zero, then ent (f) > log 2.
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Note that there is strictly inequality in the log 2 entropy bound, and that 2 is

greater than the largest zero of x3 − x2 − x− 1. The converse to Theorem 3.1 is

also true, i.e., every possible P (f) is realizable, and the entropy bounds are sharp.

In Section 4, we discuss some examples.

1. Background

For a map f of a space X, and n ≥ 0, fn is defined by: f0(x) = x, fn+1(x) =

f(fn(x)). A point x ∈ X is periodic of period n if fn(x) = x and n is the least

integer for which this happens. Orbf (x) (or Orb(x)) denotes the orbit {fn(x) :

n ≥ 0} of the point x. A subset E is (f)-invariant if f(E) ⊆ E. Int (E) and

cl(E) denote the interior and closure, respectively, of a set E. We denote by S1

the circle R/Z, where R and Z denote the real and integer numbers, respectively.

The ambient space is S1. An interval [a, b], (a, b), [a, b) or (a, b] in S1 is the

closed, open or half-open arc, resp., from a counterclockwise to b. e is the natural

projection from R onto S1 (e(x) = exp(2πix)). A lift F of f is map of the real

line for which f(e(x)) = e(F (x)) for all x ∈ R. There are countably many lifts of

f and any two differ by an integer. The degree of f , denoted deg f , is the integer

n such that F (x+ 1) = F (x) +n for all x ∈ R and for every lift F of f . Note that

deg fk = (deg f)k.

In our proofs, we adopt the notion of f -covers from [5]. Let J and K be

nondegenerate proper closed intervals. We say J f -covers K (n times) if there

exist subintervals {Li : i ≤ i ≤ n} of J , with pairwise disjoint interiors, such that,

for each i, f(Li) = K. Note that if F is a lift of f , and J ′ and K ′ are interval

lifts to R of J and K, resp., then J F -covers K if and only if F (J ′) contains some

integer translate K ′ +m of K ′.

Lemma 1.1. [2]. Let I = [a, b] be a proper closed interval of S1. If f(a) = c

and F (b) = d and c 6= d, then I f -covers either [c, d] or [d, c].

f -covers can be used to infer the existence of certain periods and obtain es-

timates on topological entropy, a topological conjugacy invariant of continuous

maps. More specifically, if P is a finite (but not necessarily invariant) subset of

S1, label the points in P x1, x2, . . . , xn so that the intervals I1 = [x1, x2], . . . ,

In = [xn, x1], we call P -intervals, have pairwise disjoint interiors.

The P -graph of f is the directed graph having as vertices the P -intervals, and

with k arrows from Ii to Ij if and only if Ii f -covers Ij exactly k times. The

following lemma states that closed walks in the P -graph force the existence of

periodic orbits that move in the same order.

Lemma 1.2. [5]. Let f be a map of the interval or the circle. If J0 → J1 →
· · · → Jn−1 → J0 is a loop in the P -graph of f , then there exists a fixed point x of

fn such that f i(x) ∈ Ji for i = 0, 1, . . . , n− 1.
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The P -matrix of f is defined by (A)ij = (no. of arrows from Ii to Ij). The

Perron-Frobenius Theorem [8] guarantees the existence of a non-negative eigen-

value, denoted r(A), of maximum modulus. If A′ is any proper submatrix of A,

then r(A) ≥ r(A′), with strict inequality if A > 0. In the remainder of this paper,

we shall abuse notation and set log 0 = 0.

Lemma 1.3. [5, 6]. Let P be a finite subset of S1, and A the P -matrix of

f . Then ent (f) ≥ log r(A), with equality if P is invariant, and f is monotone

between adjacent points of P .

In the proof of Theorem 3.1 we show the existence of a subset called an n-

horseshoe (for f), i.e., a collection J1, . . . , Jn of closed subintervals with pairwise

disjoint interiors, such that for 1 ≤ i ≤ n, Ji f -covers J1, . . . , Jn. When such a

collection exists, the set of endpoints of the Ji’s yields a P -matrix with a proper

sub-matrix whose entries are all ≥ 1. Lemma 1.3 and standard Perron-Frobenius

arguments imply ent (f) ≥ logn.

