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CONTINUITY OF THE HAUSDORFF DIMENSION

FOR INVARIANT SUBSETS OF INTERVAL MAPS

P. RAITH

Abstract. Let T : [0, 1] → [0, 1] be an expanding piecewise monotonic map, and
consider the set R of all points, whose orbits omit a certain finite union of open
intervals. It is shown that the Hausdorff dimension HD(R) depends continuously
on small perturbations of the endpoints of these open intervals. A similar result for
the topological pressure is also obtained. Furthermore it is shown that for every
t ∈ [0, 1] there exists a closed, T -invariant Rt ⊆ [0, 1] with HD(Rt) = t. Finally it
is proved that the Hausdorff dimension of the set of all points, whose orbit is not
dense, is 1.

Introduction

Let T : [0, 1] → [0, 1] be an expanding piecewise monotonic map, that means

there exists a finite partition Z of [0, 1] into pairwise disjoint open intervals with

∪Z∈ZZ = [0, 1], T |Z is continuous and strictly monotone for all Z ∈ Z, T ′|Z
can be extended to a continuous function on Z for all Z ∈ Z, and there ex-

ists an n ∈ N with infx∈[0,1] |(T
n)′(x)| > 1. Fix a K ∈ N. Let (a1, a2) ∪

(a3, a4) ∪ · · · ∪ (a2K−1, a2K) be a finite union of open subintervals of [0, 1], and

set R(a1, a2, . . . , a2K) := ∩∞n=0[0, 1] \ T−n
(
∪Kk=1(a2k−1, a2k)

)
. We investigate the

influence of small perturbations of the endpoints of ∪Kk=1(a2k−1, a2k) on the set

R(a1, a2, . . . , a2K).

In [4] there are considered piecewise monotonic maps T : X → R, where X is a

finite union of intervals, and the set R(T ) := ∩∞n=0T
−nX is investigated. Hence

we have R(a1, a2, . . . , a2K) = R
(
T |[0, 1] \ ∪Kk=1(a2k−1, a2k)

)
. But the results of [4]

need not be applicable in our case, since R
(
T |[0, 1] \ ∪Kk=1(ã2k−1, ã2k)

)
need not

be close to R
(
T |[0, 1] \ ∪Kk=1(a2k−1, a2k)

)
in the sense defined in [4], if |ãj−aj | < ε

for all j ∈ {1, 2, . . . , 2K}. For example, if K = 1, a1 = inf Z for a Z ∈ Z and

a1 6= 0, a1 < a2, ε > 0 satisfies a1 + ε < a2, then T |[0, 1] \ (a1 + ε, a2) has more

intervals of monotonicity than T |[0, 1] \ (a1, a2) (namely the interval (a1, a1 + ε)),

but closeness in the sense of [4] implies that the maps have the same number of

intervals of monotonicity.
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In Theorem 1 of this paper it is shown, that the function (a1, a2, . . . , a2K) 7→
p(R(a1, a2, . . . , a2K), T, f), where p(., ., .) denotes the topological pressure, is up-

per semi-continuous. Furthermore it says, that this function is continuous at

(a1, a2, . . . , a2K), if a certain condition generalizing p(R(a1, a2, . . . , a2K), T, f) >

supx∈R(a1,a2,...,a2K) f(x) is satisfied. This implies the continuity of the topological

entropy. Theorem 2 says that the map (a1, a2, . . . , a2K) 7→HD
(
R(a1, a2, . . . , a2K)

)
is continuous. Such results are obtained by Mariusz Urbański in the case of an

expanding C2-diffeomorphism T of the circle ([5], [6]). In [5] he showed that the

topological entropy and the Hausdorff dimension are continuous, if K = 1 and

(a1, a2) = (0 − ε, 0 + ε), where 0 is a fixed point of T (intervals on the circle

are defined in the usual way). He generalized this result to K ≥ 1 and arbitrary

(a1, a2, . . . , a2K) in [6] (Theorem 4 in [6]). We show in Theorem 3 that for every

t ∈ [0, 1] there exists a closed, T -invariant Rt ⊆ [0, 1] with HD(Rt) = t. The

results in [1] give that we can choose Rt, such that Rt is topologically transitive,

and Rt = ∩∞n=0Ft \ T
−nGt, where Ft and Gt are finite unions of intervals. Finally

Theorem 4 says that the Hausdorff dimension of the set of all points, whose orbit

is not dense, is 1. In the case of an expanding C2-diffeomorphism of a circle, the

results of Theorem 3 and Theorem 4 can be easily deduced from [5] (Corollary 4

of [6] is the analogon of Theorem 3 of this paper).

The proof uses a graph (D,→), called Markov diagram, associated to (R(a1,

a2, . . . , a2K), T ). Lemma 2 says that the initial part of the Markov diagram of

(R(ã1, ã2, . . . , ã2K), T ) is similar to that of (R(a1, a2, . . . , a2K), T ), if |ãj − aj| < δ

for all j ∈ {1, 2, . . . , 2K} and a sufficiently small δ. Although the result and the

proof of this lemma look similar to those of Lemma 6 in [4], the details are different.

As in [4] this lemma, an approximation of f by piecewise constant functions, and

Lemma 6 of [3] imply Theorem 1. Using Theorem 2 of [3] this implies Theorem 2.

Theorem 3 and Theorem 4 are easy consequences of Theorem 2.

1. Definitions and Notations

A map T : [0, 1]→ [0, 1] is called piecewise monotone, if there exists a finite

partition Z of [0, 1], such that T |Z is strictly monotone and continuous for all

Z ∈ Z. We call Z a finite partition of [0, 1], if Z consists of pairwise disjoint

open intervals with ∪Z∈ZZ = [0, 1]. A function f : [0, 1] → R is called piece-

wise continuous with respect to the finite partition Z(f) of [0, 1], if f |Z can

be extended to a continuous function on the closure of Z for all Z ∈ Z(f). We

say that f : [0, 1]→ R is piecewise constant with respect to the finite partition

Z(f) of [0, 1], if f |Z is constant for all Z ∈ Z(f). A piecewise monotonic map

T : [0, 1]→ [0, 1] is called expanding, if there exists a j ∈ N, such that (T j)′ is a

piecewise continuous function and infx∈[0,1] |(T
j)′(x)| > 1. At this point we want

to remark, that all results of this paper hold also for the situation considered in
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[4], that means T : X → R is piecewise monotone, where X is a finite union of

closed intervals.

