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ON THE NILPOTENCY OF THE JACOBSON

RADICAL OF SEMIGROUP RINGS

A. V. KELAREV

Munn [11] proved that the Jacobson radical of a commutative semigroup ring

is nil provided that the radical of the coefficient ring is nil. This was generalized,

for semigroup algebras satisfying polynomial identities, by Okniński [14] (cf. [15,

Chapter 21]), and for semigroup rings of commutative semigroups with Noetherian

rings of coefficients, by Jespers [4]. It would be interesting to obtain similar

results concerning rings with nilpotent Jacobson radical. For band rings this was

accomplished in [12], and for special band-graded rings in [13, §6]. However, for

commutative semigroup rings analogous implication concerning the nilpotency of

the radicals is not true: it follows from [7, Theorems 44.1 and 44.2], that if F is

a field with charF = p and G is an infinite abelian p-group, then the Jacobson

radical J(FG) is nil but not nilpotent.

On the other hand, Braun [1] proved that the Jacobson radical of every finitely

generated PI-algebra over a Noetherian ring is nilpotent. This famous result has

several important corollaries (cf. [9], [19]). It shows that the existence of a finite

generating set is a natural condition which may influence the nilpotency of the

Jacobson radical of a ring. We shall prove the following

Theorem 1. Let S be a finitely generated commutative semigroup, R a ring.

If J(R) is nilpotent, then J(RS) is nilpotent, too.

Note that the ring of coefficients is not necessarily commutative, and so RS

may be not a PI-ring. Besides, RS may have no finite generating sets, although S

is finitely generated. The commutativity of S cannot be removed from Theorem 1.

Indeed, there exists a finitely generated solvable group G and a field F such that

the Jacobson radical J(FG) is nil but is not nilpotent (cf. [7, Theorem 46.32], and

[17, Lemma 8.1.16]).

Our second theorem characterizes all commutative semigroups satisfying the

property we are concerned with. First, we need a few definitions. A semigroup

Y is called a semilattice if it entirely consists of idempotents. A semigroup S

is said to be a semilattice Y of its subsemigroups Sy, y ∈ Y , if and only if
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S = ∪y∈Y Sy, Sy ∩ Sz = ∅ whenever y 6= z, and SySz ⊆ Syz for all y, z ∈ Y . By

Theorem 4.13 of [3] each commutative semigroup S can be uniquely represented

as a semilattice of its Archimedean subsemigroups Sy, y ∈ Y . Then semigroups

Sy are called the Archimedean components of S.

Let R be a ring, p a prime number. A commutative semigroup S is said to be

separative (p-separative) if, for any s, t ∈ S, the equality s2 = st = t2 (sp = tp)

implies s = t. The least separative (p-separative) congruence on S is denoted by

ζ (resectively, ζp). Explicitly

ζ = { (s, t) | ∃n : stn = tn+1 and snt = sn+1 },

ζp = { (s, t) | ∃n : sp
n

= tp
n

}.

Let ρ be a congruence on S. Then I(R,S, ρ) denotes the ideal{∑
i

ri(si − ti) | ri ∈ R, si, ti ∈ S, (si, ti) ∈ ρ

}

of RS. If T is separative, then all Archimedean components of T are cancellative

by [3, Theorem 4.16].

Theorem 2. Let R be an associative ring, S a commutative semigroup, Z the

ring of integers, T = S/ζ. Denote by Ty, y ∈ Y , the Archimedean components

of T . Put Q = ∪y∈YQy, where Qy is the group of quotients of Ty. Then the

following are equivalent:

(1) J(R) nilpotent implies J(RS) nilpotent;

(2) I(Z, S, ζ) is nilpotent and there exists a positive integer n such that every

finite subgroup of Q has ≤ n elements.

Now we shall give an example which shows that it is difficult to describe semi-

groups S with nilpotent I(Z, S, ζ) in terms of the Archimedean components of S.

Example 3. Let S be the semigroup with generators x1, x2, . . . , 01, 02, . . . sub-

jected to relations 0nxm = xm0n = 0m0n = 0n0m = 0mxn = xn0m = 0m whenever

m ≥ n ≥ 1; and xα1
1 . . . xαkk = 0k whenever αk ≥ 1, αi ≥ 0 for 1 ≤ i ≤ k, and

αi ≥ 2 for some i. Put

Si = {xα1
1 . . . xαii | α1, . . . , αi ≥ 0;αi ≥ 1} ∪ {0i}.

Denote by Y the semilattice of all positive integers with multiplication mn =

max{m,n}. Then S = ∪y∈Y Sy is a semilattice of semigroups. Clearly S2
y = 0y

for every y ∈ Y . Therefore S/ζ ∼= Y . For y ∈ Y , consider elements ry = xy − 0y
of the semigroup ring ZS. Obviously, all of them belong to I(Z, S, ζ). Besides
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r1r2 . . . rk = x1x2 . . . xk − 0k 6= 0. Thus I(Z, S, ζ) is not nilpotent, though S is a

semilattice of semigroups with zero multiplication.