Lemma 1.4. [3, Lemma 2]. Let f : S1 → S1 have an n-horseshoe (n ≥ 2).

Then f has periodic points of all periods, and ent (f) ≥ logn.

2. Transitivity

In this section, we prove the following analogue of a result of Barge and Martin

[1, Theorem 13] on transitive maps of the real line.

Theorem 2.1. Let f be a transitive map of the circle with a fixed point. If f2

is transitive, then f has a periodic point of odd period k > 1.

Remark. This result is new only for |deg f | ≤ 1 [5].

The proof of the theorem is based on the following results of Coven and Mul-

vey [7]:

Theorem 2.2. [7, Corollary 3.4]. For a transitive map of the circle with

periodic points, the set of periodic points is dense.

Lemma 2.3. [7, Lemma 5.2]. If f has periodic points and fn is transitive for

every n > 0, then for every non-degenerate interval E in S1,
⋃
n≥0 f

n(E) misses

at most one point, which must then be a fixed point.

Theorem 2.4. [7, Theorem C]. Let f be a continuous map of the circle. Then

the following statements are equivalent:

1) There is an m such that f2m is transitive, and fm has a fixed point.

2) fn is transitive for every n > 0, and f has periodic points.

3) f is topologically mixed (i.e., for every pair U , V of non-empty open sets, there

is an N such that fn(U) ∩ V 6= ∅ for every n ≥ N).
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We also use the following equivalent definitions of transitivity:

1) There is a point with a dense orbit.

2) The only closed invariant set K with int (K) 6= ∅ is the whole space

3) If int (E) 6= ∅, then cl(
⋃
n≥0 f

n(E)) is the whole space.

Proof of Theorem 2.1. Notation: If U = [a, b], V = [c, d] are non-overlapping

closed intervals, we denote by 〈U, V 〉 the open interval (b, c).

Since f is transitive, there is a point with a dense orbit. For this x, we have

x, f(x) and f2(x) distinct. Then by continuity of f , there is an interval J about

x with J , f(J) and f2(J) pairwise disjoint. By shrinking J , if necessary, we may

assume that f2(J) contains no fixed point. Start at J and label the other two

intervals as J ′ and J ′′ in the counterclockwise direction.

By Theorem 2.4, fn is transitive for every n > 0. We then choose a periodic

orbit Orb(c) in the following way. By Lemma 2.3, either

(1)
⋃
n≥0 f

mn(J) = S1 for every m ≥ 1, or

(2)
⋃
n≥0 f

mn(J) = S1 − {p} for some m ≥ 1 and some p fixed by fm.

If (1) holds, use Theorem 2.2 to choose a periodic point c with period t ≥ 2,

such that Orb(c) meets both 〈J, J ′〉 and 〈J ′′, J〉. By shrinking J , we may assume

that Orb(c) does not meet J . Call c1 and c2 the points in Orb(c) such that J lies

in (c1, c2) and f(J) ∪ f2(J) ∪Orb(c) lies in [c2, c1].

If (2) holds, we may assume that p is not in J ∪ f(J) ∪ f2(J). Since g = fm

is transitive, use Theorem 2.2 to choose c with g-period t ≥ 2 so that for some

points c1, c2 in Orbf (c), p ∈ (c2, c1), and J ∪f(J)∪f2(J)∪Orbf (c) lies in [c1, c2].

In either case, there exists M > 0 such that for all n ≥ M , Orb(c) ⊆ fn(J).

(For example, in (1) Orb(c) ⊆
⋃
n≥0 f

tn(J) andf t fixed every point in Orb(c).

Let M = t(k1 + · · · + kt), where ci ∈ f tki(J) for ci ∈ Orb(c). Make a similar

determination in (2), since Orb(c) ⊂
⋃
n≥0 g

tn(J) =
⋃
n≥0 f

mtn(J) and fmt fixes

every point in Orb(c).)

By Lemma 1.1, for each n ≥M , J fn-covers either [c1, c2] or [c2, c1].

