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CONTINUITY OF THE HAUSDORFF DIMENSION
FOR INVARIANT SUBSETS OF INTERVAL MAPS

P. RAITH

Abstract. Let T:[0,1] - [0, 1] be an expanding piecewise monotonic map, and
consider the set R of all points, whose orbits omit a certain finite union of open
intervals. It is shown that the Hausdor Cdimension HD (R) depends continuously
on small perturbations of the endpoints of these open intervals. A similar result for
the topological pressure is also obtained. Furthermore it is shown that for every
t [0, 1] there exists a closed, T-invariant Rt [[0] 1] with HD (R¢) = t. Finally it
is proved that the Hausdor [_dimension of the set of all points, whose orbit is not
dense, is 1.

Introduction

Let T: [0,1] - [0,1] be an expanding piecewise monotonic map, that means
there exists a finite partition Z of [0, 1] into pairwise disjoint open intervals with
[z4zZ = [0,1], T|Z is continuous and strictly monotone for all Z 4, TYZ
can be extended to a continuous function on Z for all Z [C4, and there ex-
ists an n [N with infy oy [(TMHYX)| > 1. Fix a K [CN. Let (aj,a) [
(as,a3) - [Aok—1,a2«) be a finite upign of open subilﬁrvals of [0, 1], and
set R(ag, az, ..., ax) : = N[0, 1\ T~ [, (azk—1,a2) - We investigate the
influence of small perturbations of the endpoints of [}, (azk—1,az2«) on the set
R(a]_, az,..., aZK).

In [4] there are considered piecewise monotonic maps T: X — R, where X is a
finite union of intervals, and the-set R(T) : = niZo T "X s investigated. Hence
we have R(az, az, ...,ax) =R TJ[0,1]\ E%(azk—l, az) - But the results of [4]
need not be ﬁlicable in our case, sinc&ﬁ TI0, 1]\ [, (A2k—1,32k) need not
be close to R T][0, 1]\ O, (agk—1,a2«) in the sense defined in [4], if [3j —aj| <€
for all j [{L,2,...,2K}. For example, if K =1, a; = infZ for a Z A4 and
a; B0, a; < ap, € > 0 satisfies a; + € < ayp, then T|[0,1]\ (a1 + €, a2) has more
intervals of monotonicity than T|[0, 1]\ (a1, a2) (namely the interval (a;, a1 + €)),
but closeness in the sense of [4] implies that the maps have the same number of
intervals of monotonicity.
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In Theorem 1 of this paper it is shown, that the function (ai,az,...,ax) B
p(R(a1,az,...,az2x), T, T), where p(,,.,.) denotes the topological pressure, is up-
per semi-continuous. Furthermore it says, that this function is continuous at
(a1,az,...,azk), if a certain condition generalizing p(R(a,az,...,ax), T,T) >
SUPy [Riay,as,....asc) T (X) IS satisfied. This implies the continui%of the topologicatI
entropy. Theorem 2 says that the map (a;,az,...,ax)5 HD R(ai,ay,...,axk)
is continuous. Such results are obtained by Mariusz Urbahski in the case of an
expanding C2-di Ledmorphism T of the circle ([5], [6]). In [5] he showed that the
topological entropy and the Hausdor [_dimension are continuous, if K = 1 and
(a1,a2) = (0 —€,0 + €), where 0 is a fixed point of T (intervals on the circle
are defined in the usual way). He generalized this result to K = 1 and arbitrary
(a1,az,...,azk) in [6] (Theorem 4 in [6]). We show in Theorem 3 that for every
t [0, 1] there exists a closed, T-invariant Ry []d,1] with HD(R¢) = t. The
results in [1] give that we can choose R, such that Ry is topologically transitive,
and R¢ = np2oFt \ T ~"Gy, where F¢ and G are finite unions of intervals. Finally
Theorem 4 says that the Hausdor Cdimension of the set of all points, whose orbit
is not dense, is 1. In the case of an expanding C2-di [edmorphism of a circle, the
results of Theorem 3 and Theorem 4 can be easily deduced from [5] (Corollary 4
of [6] is the analogon of Theorem 3 of this paper).