Let K ∈ N and suppose that 0 ≤ a1 ≤ a2 ≤ · · · ≤ a2K−1 ≤ a2K ≤ 1 with

aj < aj+2 for j ∈ {1, 2, . . . , 2K − 2}. Set Q : = (a1, a2, . . . , a2K−1, a2K). Let QK
be the set of all such Q’s. Now define for Q = (a1, a2, . . . , a2K−1, a2K) ∈ QK

(1.1) X(Q) := [0, 1] \

( K⋃
k=1

(a2k−1, a2k)

)
and

(1.2) R(Q) :=
∞⋂
j=0

[0, 1] \ T−j
( K⋃
k=1

(a2k−1, a2k)

)
.

Let Z(Q) be the set of all maximal open subintervals of X(Q)∩ (∪Z∈ZZ) and set

X1(Q) := X(Q)\{x : x is isolated in X(Q)}. We say that Y is a finite partition

of X(Q), if Y consists of pairwise disjoint open intervals with ∪Y ∈YY = X1(Q).

Observing that the results of [4] remain true, if we allow X to be a finite union of

closed intervals and isolated points, we have that
(
T |X(Q),Z(Q)

)
is a piecewise

monotonic map of class R0 in the sense defined in [4]. Furthermore we have

R
(
T |X(Q)

)
= R(Q).

Now we want to define a topology on QK . Let ε > 0. Then Q : = (a1, a2, . . . ,

a2K−1, a2K) and Q̃ : = (ã1, ã2, . . . , ã2K−1, ã2K) are said to be ε-close, if |ak− ãk| <
ε for all k ∈ {1, 2, . . . , 2K}. Observe that

(
T |X(Q),Z(Q)

)
and

(
T |X(Q̃),Z(Q̃)

)
need not be ε-close with respect to the R0-topology defined in [4].

Next we modify ([0, 1], T ) in order to get a topological dynamical system. This

will be done in a similar way as in [4].

Let T : [0, 1] → [0, 1] be a piecewise monotonic map with respect to Z, let

K ∈ N, let Q ∈ QK , and let Y be a finite partition of X(Q), which refines Z(Q).

We assume throughout this paper, that Y = {Y1, Y2, . . . , YN} with Y1 < Y2 <

· · · < YN . Set E : = {inf Y, supY : Y ∈ Y} ∪ {inf Z, supZ : Z ∈ Z}. Now define

W : =
(
∪∞j=0T

−j(E \ {0, 1})
)
\ {0, 1}, set RY : = R \W ∪ {x−, x+ : x ∈ W}, and

define y < x− < x+ < z, if y < x < z holds in R. This means, that we have

doubled all endpoints of elements of Y or Z, and we have also doubled all inverse

images of doubled points. For x ∈ RY define π(x) := y, where y ∈ R satisfies

either x = y or y ∈ W and x ∈ {y−, y+}. We have that x, y ∈ RY , π(x) < π(y)

implies x < y. As in [4] we can introduce a metric d on RY , which generates the

order topology.

Let XY be the closure of [0, 1] \W in RY and define XY(Q) := {x ∈ RY :

π(x) ∈ X(Q)}. Observe that XY and XY(Q) are compact. For a perfect subset

A of R let Â be the closure of A \ W in RY . Now set Ŷ : = {Ŷ : Y ∈ Y},
Ẑ : = {Ẑ : Z ∈ Z} and Ẑ(Q) := {Ẑ : Z ∈ Z(Q)}. The map T |[0, 1] \ (W ∪ E)
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can be extended to a unique continuous piecewise monotonic map TY : XY → XY .

Then (TY , Ẑ) is a continuous piecewise monotonic map of class R0 on XY in the

sense defined in [4]. If there is no confusion we shall use the notation Y instead of

Ŷ , Z instead of Ẑ, and Z(Q) instead of Ẑ(Q). The set RY : = ∩∞j=0TY
−jXY(Q)

satisfies RY = ∩∞j=0TY
−jXY(Q) = {x ∈ RY : π(x) ∈ R(Q)}. We call TY the

completion of T with respect to Y. If f : [0, 1] → R is piecewise continuous with

respect to Z, then there exists a unique continuous function fY : XY → R with

fY(x) = f(x) for all x ∈ [0, 1] \ (W ∪ E). Then fY is called the completion of f

with respect to Y.

A topological dynamical system (X,T ) is a continuous map T of a compact

metric space X into itself. Hence (RY , TY) is a topological dynamical system.

If (X,T ) is a topological dynamical system, and f : X → R is a continuous

function, then the topological pressure p(X,T, f) is defined by

(1.3) p(X,T, f) := lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

(n−1∑
j=0

f(T jx)

)
,

where the supremum is taken over all (n, ε)-separated subsetsE ofX. A set E ⊆ X
is called (n, ε)-separated, if for every x 6= y ∈ E there exists a j ∈ {0, 1, . . . , n− 1}
with d(T jx, T jy) > ε.

Now we define

(1.4) p(R(Q), T, f) := p(RY , TY , fY).

Lemma 2 of [3] says, that this definition does not depend on the partition Y.

Furthermore we define for n ∈ N

(1.5) Sn(R(Q), f) := sup
x∈RY

n−1∑
j=0

fY(TY
jx).

Observe that this definition does not depend on the partition Y. Note that these

definitions are a bit different from those in [4].

Now we define the Hausdorff dimension. For an A ⊆ R, A 6= ∅ define

diamA : = supx,y∈A |x− y|. Let Y ⊆ R. For t ≥ 0 and ε > 0 set

m(Y, t, ε) := inf
{∑
A∈A

(diamA)t : A is an at most countable cover of Y

with diamA < ε for all A ∈ A
}
.