If (1) holds, choose an odd n > M . If J Fn-covers [c1, c2], then J Fn-covers

itself. By Lemma 1.2, J contains a periodic point of period a divisor of n. Since J

does not contain a fixed point, this point is of some odd period > 1. If J fn-covers

[c2, c1], then J fn-covers f2(J). Therefore, f2(J) fn−2-covers itself, and again,

since f2(J) has no fixed point, it has a periodic point of add period > 1.

If (2) holds, choose n ≥ M such that n is also a multiple of m. Then since

p ∈ [c2, c1], J fn-covers [c1, c2], hence fn-covers J , f(J) and f2(J). If n is odd,then

J has a point of odd period > 1. If n is even, then since f(J) fn−1 covers itself,

f(J) has a point of odd period > 1. �
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3. Degree One Maps

Let deg f = 1. If F is a lift of f and x is f -periodic of period n with e(y) = x,

then Fn(y) = y + k for some integer k. The number k/n, denoted ρF (x), is the

rotation number of X. This is independent of the choice of y, and if F ′ = F+m,

then ρF ′(x) = ρF (x) +m.

In this section , we prove our main result.

Theorem 3.1. Let f be a transitive degree one map of the circle with a fixed

point. Then P (f) = {1} ∪ {j ∈ N : j ≥ k} for some positive integer k and

ent (f) ≥ log (largest zero of xk+1 − xk − x− 1).

Moreover, if k = 2 and there is a periodic point of period two with rotation

number zero, then ent (f) > log 2.

Lemma 3.2 [5]. Let f be a continuous degree one map of the circle with a

fixed point. Then if f has a fixed point and a periodic point of period n > 1 having

different rotation numbers, then f has periodic points of all periods larger than n,

and ent (f) ≥ log (largest zero of xn+1 − xn − x− 1).

Lemma 3.3. If f is a transitive, degree one map of the circle with a fixed point,

then fn is transitive for every n > 0 (hence is topologically mixing).

Proof. By Theorem 2.4, it is enough to show that f2 is transitive. Suppose f2

is not transitive.

Let p be a fixed point of f .

Claim: There is a nondegenerate proper closed interval K such that:

(i) f2(K) = K

(ii) K ∪ f(K) = S1

(iii) int [K ∩ f(K)] = ∅.

By [7, Lemma 2.1], (i)–(iii) hold for some closed proper subsetK with nonempty

interior. To see that K is an interval, let L be a nondegenerate component of K,

and L∗ = cl
[⋃

n≥0 f
2n(L)

]
. [7] shows that L∗ ⊆ K has finitely many components,

each with non-empty interior, and they are permuted by f2. Since f2|K is tran-

sitive and L∗ is nondegenerate, closed and f2-invariant, L∗ = K. So K and f(K)

each has finitely many components, alternating on S1.

Thus, p must be a common endpoint of components K1 of K and K2 of f(K),

and f must permute K1 and K2. Since K1 ∪ K2 is closed, f -invariant and has

non-empty interior, it must be the whole circle, f -invariant and has non-empty

interior, it must be the whole circle, and K = K1.

Now let p′ be the lift of p to [0, 1], F the lift of f that fixed p′ (hence, also

p′ + 1). Then a left of K to [p′, p′ + 1] has either p′ or p′ + 1 as an endpoint. A

consideration of cases shows that no such lift can exist. �
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Proposition 3.4. Let f be a topologically mixing map of the circle, with a lift

F such that for some 0 < x < y < 1, F (0) = F (y) = 0 and F (x) = y. Then

ent (f) > log 2.

(The same conclusion holds if instead F (1) = F (x) = 1 and F (y) = x.)

Proof. We will prove the proposition for when F (x) = y and F (Y ) = 0. (The

second case can be handled in a similar way.) To simplify notation, we will also

call 0, x and y their respective projections in S1.

By Theorem 2.4, fn is transitive for every n > 0. Since [0, y] ⊆ f([0, y]), but

[0, y] cannot be f -invariant, there exists a non-degenerate interval J in [y, 0] that

is adjacent to [0, y] (i.e., has y or 0 as an endpoint) such that J ⊆ f [0, y].