The proof uses a graph (D, -), called Markov diagram, associated to (R(az,
az,...,azk), T). Lemma 2 says that the initial part of the Markov diagram of
(R@@1,8@z,...,82«), T) is similar to that of (R(ag,az,...,ak), T), if |§j —a;| <8
for all j [{1,2,...,2K} and a su Lciehtly small 3. Although the result and the
proof of this lemma look similar to those of Lemma 6 in [4], the details are di [erknt.
As in [4] this lemma, an approximation of ¥ by piecewise constant functions, and
Lemma 6 of [3] imply Theorem 1. Using Theorem 2 of [3] this implies Theorem 2.
Theorem 3 and Theorem 4 are easy consequences of Theorem 2.

1. Definitions and Notations

A map T:[0,1] - [0,1] is called piecewise monotone, if there exists a finite
partition Z of [0,1], such that T|Z is strictly monotone and continuous for all
Z 4. We call Z a finite partition of [0, 1], if Z consists of pairwise disjoint
open intervals with [zd=Z = [0,1]. A function f:[0,1] — R is called piece-
wise continuous with respect to the finite partition Z(f) of [0,1], if f|Z can
be extended to a continuous function on the closure of Z for all Z CA(f). We
say that f: [0,1] —» R is piecewise constant with respect to the finite partition
Z(f) of [0,1], if F|Z is constant for all Z [—A(f). A piecewise monotonic map
T:[0,1] - [0,1] is called expanding, if there exists a j [N, such that (T4)"is a
piecewise continuous function and infy oy [(TH¥x)| > 1. At this point we want
to remark, that all results of this paper hold also for the situation considered in
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[4], that means T: X - R is piecewise monotone, where X is a finite union of
closed intervals.

Let K [N and suppose that 0 < a3 < ap < -+ < azk—1 < azk < 1 with
aj < aj+2 for j 1,2,...,2K —2}. Set Q := (ag,az,..., k-1, 82k). Let Qk

be the set of all such Q’s. Now define for Q = (a1, ay,...,ak—1,a2«) [Qk
1
(1.1) X(@Q) :=1[0,1]\ (azk—1, a2)
k=1

and

 — I ]
(1.2) R@Q):= [0,1]\T™] (azk—1, a2k)

j=0 k=1

Let Z(Q) be the set of all maximal open subintervals of X(Q) n ([(zd=£) and set
X1(Q) : = X(Q)\{x: x is isolated in X(Q)}. We say that Y is a finite partition
of X(Q), if Y consists of pairwise disjoint open intervals with yY = X1(Q).
Observing that the results of [4] remain true, if we Iai,ow X to be aﬂnite union of
closed intervals and isolated points, we have that T|X(Q),Z(Q) is a piecewise
mﬂotonic Map of class R? in the sense defined in [4]. Furthermore we have
R TIX(Q) =R(Q).

Now we want to define a topology on Qk. Let € > 0. Then Q := (a1,az, ...,
k-1, a2k) and Q:= (31,3, ... ,’éZK_l,ﬁzEp are said to qif—:-clqs_el, if |§k_5kl
e for all kK [{1,2,...,2K}. Observe that T|X(Q),Z(Q) and T|X(Q),Z(Q)
need not be e-close with respect to the R%-topology defined in [4].

Next we modify ([0, 1], T) in order to get a topological dynamical system. This
will be done in a similar way as in [4].

Let T:[0,1] - [0,1] be a piecewise monotonic map with respect to Z, let
K [N, let Q [Qk, and let Y be a finite partition of X(Q), which refines Z(Q).
We assume throughout this paper, that Y = {Y1,Y2,...,Yn} With Y1 < Y, <

- < VYpq Set E:={infY,qupY Y Y} LLNfZ,supZ : Z L A}. Now define
W= GHTHEN{0,1}) \{0,1}, set Ry := R\W L, x™ : x W}, and
definey < x~ < x* < z,if y < x < z holds in R. This means, that we have
doubled all endpoints of elements of Y or Z, and we have also doubled all inverse
images of doubled points. For x [CHy define m(x) : =y, where y [R satisfies
either x =y ory W and x [y —,y"}. We have that x,y Ry, n(x) < m(y)
implies x <y. As in [4] we can introduce a metric d on Ry, which generates the
order topology.