Then define the Hausdorff dimension HD(Y ) of Y by

(1.6) HD (Y ) := inf
{
t ≥ 0 : lim

ε→0
m(Y, t, ε) = 0

}
.
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In [3] this definition is slightly modified, which allows to define the Hausdorff

dimension also on XY — the space, where the completion TY of a piecewise mono-

tonic map T acts — in a way, such that HD (RY) = HD
(
R(Q)

)
. At this point we

remark, that all results of this paper hold also in the situation considered in [3],

where a bit more general situation is treated.

Now we shall define an at most countable oriented graph (D,→), called Markov

diagram, which describes the orbit structure of (R(Q), T ) (cf. [1], [2]). As we shall

need also a description of the Markov diagram in a different way, we shall introduce

also versions (A,→) of the Markov diagram, which are similar to the variants of

the Markov diagram introduced in [4].

Let T : [0, 1]→ [0, 1] be a piecewise monotonic map with respect to Z, let K ∈
N, let Q ∈ QK , and let Y be a finite partition of X(Q), which refines Z(Q). Let

TY be the completion of T with respect to Y. Let I be the set of all isolated points

of X(Q), and IY be the set of all isolated points of XY(Q). Note that I ⊆ π(IY ),

but equality is not true in general. Then there exist b1, b2, . . . , b2N ∈ XY(Q) with

b1 < b2 < · · · < b2N , such that Ŷ =
{
[b2j−1, b2j] : j ∈ {1, 2, . . . , N}

}
. Furthermore

there exist a J ∈ N and b2N+1, b2N+2, . . . , bJ ∈ XY(Q) with b2N+1 < b2N+2 <

· · · < bJ , such that IY = {b2N+1, b2N+2, . . . , bJ}. Set I0 : = {b1, b2, . . . , bJ}. Let

Y0 ∈ Ŷ and let D be a perfect subinterval of Y0. A nonempty C ⊆ XY(Q) is called

successor of D, if there exists a Y ∈ Ŷ with C = TYD∩Y , and we write D→ C.

We get that every successor C of D is again a perfect subinterval of an element of

Ŷ . Let D be the smallest set with Ŷ ⊆ D and such that D ∈ D and D→ C imply

C ∈ D. Then (D,→) is called the Markov diagram of T with respect to Y. The

set D is at most countable and its elements are perfect subintervals of elements

of Ŷ.

Set D0 : = Ŷ, and for r ∈ N set Dr : = Dr−1 ∪ {D ∈ D : ∃C ∈ Dr−1 with

C → D}. Then we have D0 ⊆ D1 ⊆ D2 ⊆ · · · and D = ∪∞r=0Dr.
If C ∈ D and x ∈ I0, then we introduce an arrow C → {x}, if and only if

x ∈ TYC. Let x ∈ I0. Then we set j(x) := min {j ∈ N : TY
jx /∈ XY(Q)}, where

we set j(x) :=∞, if TY
jx ∈ XY(Q) for all j ∈ N. Now define D(x) :=

{
{TY jx} :

j ∈ N0, j < j(x)
}
, define Dr(x) :=

{
{TYjx} : j ∈ N0, j < min {j(x), r + 1}

}
for r ∈ N0, and introduce the arrow {TYj−1x} → {TY jx}, if {TYjx} ∈ D(x) and

j ∈ N (there are no other arrows beginning in {TY j−1x}). If B ⊆ I0, then define

D(B) := D ∪
⋃
x∈B D(x), and Dr(B) := Dr ∪

⋃
x∈B Dr(x) for r ∈ N0.

Now define

(1.7) bi,j : = TY
jbi for i ∈ {1, 2, . . . , J} and j ∈ N0, 0 ≤ j < j(bi).

For i ∈ {1, 2, . . . , 2N} set j(i) := j(bi) and for i ∈ {2N+1, 2N+2, . . . , J+2N}
set j(i) := j(bi−2N ). Now set M∗ : = {(i, j) : i ∈ {1, 2, . . . , J + 2N}, j ∈ N0, 0 ≤
j < j(i)}, and for r ∈ N0 define M∗r : = {(i, j) ∈ M∗ : j ≤ r}. Now we define

a map A∗ : M∗ → D(I0) with A∗(M∗) = D(I0) and A∗(M∗r) = Dr(I0) for all



44 P. RAITH

r ∈ N0, such that bi,j is an endpoint of A∗(i, j) for all (i, j) ∈ M∗. This map will

be surjective, but need not be injective, that means a C ∈ D can be represented by

different elements ofM∗. Furthermore we define arrows between elements ofM∗,
such that c → d in M∗ implies A∗(c) → A∗(d) in D(I0), and for every c ∈ M∗

the map A∗ is bijective from {d ∈ M∗ : c → d} to {D ∈ D(I0) : A∗(c) → D}.
Furthermore we shall have, that c ∈M∗r implies the existence of a d ∈M∗r with

A∗(c) ⊆ A∗(d) and either A∗(c) = [bd, bc] or A∗(c) = [bc, bd].

If (i, j) ∈ M∗ and i > 2N , then we define A∗(i, j) := {bi−2N,j}. For j ∈
{1, 2, . . . , N} set A∗(2j−1, 0) := A∗(2j, 0) := [b2j−1, b2j ]. Hence we have that bi,0
is an endpoint of A∗(i, 0) for all i ∈ {1, 2, . . . , J+2N}. Now suppose that A∗|M∗r
is constructed, and all arrows beginning in M∗r−1 are described for an r ∈ N0.

Let i ∈ {1, 2, . . . , J + 2N}, and suppose that j(i) ≥ r + 1. Then (i, r) ∈M∗r and

A∗(i, r) ∈ Dr(I0). We have that A∗(i, r) ⊆ A∗(u, v) and either A∗(i, r) = [bu,v, bi,r]

or A∗(i, r) = [bi,r, bu,v] for a (u, v) ∈ M∗r. First we suppose, that there exists an

s ∈ {0, 1, . . . , r − 1} with A∗(i, r) = A∗(i, s). In this case we introduce an arrow

(i, r) → d if and only if either d = (i, r + 1) or d 6= (i, s + 1) and (i, s) → d.