Suppose for the moment that J = [y, w]. Let P = {0, x, y, w}. Since f is

mixing, J meets fn(J) for all large enough n. Since x is not a fixed point, x ∈
fn(J) for infinitely many n. (If x /∈ fn(J) for n ≥ N , let K = fN(J). Then

x /∈
⋃
n≥0 f

n(K), hence by Lemma 2.3 must be fixed.)

Therefore, {x, 0} ⊆ fn(J) for some large enough n. Thus, by Lemma 1.1, J

has to fn-cover either [0, x] or [x, y].

With F as given, it is easy to see that in the P -graph of fn there are at least

2n−1 arrows each from [0, x] to itself and to [x, y], and from [x, y] to itself and to

[0, x]; there is at least one arrow from either [0, x] or [x, y] to J (depending on

which one covers J), and at least one arrow from J to either [0, x] or [x, y]. In any

case, the submatrix B corresponding to this subgraph is irreducible (i.e., Bm > 0

for some m > 0) and so by Perron-Frobenius arguments, r(Bm) > 2mn. Since

k · ent (f) = ent (fk) for any k ≥ 0, and the corresponding entries in the P -matrix

of fmn are greater than or equal to that in Bm, by Lemma 1.3, mn · ent (f) =

ent (fmn) ≥ log r(Bm) > log 2mn, i.e., ent (f) > log 2.

The same argument is valid if J = [w, 0]. (Here minF | [0, y] < 0, and we look

at the lift to [−1, 0] of J .) �
Proof of Theorem 3.1. If f has no point of period 2, then by Theorem 0.1,

P (f) = {1} ∪ {j ∈ N : j ≥ k}

and {j ∈ N : j ≥ k} 6= ∅ by Lemma 3.3 and Theorem 2.1. Let k be the smallest

period greater than 1 in P (f). Suppose that x has f -period k. Then ρ(x) 6= 0;

otherwise, for some lift F of f , the lifts e−1{x} of x are all F -periodic of period

k. By [9], 2 ∈ P (F ). But a point z ∈ R of F -period two either projects to a fixed

point of f or to a point of f -period two. Since f has no point of period two, z

project to an f -fixed point, and so F (z) = z + j, j ∈ Z − {0}. Since deg f = 1,

z = F 2(z) = F (z + j) = z + 2j, a contradiction. Thus ρ(x) 6= 0, and by Lemma

3.2, ent (f) ≥ log (largest zero of xk+1 − xk − x− 1).

If there is a point of period two with nonzero rotation number, then Lemma

3.2 again implies that f has points of all periods and ent (f) ≥ log (largest zero of

x3 − x2 − x− 1).



PERIODIC POINTS FOR MAPS OF THE CIRCLE 17

We will show that if there is a point of period two with rotation number zero,

then f has a 2-horseshoe. By Lemma 1.4 f has points of all periods, and ent (f) ≥
log 2. Proposition 3.4 will be used to show strict inequality.

Let a < b in (0, 1) be a lift of a period two orbit having rotation number zero.

Then F (a) = b+ n, F (b) = a− n for some integer n. If n > 0, or if n < −1, then

the intervals [0, a], [a, b], [b, 1] indicate a 3-horseshoe for f and we are done.

So assume that either:

(i) F (a) = b− 1, F (b) = a+ 1; or

(ii) F (a) = b, F (b) = a.

In either case, there is a fixed point q of F in [a, b]. We need look only at case

(ii) since if (i) holds then b < a+ 1 and both lie in [q, q + 1]. Since F (b) = a+ 1,

F (a+ 1) = b, using q in place of 0, b in place of a, and a+ 1 in place of b puts us

in (ii).

It is clear that f has a 2-horseshoe if for some s, t, u, 0 ≤ s < t < u ≤ 1, either

(∗) F (s), F (u) ≤ s and F (t) ≥ u;

or (∗∗) F (s), F (u) ≥ u and F (t) ≤ s.