Let Xy be the closure of [0,1]\ W in Ry and define Xy(Q) := {x Ry :
m(xX) CX(Q)}. Observe that Xy and Xy (Q) are compact. For a perfect subset
A of R let A be the closure of AAW in Ry. Now set Y := {Y :Y [Y},
Z:={Z:Z A} and Z(Q) := {Z : Z CA(Q)}. The map T|[0,1]\ (W LHEI)
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can be extended to a unique continuous piecewise monotonic map Ty : Xy — Xy.
Then (Ty, 2) is a continuous piecewise monotonic map of class R® on Xy in the
sense defined in [4] If there is no confusion we shall use the notation Y instead of
Y, Z instead of Z, and Z(Q) instead of Z(Q) The set Ry 1= nj2 Ty Xy (Q)
satisfies Ry = njZqTy “IXy(Q) = {x Ry : n(x) CR(Q)}. We call Ty the
completion of T with respect to Y. If f:[0,1] —» R is piecewise continuous with
respect to Z, then there exists a unique continuous function fy: Xy - R with
fv(x) = f(x) for all x [0, 1]\ (W LCHI). Then fy is called the completion of
with respect to Y.

A topological dynamical system (X, T) is a continuous map T of a compact
metric space X into itself. Hence (Ry, Ty) is a topological dynamical system.

If (X, T) is a topological dynamical system, and f: X - R is a continuous
function, then the topological pressure p(X, T, T) is defined by

L1
(1.3) p(X,T.f):= lim limsup = Iog sup exp f(Tx) |
n - oo < [E1 j:()

where the supremum is taken over all (n, €)-separated subsets E of X. AsetE [X]
is called (n, €)-separated, if for every x ' y [H there exists a j [{0,1,...,n—1}
with d(TIx, Tly) > &.

Now we define

(1.4) P(RQ), T, F) :=p(Ry, Tv, fy).

Lemma 2 of [3] says, that this definition does not depend on the partition Y.
Furthermore we define for n [Nl

| S
(1.5) Sn(R(Q),T) := sup v (Tv?x).
X [RY j=0

Observe that this definition does not depend on the partition Y. Note that these
definitions are a bit di [erent from those in [4].

Now we define the Hausdor C_dimension. For an A [CR, A B [tefine
diamA :=sup, , ralXx —Yy|. Let Y [R]l For t=0and & >0 set

m(Y,t,€) :=inf (diamA)' : A is an at most countable cover of Y
ALA] 1
with diam A < ¢ for all A A .

Then define the Hausdor C_dimension HD (Y ) of Y by

1 1
(1.6) HD(Y):=inf t=0: Iirrgm(Y,t,e)zO
£
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In [3] this definition is slightly modified, which allows to define the Hausdor ]
dimension also on Xy — the space, where the completiorﬂy oflﬁpiecewise mono-
tonic map T acts — in a way, such that HD (Ry) = HD R(Q) . At this point we
remark, that all results of this paper hold also in the situation considered in [3],
where a bit more general situation is treated.

Now we shall define an at most countable oriented graph (D, - ), called Markov
diagram, which describes the orbit structure of (R(Q), T) (cf. [1], [2]). As we shall
need also a description of the Markov diagram in a di Lerent way, we shall introduce
also versions (A, —) of the Markov diagram, which are similar to the variants of
the Markov diagram introduced in [4].

Let T: [0,1] - [0, 1] be a piecewise monotonic map with respect to Z, let K [
N, let Q [Qk, and let Y be a finite partition of X(Q), which refines Z(Q). Let
Ty be the completion of T with respect to Y. Let I be the set of all isolated points
of X(Q), and ly be the set of all isolated points of Xy (Q). Note that I [{ly),
but equality is not true in generAaI. ‘%n there exist by, by, ..., bon |J_;|XIY (Q) with
by <bs <---<bon, such that Y = [bpj—1,b25] :j 1,2,...,N} . Furthermore
there exist a J [N and ban+1,bon+2, ..., b3 AV (Q) with bon+r < bon+o <

- < by, such that Iy = {bon+1,0on+2,-..,03F Set 1g : = {by,by,...,bs}. Let
Yo [:Yland let D be a perfect subinterval of Yo. A nonempty C Xl (Q) is called
successor of D, if there existsa Y [CYlwith C = TyDnY, and we write D — C.
We get that every successor C of D is again a perfect subinterval of an element of
Y. Let D be the smallest set with Y [Dland such that D CDland D — C imply
C [D. Then (D, -) is called the Markov diagram of T with respect to Y. The
set D is at most countable and its elements are perfect subintervals of elements
of Y.