Furthermore we set A∗(i, r+1) = A∗(i, s+1). Now we consider the case A∗(i, r) 6=
A∗(i, s) for all s ∈ {0, 1, . . . , r − 1}. Set C : = {C ∈ D(I0) : A

∗(i, r) → C, TYbi,r /∈
C, TYbu,v /∈ C}. For every C ∈ C there exists an i(C) ∈ {1, 2, . . . , J + 2N}
with A∗(i(C), 0) = C. We introduce an arrow (i, r) → (i(C), 0). If A∗(i, r) has

a successor C with TYbu,v ∈ C and TYbi,r /∈ C, then we introduce an arrow

(i, r)→ (u, v+1), and if there are two successors with this property, then then we

introduce also an arrow (i, r)→ (u+ 2N, v + 1). If j(i) > r + 1, then there exists

a successor D of A∗(i, r) with bi,r+1 = TYbi,r ∈ D (suppose cardD > 1, if there

are two successors with this property). We introduce an arrow (i, r) → (i, r + 1)

and define A∗(i, r + 1) := D, and if there are two successors with this property,

then we introduce also an arrow (i, r)→ (i+ 2N, r+ 1). We have that bi,r+1 is an

endpoint of A∗(i, r + 1). If TYbu,v ∈ A∗(i, r + 1), then A∗(i, r + 1) ⊆ A∗(u, v + 1)

and we have either A∗(i, r + 1) = [bu,v+1, bi,r+1] or A∗(i, r + 1) = [bi,r+1, bu,v+1].

Otherwise there exists a w ∈ {1, 2, . . . , J + 2N} with A∗(i, r+ 1) ⊆ A∗(w, 0), such

that either A∗(i, r+ 1) = [bw,0, bi,r+1] or A∗(i, r+ 1) = [bi,r+1, bw,0]. This finishes

the construction of the oriented graph (M∗,→) and the function A∗.

Instead ofM∗ we consider also setsM defined as follows. Let χ : {1, 2, . . . , J +

2N} → {1, 2, . . . , J + 2N} be bijective. SetM : = {(i, j) : (χ(i), j) ∈M∗} and for

(i, j) ∈M define A(i, j) := A∗(χ(i), j). If (i, j), (u, v) ∈M, then we introduce an

arrow (i, j)→ (u, v) in M, if and only if (χ(i), j)→ (χ(u), v) inM∗. For r ∈ N0

defineMr : = {(i, j) : (χ(i), j) ∈M∗r}.

We call (A,→) a version of the Markov diagram of T with respect to Y, if

there exists a B ⊆ I0, such that A ⊆M satisfies the following properties.

(1) If i ∈ {1, 2, . . . , J + 2N} and j ∈ N0, then (i, j) ∈ A implies (i, l) ∈ A for

l ∈ {0, 1, . . . , j}.
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(2) c, d ∈ A and c→ d inM imply c→ d in A.

(3) c, d ∈ A and c → d in A imply either c → d in M or there exists a

d0 ∈M\A with c→ d0 inM and A(d) = A(d0).

(4) For c ∈ A the map A : {d ∈ A : c → d} → {D ∈ D(B) : A(c) → D} is

bijective.

(5) A(A ∩Mr) = Dr(B) for all r ∈ N0.

For r ∈ N0 set Ar : = A∩Mr. If IY ⊆ B, then (A,→) is called a full version of

the Markov diagram of T with respect to Y.

The main difference between these versions of the Markov diagram introduced

above and the variants of the Markov diagram introduced in [4] is, that the orbits

of elements of I0 can be included in a version (but they cannot be included in a

variant). Besides we allow a permutation of the set {1, 2, . . . , J + 2N}, which will

be useful in the proof of Lemma 2.

Now suppose, that T : [0, 1]→ [0, 1] is a piecewise monotonic map with respect

to Z, that f : [0, 1]→ R is piecewise constant with respect to Z, that K ∈ N, that

Q ∈ QK , and that Y is a finite partition of X(Q), which refines Z(Q). Let (A,→)

be a version of the Markov diagram of T with respect to Y. For c ∈ A let fc be the

unique real number with fY(x) = fc for all x ∈ A(c). Then we define for c, d ∈ A

(1.8) Fc,d(f) :=

{
efc if c→ d,

0 otherwise.

Set F (f) :=
(
Fc,d(f)

)
c,d∈A

, and for C ⊆ A set FC(f) :=
(
Fc,d(f)

)
c,d∈C

. It

is shown in [3], that u 7→ uFC(f) is an `1(C)-operator and v 7→ FC(f)v is an

`∞(C)-operator, where both operators have the same norm ‖FC(f)‖ and the same

spectral radius r
(
FC(f)

)
. Observing that (2.7)–(2.11), Lemma 4 and the remark

after Lemma 3 of [4] remain true in our situation we get

(1.9) ‖FC(f)n‖ = sup
c∈C

∑
c0=c→c1→···→cn

n−1∏
j=0

efcj

for every n ∈ N and every C ⊆ A, where the sum is taken over all paths c0 → c1 →
· · · → cn of length n in C with c0 = c,

(1.10) r
(
FC(f)

)
= lim
n→∞

‖FC(f)n‖
1
n = inf

n∈N
‖FC(f)n‖

1
n

for every C ⊆ A,

(1.11) ‖F (f)n‖ = ‖FAn(f)n‖ = sup
c∈A0

∑
c0=c→c1→···→cn

n−1∏
j=0

efcj
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for every n ∈ N, where the sum is taken over all paths c0 → c1 → · · · → cn of

length n in A with c0 = c, and

(1.12) r
(
F (f)

)
= lim
n→∞

‖FAn(f)n‖
1
n = inf

n∈N
‖FAn(f)n‖

1
n .

Furthermore we get using the proof of Lemma 6 in [3] that

(1.13) log r
(
F (f)

)
≤ p(R(Q), T, f) .

If (A,→) is a full version of the Markov diagram of T with respect to Y, or if

p(R(Q), T, f) > limn→∞
1
n
Sn(R(Q), f), then we have

(1.14) log r
(
F (f)

)
= p(R(Q), T, f).