Let a0 = a, b0 = b. Assume that F has no 2-horseshoe in [a0, b0]. Since [a, b]

cannot be F -invariant and [a, b] ⊆ F [a, b] ⊆ . . . , we have F [a, b] = [a1, b1], where

a1 ≤ a0 and b0 ≤ b1. Notice that if a1 is attained in [a0, q] then (∗∗) holds for

{a0, z, q} where a0 < z < q and F (z) = a1. Similarly, (∗) holds if b1 is attained

in [q, b0]. So [a0, q] must F -cover [b0, b1] and [q, b0] must F -cover [a1, a0], and at

least one of these intervals is nondegenerate.

Now suppose a1 ≤ 0 (resp., b1 ≥ 1). Then (∗) (resp., (∗∗)) holds for {0, a0, x}
(resp., {y, b0, 1}) where q < x < b0 and F (x) = 0 (resp., a0 < y < q and F (y) = 1).

So we may suppose a1 > 0, b1 < 1.

Suppose there exist a1, . . . , an; b1, . . . , bn such that:

(1) F [ak−1, bk−1] = [ak, bk] = [ak, ak−1]∪ [ak−1, bk−1]∪ [bk−1, bk] (1 ≤ k ≤ n)

where at least one outside interval is nondegenerate;

(2) Neither (∗) nor (∗∗) holds in [ak, bk], 0 ≤ k ≤ n− 1.

(3) 0 < an ≤ · · · ≤ a1 ≤ a0; b0 ≤ b1 ≤ · · · ≤ bn < 1.

Then bk is only attained in [ak−1, ak−2], and ak is only attained in [bk−2, bk−1]

for all k > 1, (resp., in [a0, q] and [q, b+ 0] if k = 1). If this process can go on

forever then by transitivity of f , cl(
⋃
n≥0 [an, bn]) = [0, 1]. Evidently, there are

{cn}n≥0 and {dn}n≥0 in [0, 1] with lim cn = 0, lim dn = 1, limF (cn) = 1 and

limF (dn) = 0. Since 0 and 1 are F -fixed, this is impossible. Thus for some n ≥ 0,

(∗) or (∗∗) must hold in one of [0, bn], [an, bn], or [an, 1].
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To see that ent (f) > log 2, note that if (∗) or (∗∗) holds then we may assume

F satisfies the conditions of Proposition 3.4 by looking, if necessary, at another

interval [z, z + 1] in place of [0, 1]. (For example, if a1 is attained in (a0, q), use

[q − 1, q].) �

4. Examples

Block’s examples in [2] of degree one maps fk (k ≥ 2) have P (fk) = {1}∪ {j ∈
N : j ≥ k}, and ent (fk) equal to the bound of Theorem 3.1. By [4, Theorem 3.1]

the irreducibility of each Pk-matrix implies transitivity of fk. Notice that f1 has

no point of period two with rotation number zero.

We show that the log 2 bound is also sharp by the following sequence of degree

one transitive maps each one having a fixed point and a period-two point with

rotation number zero.

Define the lift F0 by F0(0) = 0, F0(1/6) = −1/3, F0(1/3) = 0, F0(1/2) = 2/3,

F0(2/3) = 1/3, F0(1) = 1, and linear between these points, and let P0 be (the

projection of) {0, 1/3, 2/3}.

For n ≥ 1, define Fn by Fn(0) = 0, Fn(1/(2n+1 · 3)) = −1/3, Fn(1/(2n · 3) = 0,

Fn(1/(2n−1 · 3)) = 1/(2n · 3), . . . , Fn(1/3) = 1/(2 · 3), Fn(1/2) = 2/3, Fn(2/3) =

1/3, Fn(1) = 1, and linear between these points, and let Pn be (the projection of)

{0, 1/(2n · 3), 1/(2n−1 · 3), . . . , 1/3, 2/3}.

Application of [4, Theorem 3.1] again implies that all the the fn’s are transitive.

The induced Pn-graphs indicate a point of period two with rotation number zero

for fn. By Lemma 1.3, ent (fn) = log rn, where rn is the largest zero of the

characteristic polynomial pn(x) = xn+1 · (x − 1) · (x − 2) − 2, (n ≥ 0) of the

Pn-matrix. It is an elementary argument to show that r1 > r2 > · · · > 2, and

limn→∞ rn = 2.
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