RECONSTRUCTION OF GRAPHS WITH CERTAIN DEGREE-SEQUENCES

L. STACHO

INTRODUCTION

The purpose of this note is to present some results concerning the Kelly-Ulam conjecture for graphs whose degree-sequences satisfy some extra conditions. Throughout, the graphs considered are finite, simple and undirected.

A subgraph of G obtained by deleting a vertex v together with all edges incident with v will be referred to as a **vertex-deleted subgraph** and denoted be G - v.

A graph G^* will be called a **reconstruction** of a graph G if there is bijection $f: V(G) \to V(G^*)$ such that G-u is isomorphic to $G^* - f(u)$ for all $u \in V(G)$. A graph G will be called **reconstructible** if each of its reconstructions is isomorphic to G. The famous Kelly-Ulam reconstruction conjecture (see [1], [2], [3]) states that any graph with more than two vertices is reconstructible. The conjecture is apparently very hard, and only a few classes of reconstructible graphs are known (cf. [3], [4] for a survey).

It is easily seen that regular graphs are reconstructible. Going a step further, Bondy and Hemminger [3] define a vertex v of G to be bad if G has some vertex of degree d(v) - 1, and remark that a graph with at least 3 vertices is reconstructible whenever it contains a vertex with no bad neighbours. This result was extended by Širáň in [5] by proving that graph G with more than two vertices is reconstructible provided that G contains a vertex v such that for any its neighbours w all vertices of G of degree d(w) - 1 that are distinct from v are neighbours of v. It is also obvious that G is reconstructible if $\sum_{v \in B} d(v) < n$, where B is the set of bad vertices of Gand n is number of vertices of G. In [6] this observation was extended by proving that G is reconstructible if $\sum_{v \in B} (d(v) - 1/2) < n$.

The first part of the paper is devoted to proving results of similar flavour as the above. In the second part we introduce the concept of a reconstruction matrix of a graph and establish a Kelly-Ulman type result for graphs with certain reconstruction matrices.

Received July 16, 1992.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 05C60.

1. Reconstruction with Help of Certain Degree-sequences

Let G be a graph and u, v be vertices of G. The vertices u and v will be referred to as G-similar if G - u is isomorphic to G - v. By the symbol $N_G(v)$ we will denote the set of neighbours of v in the graph G.

Theorem 1. Let G be a graph with n vertices u_1, u_2, \ldots, u_n of degrees $\deg(u_i) = d_i$ $(1 \le i \le n)$, such that $d_1 \le d_2 \le \cdots \le d_n$. Assume that the following two conditions are fulfilled:

- (1) For some $k \le n$ it holds that $d_{k-1} + 2 \le d_k < d_{k+1}$.
- (2) In the vertex-deleted subgraph $G u_k$ (where k is as in (1)), no vertex from $N_G(u_k)$ is $(G u_k)$ -similar to any other vertex in $G u_k$.

Then the graph G is reconstructible.

Proof. Let S be the collection of all the n vertex-deleted subgraphs of the graph G. It is easy to reconstruct the degree-sequence of G (see [3]). Let us identify all the subgraphs $G - u_k$ from S where the degree of the vertex u_k is d_k and (1) holds for k. Let A be the set of those values of k for which (1) holds. Among these subgraphs $G - u_k$ we have to find the one for which (2) holds and in this one we have to identify all neighbours of the vertex u_k . If we show (using (1), (2) and the information contained in S) that the set of neighbours of u_k is uniquely determined in $G - u_k$, then it will obvious that each reconstruction of G will be isomorphic to G.

Let us take each subgraph $G-u_k, k \in A$, one after another, and do the following: Define D as the set of those vertices from $G - u_k$ that are $(G - u_k)$ -similar to some vertices from $G - u_k$. With help of the set D we verify whether some vertices of $N_G(u_k)$ are $(G - u_k)$ -similar to some vertices from $G - u_k$; this is done by means of the following procedure. Let us find all the subgraphs $G - u_i$ from S where a vertex of degree $d_k - 1$ exists. Let us put these i into the set B. It is easily seen that $|B| = d_k$. Similarly, we successively take the subgraphs $G - u_i$, $i \in B$, step by step, and do the following: Let $G^h = (G - u_i) - u_k$ (the degree of the vertex u_k is $d_k - 1$ in the subgraph $G - u_i$). Now we successively remove one vertex from $G - u_k$ and test whether this subgraph is isomorphic to G^h . If these subgraphs are not isomorphic then we put the vertex back to $G - u_k$ and remove the next one. If now these subgraphs are isomorphic then we can assume that the removed vertex is the vertex is the vertex u_i (we can assume it because if the vertex u_i was $(G - u_k)$ -similar to any other vertex in $G - u_k$ then it would be in the set D, and then we would take the next subgraph $G - u_k, k \in A$). Let us distinguish the vertex u_i in $G - u_k$. Obviously, if we go through all the subgraphs $G - u_i$, $i \in B$ then we have all neighbours of u_k distinguished in $G - u_k$. The fact that this process necessarily terminates for some $k \in A$ is guaranteed by the condition (2). The proof is complete. If \overline{G} is the complement of G, we have the following obvious consequence.