Lemma 1. Let T : [0, 1]→ [0, 1] be a piecewise monotonic map with respect to

the finite partition Z, let f : [0, 1]→ R be a piecewise constant function with respect

to Z, let K ∈ N, and let Q ∈ QK . Suppose that p(R(Q), T, f) >

limn→∞
1
nSn(R(Q), f). Then for every ε > 0 there exists an r ∈ N, such that

for every version (A,→) of the Markov diagram of T with respect to Z(Q) there

exists an irreducible C ⊆ Ar with A(c) ∈ D for all c ∈ C, such that log r
(
FC(f)

)
>

p(R(Q), T, f)− ε.

Proof. We can suppose that ε is small enough to ensure p(R(Q), T, f) − ε >
limn→∞

1
n
Sn(R(Q), f). As Lemma 5 of [4] remains true in our situation, it implies

our result excluding the property A(c) ∈ D for all c ∈ C. Suppose that there exists

a c ∈ C with A(c) /∈ D. Then A(c) = {x} for an x ∈ XZ(Q)(Q). As every c ∈ A
with cardA(c) = 1 has at most one successor, and as C is irreducible, we have that

every d ∈ C has at most one successor and cardA(d) = 1. This implies by (1.5),

(1.9) and (1.10) that log r
(
FC(f)

)
≤ limn→∞

1
nSn(R(Q), f). As log r

(
FC(f)

)
>

p(R(Q), T, f)−ε, this contradicts p(R(Q), T, f)−ε > limn→∞
1
nSn(R(Q), f), which

finishes the proof. �

2. Continuity of the Markov Diagram

In this section let T : [0, 1]→ [0, 1] be a piecewise monotonic map with respect

to Z. Let K ∈ N, and let Q = (a1, a2, . . . , a2K−1, a2K) ∈ QK . Suppose that Y is

a finite partition of [0, 1], which refines Z, such that aj ∈ {inf Y, supY : Y ∈ Y}
for every j ∈ {1, 2, . . . , 2K − 1, 2K}. Let Y(Q) be the set of all maximal open

subintervals of X(Q) ∪
(⋃

Y ∈Y Y
)
, and let TY(Q) be the completion of T with

respect to Y(Q). Throughout this section we shall use the notations TQ, XQ, . . .

instead of TY(Q), XY(Q), . . . . As in Section 1 let I be the set of all isolated points

in X(Q), IQ the set of all isolated points in XQ(Q), and I0 : = IQ ∪ {inf Y, supY :

Y ∈ Ŷ(Q)}.
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If Q̃ = (ã1, ã2, . . . , ã2K−1, ã2K) ∈ QK , then denote the completion of T with

respect to Y(Q̃) by TQ̃ (Y(Q̃) is the set of all maximal open subintervals of X(Q̃)∪
(∪Y ∈YY )). Again we shall use throughout this section the notations TQ̃, XQ̃, . . .

instead of TY(Q̃), XY(Q̃), . . . . Now we shall define a map Y : XQ̃ → Y. To this

end we set first E1 : = {inf Y, supY : Y ∈ Y} \ {0, 1}. Let x ∈ XQ̃. If π̃(x) /∈ E1,

then there exists a unique Y ∈ Y with π̃(x) ∈ Y . Set Y (x) := Y in this case.

Otherwise we have either x = π̃(x)
−

or x = π̃(x)
+
, and there exist exactly two

Y −, Y + ∈ Y with Y − < Y +, such that π̃(x) ∈ Y − ∩ Y +. Now set Y (x) := Y −, if

x = π̃(x)
−

, and Y (x) := Y +, if x = π̃(x)
+
. Observe that this definition contains

the definition of Y : XQ → Y.

The aim of this section is to show, that the Markov diagrams of T with respect

to Y(Q), resp. Y(Q̃) have similar initial parts, if Q and Q̃ are sufficiently close.

The method of the proof of this result is the same as in the proof of Lemma 6 in

[4], but the details are different. As the proof is very technical we omit it.

Lemma 2. Let T : [0, 1] → [0, 1] be a piecewise monotonic map with respect

to the finite partition Z, let K ∈ N, and let Q = (a1, a2, . . . , a2K−1, a2K) ∈ QK .

Suppose that Y is a finite partition of [0, 1], which refines Z, such that aj ∈
{inf Y, supY : Y ∈ Y} for every j ∈ {1, 2, . . . , 2K − 1, 2K}. Then for every r ∈ N
there exists a δ > 0, such that for every Q̃ ∈ QK , which is δ-close to Q, there

exists a version (A,→) of the Markov diagram of T with respect to Y(Q), and

a full version (Ã,→) of the Markov diagram of T with respect to Y(Q̃) with the

following properties.

(1) There exists a function ϕ : Ãr → Ar, such that ϕ(Ã0) = A0, and

cardϕ−1(c) ≤ 2 for every c ∈ Ar. If c ∈ Ar and either cardϕ−1(c) > 1

or c /∈ ϕ(Ãr), then A(c) = {x} for an x ∈ XQ(Q).

(2) For c, d ∈ Ãr with A
(
ϕ(c)

)
∈ D the property c → d in Ã implies ϕ(c) →

ϕ(d) in A. Furthermore c, d ∈ Ãr, ϕ(c) → ϕ(d) in A and d is not a

successor of c in Ã imply that A
(
ϕ(d)

)
= {x}, where x is contained in{

TQ inf A
(
ϕ(c)

)
, TQ supA

(
ϕ(c)

)}
. If c, d ∈ Ãr, c→ d in Ã, and ϕ(d) is

not a successor of ϕ(c) in A, then there exist c1, d1 ∈ Ãr with c1 → d1 in

Ã, ϕ(c1) = ϕ(c), ϕ(c)→ ϕ(d1) in A, and A
(
ϕ(d1)

)
= A

(
ϕ(d)

)
.

(3) If c ∈ Ãr and Y ∈ Y satisfy Y (x) = Y for all x ∈ A
(
ϕ(c)

)
, then Y (x) = Y

for all x ∈ Ã(c).