Throughout S will be a commutative semigroup. For the previous results on

the Jacobson radical of RS we refer to [5] and [8]. Let P be the set of all prime

numbers. For any positive integer n, we put Jn(R) = {r ∈ R | nr ∈ J(R)}. We

shall use the following

Lemma 1 ([16]). If R is a ring with nilpotent Jacobson radical, then

J(RS) = J(R)S + I(R,S, ζ) +
∑
p∈P

I(Jp(R), S, ζp).

Lemma 2 ([2]). Let Y be a finite semilattice, S a semilattice Y of semigroups

Sy. If J(RSy) is nilpotent for every y ∈ Y , then J(RS) is nilpotent.

In fact in [2] a much more general result is obtained. In our special case the

proof also easily follows from [20], the proof of Theorem 1, by induction on |Y |.
For the sake of completeness we include this proof.

Proof. The case where |Y | = 1 is trivial. Assume that |Y | > 1 and that the

claim has been proved for all finite semilattices V with |V | < |Y |. Consider the

partial order ≤ defined on Y by y ≤ z ⇔ yz = y. Let m be a maximal element

of Y . Then V = Y \{m} is a subsemilattice of Y , and T = ∪y∈V Sy is a semilattice

V of the Sy. Put I = J(RS). Denote by Im the natural projection of I on RSm. It

follows from [20], the proof of Theorem 1, that Im ⊆ J(RSm). Therefore Inm = 0

for some n > 0. Hence In ⊆ J(RT ). Since |V | < |Y |, the induction assumption

completes the proof. �

Lemma 3. If R is a ring with nilpotent Jacobson radical, G an abelian group,

S a subsemigroup of G, then J(RS) = RS ∩ J(RG).

Proof. Obviously J(R)S = RS ∩ J(R)G. In view of Lemma 1 we may factor

out J(R)G from RG and assume that J(R) = 0. Further, given that G is a

group, it easily follows that I(R,G, ζ) = 0, and so I(R,S, ζ) = 0. For p ∈ P put

Rp = {r ∈ R | pr = 0}. Then

J(RG) =
∑
p∈P

I(Rp, G, ζp),

J(RS) =
∑
p∈P

I(Rp, S, ζp)

by Lemma 1. Put T = ⊕p∈PRp. We get J(RG) = J(TG) and J(RS) = J(TS).

Since T is the direct sum of the Rp, to simplify the notation we may assume

that R = Rp from the very beginning. Then J(RG) = I(R,G, ζp) and J(RS) =
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I(Rp, S, ζp). The inclusion I(Rp, S, ζp) ⊆ I(Rp, G, ζp) immediately follows from

the definition of these ideals. Therefore J(RS) ⊆ RS ∩ J(RG).

Now take any x ∈ RS∩J(RG), say x =
∑n
i=1 ri(si− ti) where ri ∈ R, (si, ti) ∈

ζp. Suppose that n is the minimal possible number. Then we claim that all si, ti
belong to S.

Suppose to the contrary that s1 is not in S. Since x ∈ RS, the summand r1s1

must be cancelled, and so s1 occurs in some other summands. Let s1 = s2 = . . . =

sk and let all sk+1, . . . , sn, t1, . . . , tn be distinct from s1. Then
∑k
i=1 ri = 0. By

the transitivity of ζp we can rewrite x as a sum of (n− 1) summands:

x = r1(t2−t1)+(r2+r1)(t3−t2)+· · ·+(rk−1 +· · ·+r1)(tk−tk−1)+
n∑

i=k+1

ri(si−ti).

The contradiction with the minimality of n shows that x ∈ I(R,S, ζp). Thus

J(RS) ⊇ RS ∩ J(RG), which completes the proof. �

It was proved in [10] (cf. [16]) that I(R,S, ζ) is a sum of nilpotent ideals of

RS. Now we shall show that more can be said for finitely generated S.

Lemma 4. If S is finitely generated, then the ideal I(R,S, ζ) is nilpotent.

Proof. Let Q be the field of rational numbers. It follows from Braun’s Theo-

rem (cf. [1]) that J(QS) is nilpotent. Lemma 1 shows that I(Q, S, ζ)n = 0 for

some n ≥ 1. Hence I(Z, S, ζ)n = 0, where Z stands for the ring of integers.

The definition of I(R,S, ζ) implies that every element of this ideal is a sum of

several summands of the form riui, where ri ∈ R, ui ∈ I(Z, S, ζ). Therefore

I(R,S, ζ)n = 0. �

Lemma 5. If G is a finitely generated abelian group and R is a ring with

nilpotent Jacobson radical, then J(RG) is nilpotent.