Corollary. Let G be a graph with n vertices u_1, u_2, \ldots, u_n with degree $\deg(u_i) = d_i$ $(1 \le i \le n)$, such that $d_1 \le d_2 \le \cdots \le d_n$. Assume that the following two conditions are fulfilled:

- (1) For some $k \le n$ it holds that $d_{k-1} < d_k \le d_{k+1} 2$.
- (2) In the vertex-deleted subgraph $\overline{G} u_k$ (where k is an in (1)), no vertex from $N_{\overline{G}}(u_k)$ is $(\overline{G} u_k)$ -similar to any other vertex in $\overline{G} u_k$.

Then the graph G is reconstructible.

Remark 1. The reader can easily see that if the condition (1) from Theorem 1 is replaced by either $d_1 < d_2 \leq \cdots \leq d_n$ or $d_1 \leq \cdots \leq d_{n-1} < d_n$ and the condition (2) remains unchanged, then G is reconstructible as well.

The subgraph of G obtained by deleting a set of vertices M (where |M| = k), together with all the edges incident to at least one of the vertices in M will be referred to as a *k*-vertex-deleted subgraph and denoted by G - M.

Theorem 2. Let G be a graph with n vertices u_1, u_2, \ldots, u_n of degrees $\deg(u_i) = d_i$ $(1 \le i \le n)$, such that $d_1 \le d_2 \le \cdots \le d_n$. Assume that the following two conditions are fulfilled:

(1) For some $k \leq n$ it holds that

$$d_k + 2 \le d_{k+1} = d_{k+2} = \dots = d_{k+q} \le d_{k+q+1} - 2$$
.

(2) Let $M = \{u_{k+1}, u_{k+2}, \dots, u_{k+q}\}$ where k is as in (1). Then in the q-vertex-deleted subgraph G-M at least for one u_i , $i = k+1, k+2, \dots, k+q$ no vertex from $N_G(u_i)$ is (G-M)-similar to any other vertex in G-M.

Then the graph G is reconstructible.

Proof. The proof is similar to the proof of Theorem 1, therefore we give here only a sketch. Instead of one subgraph $G - u_k$ we have subgraphs $G - u_{k^*}$, $k^* = k + 1, k + 2, \ldots, k + q$ from which we take one, for example $G - u_{k+j}$, in which we remove the vertices $u_{k+1}, u_{k+2}, \ldots, u_{k-j}, u_{k+j}, \ldots, u_{k+q}$ so that we obtain the subgraph G - M. Instead of the subgraphs $G - u_i$ we have subgraphs $G - u_i$ in which at least one vertex of degree $d_{k+1} - 1$ exists and $u_{i^*} \neq u_{k^*}$, $k^* = k + 1, k + 2, \ldots, k + q$. Let us put these i^* into the set B. In the subgraph $G - u_{i^*}, i^* \in B$ we remove all vertices of degree d_{k+1} and $d_{k+1} - 1$ (these will be the vertices $u_{k+1}, u_{k+2}, \ldots, u_{k+q}$), and we denote these subgraphs by G^h (with the same meaning as in Theorem 1). Now it holds that G^h and $G - u_{k+j}$ differ only in the fact that the subgraph $G - u_{k+j}$ contains the vertex u_{i^*} while subgraph G^h does not. In the way described in Theorem 1 we can find out whether the vertices u_{i^*} and u_{k+j} are adjacent. The only difference will be the following: even if the subgraph $G - u_{i^*}$ contains the vertex of degree $d_{k+1} - 1$, it still does not have to

L. STACHO

mean that the vertex u_{i^*} is adjacent with the vertex u_{k+j} (it can be adjacent with some other vertex of degree d_{k+1}). If the removed vertex from $G - u_{k+j}$ has the same degree as the vertex u_{i^*} (which is removed from $G - u_{i^*}$), then the vertices considered above are not adjacent. Further it is necessary to mention that we can uniquely determine each vertex of degree d_{k+1} which is adjacent to u_{k+j} in the subgraph $G - u_{k+j}$ (its degree is $d_{k+1} - 1$). The remaining parts of this proof are similar to the proof of Theorem 1.