(4) If c ∈ Ã0, and d0 = ϕ(c) → d1 → · · · → dr is a path of length r in A,

then there exist at most r + 1 different paths c0 = c → c1 → · · · → cr in

Ã with A
(
ϕ(cj)

)
= A(dj) for j ∈ {1, 2, . . . , r}.

3. Continuity of the Pressure and the Hausdorff Dimension

In this section we shall use the results of Section 2 to prove continuity results

about the pressure and the Hausdorff dimension.
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Theorem 1. Let T : [0, 1] → [0, 1] be a piecewise monotonic map with respect

to the finite partition Z, let f : [0, 1] → R be piecewise continuous with respect to

Z, let K ∈ N, and let Q ∈ QK . Then for every ε > 0 there exists a δ > 0, such

that Q̃ ∈ QK is δ-close to Q implies

p(R(Q̃), T, f) < p(R(Q), T, f) + ε .

Furthermore, if p(R(Q), T, f) > limn→∞
1
nSn(R(Q), f), then for every ε > 0 there

exists a δ > 0, such that Q̃ ∈ QK is δ-close to Q implies

|p(R(Q̃), T, f)− p(R(Q), T, f)| < ε .

Proof. Suppose that Q = (a1, a2, . . . , a2K−1, a2K) ∈ QK . Let ε > 0. By the

piecewise continuity of f there exists a finite partition Y = {Y1, Y2, . . . , YN} with

Y1 < Y2 < · · · < YN of [0, 1] refining Z, such that aj ∈ {inf Y, supY : Y ∈ Y}
for every j ∈ {1, 2, . . . , 2K} and supY ∈Y supx,y∈Y |f(x) − f(y)| < ε

2 . If x ∈ Y for

a Y ∈ Y, then define f1(x) := infy∈Y f(y). Then f1 : [0, 1] → R is a piecewise

constant function with respect to Y, and we have for every x ∈ [0, 1]

(3.1) f(x)−
ε

2
≤ f1(x) ≤ f(x) .

This implies for every Q̃ ∈ QK

(3.2) p(R(Q̃), T, f)−
ε

2
≤ p(R(Q̃), T, f1) ≤ p(R(Q̃), T, f).

We show at first, that there exists a δ > 0, such that p(R(Q̃), T, f) <

p(R(Q), T, f) + ε, if Q̃ ∈ QK is δ-close to Q.

Set R : = exp (p(R(Q), T, f) + ε
2 ). By (1.13) and (3.2) we get r

(
FA(f1)

)
< R

for every version (A,→) of the Markov diagram of T with respect to Y(Q). As

limr→∞
r
√
r + 1 = 1 we get using (1.10) that there exists an r ∈ N with

(3.3) (r + 1)‖FA(f1)
r‖ < Rr

for every version (A,→) of the Markov diagram of T with respect to Y(Q). We

fix this r for the rest of this part of this proof.

By Lemma 2 there exists a δ > 0, such that the conclusions of Lemma 2 are

true for every Q̃ ∈ QK , which is δ-close to Q.

Let Q̃ ∈ QK be δ-close to Q, and suppose that (A,→), resp. (Ã,→) are the

versions of the Markov diagrams of T with respect to Y(Q), resp. Y(Q̃) occuring

in the conclusion of Lemma 2. For c ∈ A let fc be the unique real number with

f1(x) = fc for all x ∈ A(c), and for c ∈ Ã let f̃c be the unique real number

with f1(x) = f̃c for all x ∈ Ã(c). Set F (f1) :=
(
Fc,d(f1)

)
c,d∈A

and F̃ (f1) :=
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(
F̃c,d(f1)

)
c,d∈Ã

. Let ϕ : Ãr → Ar be the function occurring in the conclusion of

Lemma 2. By (1.11) and (1.12) we get

(3.4) r
(
F̃ (f1)

)r
≤ sup
c∈Ã0

∑
c0=c→c1→···→cr

r−1∏
j=0

ef̃cj ,

where the sum is taken over all paths c0 → c1 → · · · → cr of length r in Ã with

c0 = c. As c ∈ Ã0 we have c0, c1, . . . , cr ∈ Ãr.
Fix c ∈ Ã0. If c0 → c1 → · · · → cr is a path of length r in Ã with c0 = c, then (1)

and (2) of Lemma 2 gives that there exists a path d0 → d1 → · · · → dr of length

r in Ar with d0 = ϕ(c0) ∈ A0 and A(dj) = A
(
ϕ(cj)

)
for all j ∈ {0, 1, . . . , r}.

Set χ(c0 → c1 → · · · → cr) := d0 → d1 → · · · → dr. By (3) of Lemma 2 we

get
∏r−1
j=0 e

f̃cj =
∏r−1
j=0 e

fdj . Furthermore (4) of Lemma 2 gives that for a fixed

d0 → d1 → · · · → dr there are at most r+ 1 different paths c0 → c1 → · · · → cr in

Ã with c0 = c and χ(c0 → c1 → · · · → cr) := d0 → d1 → · · · → dr. This implies

(3.5)
∑

c0=c→c1→···→cr

r−1∏
j=0

ef̃cj ≤ (r + 1)
∑

d0=ϕ(c)→d1→···→dr

r−1∏
j=0

efdj ,

where the first sum is taken over all paths c0 → c1 → · · · → cr of length r in Ã
with c0 = c, and the second over all paths d0 → d1 → · · · → dr of length r in A
with d0 = ϕ(c).

Now (1.11), (3.3), (3.4) and (3.5) imply r
(
F̃ (f1)

)r
≤ (r + 1)‖F (f1)

r‖ < Rr.

Hence r
(
F̃ (f1)

)
< R. As (Ã,→) is a full version of the Markov diagram of T

with respect to Y(Q̃), (1.14) gives p(R(Q̃), T, f1) = log r
(
F̃ (f1)

)
. Now (3.2) and

the definition of R imply p(R(Q̃), T, f) ≤ p(R(Q̃), T, f1)+ ε
2 = log r

(
F̃ (f1)

)
+ ε

2 <

logR+ ε
2 = p(R(Q), T, f) + ε, which shows the first part of this theorem.