Proof. By [6, Theorem 8.1.2], G is a direct product of a finite group T and a

torsion-free group H. The radical J(RT ) is nilpotent by [14, Lemma 1.1]. Let

J(RT )n = 0. Since R(T × H) = (RT )H, and H is torsion-free, Lemma 1 yields

J(RG) = J(RT )H. Hence J(RG)n = 0, as required. �

Lemma 5 also follows from [7, Theorem 43.6].

Proof of Theorem 1. Let S be a semilattice Y of its Archimedean subsemigroups

Sy. Lemma 4 implies that I(R,S, ζ) is nilpotent. Since RS/I(R,S, ζ) ∼= R(S/ζ),

we can replace S by S/ζ and RS by R(S/ζ) without affecting the hypothesis

or conclusion of the theorem. Thus it remains to consider the case when S is

separative.

By [3, Theorem 4.16], all Sy are cancellative. Although some of the Sy may

be not finitely generated, we shall check that each Sy is contained in a finitely
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generated abelian group. Indeed, each Sy has a group of quostients Qy. Let

ey be the identity element of Qy. Put Q = ∪y∈YQy. The multiplication of S

can be easily extended to the whole Q so that eyez = eyz. Then Q is a strong

semilattice of the groups Qy, y ∈ Y (cf. [18]). Fix any z ∈ Y . Given that

S is finitely generated, it is easily seen that V = ∪y≥zSy is a finitely generated

subsemigroup of S. Since the mapping f : s 7−→ sez is a homomorphism from

V into Qz, it follows that Sz is contained in the finitely generated subsemigroup

f(V ). Therefore Qz is finitely generated. Now Lemmas 3 and 5 imply that J(RSy)

is nilpotent for every y ∈ Y . This and Lemma 2 complete the proof. �

Proof of Theorem 2. As in the proof of Theorem 1,in view of Lemma 1 and the

fact that RS/I(R,S, ζ) ∼= R(S/ζ), it suffices to prove the theorem for a separative

semigroup S.

(1) ⇒ (2): Suppose to the contrary that (1) holds but Q contains arbitrarily

large finite subgroups. Then, for any positive integer m, there exist a prime p and

a finite p-subgroup G of S with |G| > m. Let D denote the direct sum of all simple

fields Fp = GF (p) for all prime p. By (1) J(DS)n = 0 for some n ≥ 1.

Take any prime p and a finite p-subgroup G of Q. Let |G| = pm. Then G is the

direct product of cyclic groups: G = G1× . . .×Gk. Denote by gi the generator of

Gi and let |Gi| = pmi where i = 1, . . . , k. There exists y ∈ Y such that G ⊆ Qy.

Keeping in mind that Qy is the group of quotients of Sy, denote by s the product

of the denominators of all elements of G. Then sG ⊆ S. Consider elements hi =

s − sgi of FpS, for i = 1, . . . , k. Lemma 1 yields h1, . . . , hk ∈ J(FpS) ⊆ J(DS).

Put qi = pmi − 1 for i = 1, . . . , k. Streightforward (although lengthy) calculations

show that

hqii = sqi
∑
g∈Gi

g,

hq11 . . . hqkk = sq1+...+qk
∑
g∈G

g.

Therefore n ≥ pm1 + . . .+ pmk − k ≥ m1 + . . .+mk − k. However, the right hand

side can be made greater than n, if we choose m = m1 + · · ·+mk sufficiently large.

This contradiction shows that (1) implies (2).

(2) ⇒ (1): Take any ring R with nilpotent Jacobson radical. In view of

Lemma 1 we may pass to the quotient ring R/J(R) and assume that J(R) = 0. Put

P = ⊕p∈PRp, where Rp = {r ∈ R | pr = 0}. By Lemma 1 we get J(RS) = J(PS).

Since P is the direct sum of Rp, p ∈ P, it remains to show that there exists a

positive integer m such that J(RpS)m = 0 for all p ∈ P. To simplify the notation

we fix a prime p and assume that R = Rp is a semisimple algebra over the field

Fp. Put m = n, where n is taken from (2). We claim that J(RS)m = 0.

Lemma 1 easily shows that J(RS) ⊆ J(RQ) and so it suffices to prove that

J(RQ)m = 0. A standard verification using Lemma 1 gives us J(RQ) =
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⊕y∈Y J(RQy). Take any m elements r1 ∈ J(RQy1), . . . , rm ∈ J(RQym). We

need to show that r1 . . . rm = 0.

Put y = y1 . . . ym and denote by e the identity element of Qy. Let zi = eyi for

i = 1, . . . ,m. It is routine to verify with Lemma 1 that z1, . . . , zm ∈ J(RQy).

Denote by T the torsion part of Qy. Obviously, |T | ≤ n. By Lemma 1 we

get J(RQγ) = J(RT )RQγ and the nilpotency index of J(RQγ) is equal to the

nilpotency index of J(RT ) (see [7, Proposition 52.1]). Since J(RT )|T | = 0 by [7,

Theorem 30.34], and |T | ≤ m, we get z1 . . . zm = 0. This completes the proof.
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