Set Dg : = \7, and for r [N set D, := Dr—1 [{D [D : A [D,—; with
C - D}. Then we have Dy [D} [D} [} and D = Z}Dy.

If C D and x [}, then we introduce an arrow C - {x}, if and only if
x [T C. Let x [I3. Then we set j(x) :=min{j [N: TyIx EXIY(QI)iTI where
we set j(X) := oo,li_LlTYJx Xy (Q) for-_all j [Nl Now define D(x) : = {TYJX}:EI
J [No,j < j(X) , define Dr(x) := {TyIx} : j [No,J < min{j(x),r + 1}
for r [Ny, and introduce the arrow {Tvi=1x} - {TyIx}, if {TyIx} CDO(x) and
j [N (there age-np other arrows beginning in Erlx}). If B I, then define
D(B) :=D 1, gD(X), and D,(B) : = Dy [ gDr(X) for r [(Nb.

Now define

(A7) by =Tyl fori C{1,2,...,3}andj CNb, 0<j <j(b).

Fori [({1,2,...,2N}setj(i) :=j(bj) and for i AN +1,2N+2,...,J+2N}
set j(i) : = j(bi—an). Now set M= {(i,j) : i [{1,2,...,J +2N},j [Np,0 <
Jj < j(} and for r [Ny define M5 := {(i,j) CIM™ j < r}. Now we define
a map AS'MSL D(lg) with AfMB'= D(lp) and AMM S = D, (lp) for all
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r [N, such that b; j is an endpoint of A, j) for all (i,j) T~ This map will
be surjective, but need not be injective, that means a C can be represented by
di [erent elements of M 'Furthermore we define arrows between elements of M5
such that ¢ — d in M™Implies AN¢) - AN®) in D(lp), and for every ¢ CIW1™!
the map A™ls bijective from {d CWM™ ¢ - d} to {D [O(ly) : AYt) — D}
Furthermore we shall have, that ¢ W implies the existence of a d W S with
AN®) CAIH®Y) and either AN¢E) = [bg, be] or ANE) = [be, bgl.

If (i,j) C™M%and i > 2N, then we define A, j) := {bi—onj}. For j [
{1,2,...,N} set AK2j —1,0) : = AX2j,0) : = [byj—1, b2j]. Hence we have that bj o
is an endpoint of A, 0) for all i [{1,2,...,J+2N}. Now suppose that AHM
is constructed, and all arrows beginning in ML, are described for an r [No.
Leti [41,2,...,J + 2N}, and suppose that j(i) =r + 1. Then (i,r) CIW15% and
Ad,r) D, (lp). We have that A, r) AL, v) and either A, r) = [by.v, bir]
or A, r) = [bi.r,byy] for a (u,v) CIM5! First we suppose, that there exists an
s [40,1,...,r — 1} with Ad,r) = A%d,s). In this case we introduce an arrow
(i,r) —» dif and only if either d = (i,r+1) ord & (i,s +1) and (i,s) - d.
Furthermore we set A, r+1) = A, s+1). Now we consider the case A (i, r) 8
At(,s) forall s [0,1,...,r—1}. Set C := {C [D(lp): A, r) - C, Tyb;, 1
C,Tybyy L@} For every C [Q there exists an i(C) [{1,2,...,J + 2N}
with AYi(C),0) = C. We introduce an arrow (i,r) — (i(C),0). If A%d,r) has
a successor C with Tyb,y Q@ and Tybi, @, then we introduce an arrow
(i,r) - (u,v+1), and if there are two successors with this property, then then we
introduce also an arrow (i,r) - (u+ 2N,v + 1). If j(i) > r + 1, then there exists
a successor D of A1, r) with bj r+1 = Tyb;, D (suppose cardD > 1, if there
are two successors with this property). We introduce an arrow (i,r) - (i,r +1)
and define A, r + 1) : = D, and if there are two successors with this property,
then we introduce also an arrow (i,r) — (i+ 2N, r+1). We have that bj (7 is an
endpoint of A, r +1). If Tyb,, CA, r + 1), then A, r + 1) CAHL,v + 1)
and we have either A, r + 1) = [byyv+1,bir+1] or A, r + 1) = [bj r+1, buv+1].
Otherwise there exists aw [{1,2,...,J + 2N} with A™d, r +1) CARW, 0), such
that either A, r + 1) = [bw 0, bi r+1] or A, r + 1) = [bj r+1, bw,o]. This finishes
the construction of the oriented graph (M5-) and the function A%}