It remains to show that there exists a δ > 0, such that Q̃ ∈ QK is δ-close to Q

implies p(R(Q̃), T, f)>p(R(Q), T, f)−ε, if p(R(Q), T, f)> limn→∞
1
n
Sn(R(Q), f).

We can assume that ε is small enough to ensure p(R(Q), T, f) > ε + limn→∞
1
n

Sn(R(Q), f). By (3.1) and (3.2) this implies

(3.6) p(R(Q), T, f1) > lim
n→∞

1

n
Sn(R(Q), f1) +

ε

2
> lim
n→∞

1

n
Sn(R(Q), f1) .

Using (3.2) we get by Lemma 1 that there exists an r ∈ N, such that for every

version (A,→) of the Markov diagram of T with respect to Y(Q) there exists an

irreducible C ⊆ Ar with A(c) ∈ D for all c ∈ C and

(3.7) log r
(
FC(f1)

)
> p(R(Q), T, f1)−

ε

2
≥ p(R(Q), T, f)− ε .

Fix this r for the rest of this proof.
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By Lemma 2 there exists a δ > 0, such that the conclusions of Lemma 2 are

true for every Q̃ ∈ QK , which is δ-close to Q.

Let Q̃ ∈ QK be δ-close to Q, and suppose that (A,→), resp. (Ã,→) are the

versions of the Markov diagrams of T with respect to Y(Q), resp. Y(Q̃) occurring

in the conclusion of Lemma 2. Define fc, f̃c, F̃ (f1) and ϕ analoguous as in the first

part of this proof. Let C ⊆ Ar be irreducible with A(c) ∈ D for all c ∈ C, such that

(3.7) is satisfied. Now (1) and (2) of Lemma 2 imply that ϕ : C̃ → C is bijective

and satisfies for c, d ∈ C̃ that c→ d in Ã is equivalent to ϕ(c)→ ϕ(d) in A, where

C̃ : = ϕ−1(C) ⊆ Ãr. Using (3) of Lemma 2 we get
∑
c0=c→c1→···→cn

∏n−1
j=0 e

f̃cj =∑
d0=ϕ(c)→d1→···→dn

∏n−1
j=0 e

fdj for every c ∈ C̃ and every n ∈ N, where the first

sum is taken over all paths c0 → c1 → · · · → cn of length n in C̃ with c0 = c, and the

second over all paths d0 → d1 → · · · → dn of length n in C with d0 = ϕ(c). By (1.9)

and (1.10) this implies r
(
FC(f1)

)
= r

(
F̃C̃(f1)

)
≤ r

(
F̃ (f1)

)
. Hence (1.13), (3.2)

and (3.7) give p(R(Q̃), T, f) ≥ p(R(Q̃), T, f1) ≥ log r
(
F̃ (f1)

)
≥ log r

(
FC(f1)

)
>

p(R(Q), T, f)− ε, which finishes the proof. �

We give an example, where the pressure is not lower semi-continuous. Let

T : [0, 1]→ [0, 1], Z and f : [0, 1]→ R be defined as in (4.4) and (4.5) of [4], that

means Z : = {(0, 1
6 ), (1

6 ,
1
3 ), (1

3 ,
2
3 ), (2

3 , 1)},

Tx =


2x for x ∈ [0, 1

6 ],
2
3 − 2x for x ∈ [16 ,

1
3 ],

2x− 2
3 for x ∈ [13 ,

2
3 ],

2− 2x for x ∈ [23 , 1],

f(x) =


0 for x ∈ [0, 1

3 ],

30x− 10 for x ∈ [13 ,
2
3 ],

30− 30x for x ∈ [23 , 1].

Set K : = 1 and set Q : = (2
3 , 1) ∈ Q1 (note that elements of Q1 are not intervals!).

Then we have R(Q) = [0, 2
3 ] ∪ {1}, the nonwandering set of (R(Q), T ) is [0, 1

3 ] ∪
{ 2

3} and p(R(Q), T, f) = 10. The function f is so large at the isolated fixed

point 2
3 , such that it dominates the pressure on the rest of the nonwandering set.

As we shall see below this fixed point can be destroyed by an arbitrarily small

perturbation. The condition p(R(Q), T, f) > limn→∞
1
n
Sn(R(Q), f) excludes such

a phenomenon. For ε ∈ (0, 1
3 ) define Qε : = (2

3 − ε, 1) ∈ Q1. Then Qε is ε-close

to Q. We have R(Qε) = [0, 2
3 − ε] ∪ {1}, the nonwandering set of (R(Qε), T )

is [0, 1
3 ], and p(R(Qε), T, f) = log 2, which shows that the pressure is not lower

semi-continuous in this case.

Now we shall show that the topological entropy is continuous. If we set f = 0 in

Theorem 1, we get that |htop(R(Q̃), T ) − htop(R(Q), T )| < ε for every

Q̃ ∈ QK , which is sufficiently close to Q, if htop(R(Q), T ) > 0. If otherwise
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htop(R(Q), T ) = 0, then Theorem 1 gives also |htop(R(Q̃), T )−htop(R(Q), T )| < ε

for every Q̃ ∈ QK , which is sufficiently close to Q, since htop(R(Q̃), T ) ≥ 0. Hence

we have proved the following result.

Corollary 1.1. Let T : [0, 1]→ [0, 1] be a piecewise monotonic map, let K ∈ N,

and let Q ∈ QK. Then for every ε > 0 there exists a δ > 0, such that Q̃ ∈ QK is

δ-close to Q implies

|htop(R(Q̃), T )− htop(R(Q), T )| < ε .

Now we shall show that Q 7→ HD
(
R(Q)

)
is continuous, if T is expanding. To

this end we need the following result, which is proved in [3] (see also Lemma 7

of [4]).

Lemma 3. Let T : [0, 1]→ [0, 1] be an expanding piecewise monotonic map, let

K ∈ N, and let Q ∈ QK. Then the map t 7→ p(R(Q), T,−t log |T ′|) defined on R
is continuous and strictly decreasing, has a unique zero tR, and HD

(
R(Q)

)
= tR.

Using Lemma 3 and Theorem 1 a proof analoguous to the proof of Theorem 3

in [4] shows the continuity of the Hausdorff dimension.