2. Reconstruction of Simple, Connected Graphs with Help of Reconstruction Matrix

Let G be a graph on n vertices u_1, u_2, \ldots, u_n and let S be a collection of vertexdeleted subgraphs of the graph G. We define the $n \times n$ reconstruction matrix of G as follows. The elements of its first row are the subgraphs $G - u_1, G - u_2, \ldots, G - u_n$. Let S_1, S_2, \ldots, S_n be the collections of vertex-deleted subgraphs of the graphs $G - u_1, G - u_2, \ldots, G - u_n$. In this way we obtain the subgraphs $(G - u_i) - u_j$. To the *i*-th column we add subgraphs $(G - u_i) - u_j$, for $j = 1, 2, \ldots, i - 1, i + 1, \ldots, n$. The above considerations can be illustrated in the following picture.

$G-u_1$	$G-u_2$	$G-u_3$	$G-u_n$
$(G-u_1)-u_2$	$(G-u_2)-u_1$	$(G-u_3)-u_1$	
$(G-u_1)-u_3$	$(G-u_2)-u_3$	$(G-u_3)-u_2$	
$(G-u_1)-u_4$			
$(G-u_1)-u_n$			

Theorem 3. Let G be a graph on n vertices. Let at least one pair of vertices u_i , u_j exist in G so that the following two conditions are fulfilled:

- (1) If $M = \{u_i, u_j\}$, a subgraph isomorphic to G M appears in the reconstruction matrix exactly twice.
- (2) At least for one of the vertices u_i, u_j the following holds: either the vertices in its neighbourhood are not (G-M)-similar to any other vertices in G-M or, if some of them are (G-M)-similar to x₁, x₂,..., x_p, then the vertices x₁, x₂,..., x_p lie in its neighbourhood.

Then the graph G is reconstructible.

Proof. Let us construct the reconstruction matrix of the graph G. There are all possible subgraphs $G - \{u_k, u_1\}$ in its columns. The reader will easy realise that the vertices for which (1) is fulfilled can be found with help of isomorphism

of the subgraphs $G - \{u_k, u_1\}$. It is obvious that if two vertices suitable for (1) are found, then the subgraph $G - \{u_i, u_j\}$ will occur in the reconstruction matrix exactly twice (in two different columns). Let as assume that the vertices u_i , u_j are chosen so that (1) holds. Then, the corresponding subgraphs appear in the matrix as $(G - u_i) - u_j$ (in the *i*-th column) and $(G - u_j) - u_i$ (in the *j*-th column). We can unambiguously determine the neighbours of u_j because we know this vertex (it is the one removed from $G - u_i$) and similarly we can determine the neighbours of u_i in $(G - u_j) - u_i$. Now let us construct the collections of vertex-deleted subgraphs of $(G - u_i) - u_j$ and $(G - u_j) - u_i$ and denote them by S_{ij} and S_{ji} . With help of them we find out, whether or not for u_j from $(G - u_i) - u_j$ or for u_i from $(G - u_i) - u_i$ the condition (2) holds (we do not go into details because they are described in Theorem 1). Let us assume that (2) holds for u_i (the considerations in other case are similar). We can uniquely determine the neighbours of u_i in $(G - u_j) - u_i$. With help of the isomorphism between $(G - u_i) - u_j$ and $(G-u_i)-u_i$ we can determine the neighbours of u_i in $(G-u_i)-u_j$. Further we must find out whether the edge $u_i u_j$ exists in G. If the degree of the vertex u_j in $G - u_i$ is the same as the degree of u_j in G, then the edge $u_i u_j$ does not exist. By identifying all neighbours of u_i in $G - u_i$ it is obvious that each reconstruction of G is isomorphic to G. This completes the proof.

References

- 1. Ulam S. M., A Collection of Mathematical Problems, Wiley, New York, 1960.
- 2. Harary F., Graph Theory, Addison-Wesley, Reading, Mass., 1969.
- Bondy J. A. and Hemminger R. L., Graph Reconstruction a survey., J. Graph Theory 1 (1977), 227–268.
- Nash-Williams C. St. J. A., *The Reconstruction Problem*, Selected Topics in Graph Theory (Beineke and Wilson, eds.), Acad. Press, 1978, pp. 205–236.
- Širáň J., Reconstruction of graphs with special degree sequences, Math. Slovaca 32 No. 4 (1982), 403–404.
- Nash-Williams C. St. J. A., *Reconstruction using degree sequences*, Unpublished, but cited in [3].

L. Stacho, 941 33 Kolta 381, Czechoslovakia