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ON NON–SEPARATING EMBEDDINGS

OF GRAPHS IN CLOSED SURFACES

M. ŠKOVIERA

Abstract. A. A. Zykov [Fundamentals of Graph Theory, Nauka, Moscow, 1987]
asks to determine, for a given closed surface S, all graphs G (including disconnected
ones) that admit an embedding i : G ↪→ S in a closed surface S leaving S − i(G)
connected. We anwser this question completely. For connected graphs the results
can be formulated as follows: G has an embedding i : G ↪→ S with S−i(G) connected
if and only if S is non-orientable and γ̃(S) ≥ β(G) = |E(G)| − |V (G)| + 1, or S is
orientable and γ(S) ≥ β(G)− γM (G), where γM (G) is the maximum genus of G.

An embedding i : G ↪→ S of a graph G in a closed surface S is said to be

non-separating if the subset S − i(G) of S is connected. In his books [10,

pp. 445–447] and [11, pp. 229–230] Zykov posed the problem of determining, for

a given closed surface S, all graphs that admit a non separating embedding in S.

He also observed that if S is non-orientable then such an embedding exists for

every graph G whose Betti (= cyclomatic) number β(G) does not exceed the non-

orientable genus γ̃(S) of S. For orientable surfaces the problem has remained open

although some further work in this direction was previously done by Khomenko

and Yavorskii [3].

In this paper we show how this problem can be completely solved in both

orientable and non-orientable case. Our solution requires only a few facts about

the maximum genus of a graph and the standard surface topology. For terms not

defined here we refer the reader to [7].

Let G be a connected graph with p vertices and q edges. The (orientable)

maximum genus γM (G) of G is the largest among the genera γ(S) of orientable

surfaces S in which G has a cellular embedding. If G is cellularly embedded with

r faces in an orientable surface S of genus γ(S) then the Euler formula [7] claims

that

p− q + r = 2− 2γ(S).

It follows from this formula that 2γM(G) is bounded from above by β(G) =

q − p + 1. Thus it is natural to consider the difference

ξ(G) = β(G)− 2γM (G)
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which is called the Betti deficiency of G. Note that ξ(G) + 1 is in fact the

minimum number of faces over all orientable cellular embeddings of G, and that

ξ(G) has the same parity as β(G).

It is widely known that the Betti deficiency can be effectively characterized in

purely combinatorial terms [2, 4, 8] and can be computed in polynomial time

[1, 2]. In particular, let us recall that ξ(G) is equal to the minimum number of

components with odd number of edges taken over all cotrees of G.

For our purposes it is convenient to extend the definition of the Betti deficiency

to disconnected graphs. If G has k components G1, G2, . . . , Gk, then we set

ξ(G) =
∑

ξ(Gi)

Now we can state our results.

Theorem 1. A graph G has a non-separating embedding in an orientable sur-

face S if and only if γ(S) ≥ (β(G) + ξ(G))/2.

Theorem 2. A graph G has a non-separating embedding in a non-orientable

surface S if and only if γ̃(S) ≥ β(G).

Proof of Theorem 1. Let S be an orientable surface of genus g and let G be

a graph with k components G1, G2, . . . , Gk such that g ≥ (β(G) + ξ(G))/2. We

show that G has a non-separating embedding in S.

A non-separating embedding of G can be constructed as follows. Take any

orientable surface R and for every component Gi of G take a cellular embedding

ji : Gi → Si of Gi in some orientable surface Si. Let Fi be a closed collaring of

ji(Gi) in Si, i.e., the closure of a “small” open neighbourhood of ji(Gi) of which

ji(Gi) is a deformation retract. If the embedding ji has ri faces then Fi is a

bordered surface with ri boundary components containing ji(Gi) in its interior.

For each Fi and for each boundary component C of Fi remove an open disc DC

from R and identify homeomorphically C with the boundary of DC in R. The

identifications should be made in such a way that the resulting surface T will be

orientable. Note that we thus obtain a non-separating embedding j of G in T ; we

shall refer to j as the join of j1, j2, . . . , jk by R.

Elementary computations show that if r =
∑
ri is the total number of faces in

the above cellular embeddings ji, i = 1, 2, . . . , k, then

(1) γ(T ) = γ(R) +
∑

γ(Si) + r − k .

In particular, choosing Si to have genus γ(Si) = γM (Gi) = (β(Gi) − ξ(Gi))/2,

R to have genus γ(R) = g − (β(G) + ξ(G))/2 (which by our assumption is

non-negative) and using the fact that ri = ξ(Gi) + 1 we obtain that γ(T ) = g.

Thus T is homeomorphic to S and the required non-separating embedding exists.
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Conversely, assume that G is a graph having a non-separating embedding

j : G ↪→ S in an orientable surface S. We show that (β(G) + ξ(G))/2 ≤ γ(S).

Take a closed collaring F of j(G) in S. If G has k components G1, G2, . . . , Gk
then F is the disjoint union of k bordered surfaces, each containing a component

of j(G) in its interior. Let Fi be the component of F containing j(Gi). Then by

capping each boundary component of Fi with a 2-cell we obtain a closed surface

Si and a cellular embedding ji : Gi ↪→ Si, i = 1, 2, . . . , k. (This is the well-known

“capping operation” of Youngs [9].)

Since S − j(G) is connected, so is S − Int(F ) = H. Thus H is a bordered

surface. Obviously, each boundary component of H is a boundary component of

some Fi and vice versa. It follows that the number of boundary components of

H is equal to the total number of faces in the embeddings ji : Gi ↪→ Si, which we

denote by r. By capping each boundary component of H with a 2-cell we obtain a

closed surface R, and it is now clear that j is the join of j1, j2, . . . , jk by R. Hence,

employing (1) and the Euler formula for each ji we finally have

γ(S) ≥ γ(R) +
∑

γ(Si) + r − k ≥ 0 + (β(G) − r + k)/2 + r − k

= (β(G) + r − k)/2 ≥ (β(G) + ξ(G))/2 .

This completes the proof. �

Theorem 2 can be proved basically in the same way, the main difference being

that every connected graph has a cellular embedding in a non-orientable surface

with a single face [5, 6], i.e., the non-orientable analogue of Betti deficiency is

constantly 0.
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