Theorem 2. Let T : [0, 1] → [0, 1] be an expanding piecewise monotonic map,

let K ∈ N, and let Q ∈ QK. Then for every ε > 0 there exists a δ > 0, such that

Q̃ ∈ QK is δ-close to Q implies∣∣HD
(
R(Q̃)

)
−HD

(
R(Q)

)∣∣ < ε .

Theorem 2 and Corollary 1.1 are generalizations of Theorem 4 in [6], where

continuity of the topological entropy and the Hausdorff dimension is shown, if T is

an expanding C2-diffeomorphism of the circle. In [5] it is shown that t 7→ htop(Rt)

and t 7→ HD(Rt) are continuous for expanding C2-diffeomorphisms of the circle,

where Rt : = ∩∞j=0T1 \ T−j(0 − t, 0 + t) (we assume that 0 is a fixed point of T ,

and intervals on T1 are defined in the usual way).

4. The Set of Points, Whose Orbit Is Not Dense

Throughout this section let T : [0, 1]→ [0, 1] be an expanding piecewise mono-

tonic map. We show that for every t ∈ [0, 1] there exists a closed, T -invariant

Rt ⊆ [0, 1] with HD (Rt) = t. Furthermore we show HD
(
{x ∈ [0, 1] : ω(x) 6=

[0, 1]}
)

= 1.

As T is expanding it follows from [1], that T has periodic points. Hence fix an

x0 ∈ [0, 1] and an n ∈ N with Tnx0 = x0. Set K : = card
(
{x0, Tx0, T

2x0, . . . ,

Tn−1x0}∪{0, 1}
)
−1, and choose c0 < c1 < · · · < cK , such that {c0, c1, . . . , cK} =
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{x0, Tx0, . . . , T
n−1x0} ∪ {0, 1}. For every j ∈ {1, 2, . . . ,K} we choose a bj ∈

(cj−1, cj). Let s ∈ [0, 1]. Define for j ∈ {1, 2, . . . ,K}

(4.1)
a2j−1(s) := max {cj−1, bj − s} ,

a2j(s) := min {cj , bj + s} ,

and set

(4.2) Qs : =
(
a1(s), a2(s), . . . , a2K−1(s), a2K(s)

)
.

Then Qs ∈ QK and {x0, Tx0, . . . , T
n−1x0} ∈ R(Qs) for every s ∈ [0, 1]. If s1, s2 ∈

[0, 1] and |s1 − s2| < ε, then Qs2 is ε-close to Qs1 . Furthermore we have R(Q0) =

[0, 1] and {x0, Tx0, . . . , T
n−1x0} ⊆ R(Q1) ⊆ {x0, Tx0, . . . , T

n−1x0}∪{0, 1}. Hence

HD
(
R(Q0)

)
= 1 and HD

(
R(Q1)

)
= 0. Therefore we have the following result.

Lemma 4. The function s 7→ HD
(
R(Qs)

)
defined on [0, 1] is continuous and

decreasing, and satisfies HD
(
R(Q0)

)
= 1 and HD

(
R(Q1)

)
= 0.

Now we can prove the following result.

Theorem 3. Let T : [0, 1] → [0, 1] be an expanding piecewise monotonic map.

Then for every t ∈ [0, 1] there exists a closed, T -invariant Rt ⊆ [0, 1] with

HD(Rt) = t.

Proof. This is an easy consequence of Lemma 4 and the intermediate value

theorem. �

Remarks. (1) Using the results of [1] we can show that for every t ∈ [0, 1]

there exists a topologically transitive, closed, T -invariant Rt ⊆ [0, 1] with Rt =

∩∞j=0Ft \ T
−jGt, where Ft and Gt are finite unions of (not necessarily open) in-

tervals, such that HD(Rt) = t.

(2) If X is a finite union of closed intervals, T : X → R is piecewise monotone

with respect to Z, such that (T,Z) is of class E1 as defined in [4], and R(T )

is defined as in [4], then for every t ∈
[
0,HD

(
R(T )

)]
there exists a closed, T -

invariant Rt ⊆ R(T ), which can be chosen as in (1), with HD (Rt) = t.

Now we shall show that HD
(
{x ∈ [0, 1] : ω(x) 6= [0, 1]}

)
= 1. Observe that for

x ∈ [0, 1] the condition ω(x) 6= [0, 1] is equivalent to the condition that the orbit

of x is not dense.

Theorem 4. Let T : [0, 1] → [0, 1] be an expanding piecewise monotonic map.

Then HD
(
{x ∈ [0, 1] : ω(x) 6= [0, 1]}

)
= 1.

Proof. If s > 0, then ∅ 6=
(
a1(s), a2(s)

)
⊆ [0, 1] \ R(Qs). Hence R(Qs) ⊆

{x ∈ [0, 1] : ω(x) 6= [0, 1]} for every s > 0. By Lemma 4 there exists a sequence

(sn)n∈N in (0, 1] with limn→∞HD
(
R(Qsn)

)
= 1. Set R : = ∪n∈NR(Qsn). Then
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R ⊆ {x ∈ [0, 1] : ω(x) 6= [0, 1]} and HD(R) = supn∈NHD
(
R(Qsn)

)
= 1, which

implies the desired result. �

Remark. If X is a finite union of closed intervals, T : X → R is piecewise

monotone with respect to Z, such that (T,Z) is of class E1 as defined in [4], and

R(T ) is defined as in [4], then HD
(
{x ∈ R(T ) : ω(x) 6= R(T )}

)
= HD

(
R(T )

)
.

If T is an expanding C2-diffeomorphism of the circle, then Theorem 3 and

Theorem 4 can be easily deduced from [5].
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5. Urbański M., Hausdorff dimension of invariant sets for expanding maps of a circle, Ergodic

Theory Dynamical Systems 6 (1986), 295–309.
6. , Invariant subsets of expanding mappings of the circle, Ergodic Theory Dynamical

Systems 7 (1987), 627–645.

P. Raith, Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A–1090 Wien, Austria;
e-mail: a8131dav@awiuni11.edvz.univie.ac.at