Instead of M Sve consider also sets M defined as follows. Let x: {1,2,...,J +
2N} - {1,2,...,3 + 2N} be bijective. Set M : = {(i,]) : (x(i),j) M Fand for
(i,j) W define A, j) : = ANk, ). If (i,j), (u,v) I, then we introduce an
arrow (i,j) — (u,v) in M, if and only if (x(i),j) - (x(u),v) in M~For r [Ny
define My 1= {(i,j) : (x(i),j) CI\53.

We call (A, -) a version of the Markov diagram of T with respect to Y, if
there exists a B [Igl such that A [CIM satisfies the following properties.

(1) Ifi £1,2,...,3+2N} and j [N, then (i,j) CA implies (i,1) CA for
| (f0,1,...,j}
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(2) c,d CAandc - din M implyc - din A.
(3) ¢c,d A and ¢ - din A imply either ¢ - d in M or there exists a
do CIM\ A with ¢ — dp in M and A(d) = A(do).
(4) Forc CAthemapA:{dCA:c - d} - {D OB) : A(c) - D} is
bijective.
(5) A(An M;) =D(B) for all r [(Nb.
For r [Nb set A : = An M. If Iy [B] then (A, -) is called a full version of
the Markov diagram of T with respect to Y.

The main diLerence between these versions of the Markov diagram introduced
above and the variants of the Markov diagram introduced in [4] is, that the orbits
of elements of Iy can be included in a version (but they cannot be included in a
variant). Besides we allow a permutation of the set {1,2,...,J + 2N}, which will
be useful in the proof of Lemma 2.

Now suppose, that T: [0,1] - [0,1] is a piecewise monotonic map with respect
to Z, that f: [0,1] - R is piecewise constant with respect to Z, that K [N, that
Q [Qk, and that Y is a finite partition of X (Q), which refines Z(Q). Let (A, -)
be a version of the Markov diagram of T with respect to Y. For ¢ CAl let . be the
unique real number with fy (x) = f. for all x CA(c). Then we define for ¢c,d CA

4

(18) Foa(F) = g'e ifc - d,
' T otherwise.

] ] (I 1
Set F(F) := F¢q(f) o.d (Al and for C A set Fc(f) := Fea(f) c.d [T It
is shown in [3], that u B uFc(f) is an [X{C)-operator and v B F¢(f)v is an
>?(C)-operator, \f.t_k’ere tﬂh operators have the same norm [EL(f) [Cdnd the same
spectral radius r Fc(F) . Observing that (2.7)-(2.11), Lemma 4 and the remark
after Lemma 3 of [4] remain true in our situation we get

1"
(1.9 (EE(F)" = sup e'ci

ClCe=c_cy— - —cn j=0

for every n [CNland every C [CA] where the sum is taken over all pathscp — ¢1 —
- = cp of length n in C with ¢ =c,

O O
(1.10) r Fe(f) = lim [EL(F)" = irEfm[Eb(f)“
for every C [CA]

— ) -

(1.11) (EI(F)" (= (B, (F)" = sup e'ci

CLAd co=c_cy— - —cn j=0
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for every n [N, where the sum is taken over all paths cp - ¢; - -+ - ¢ Of
length n in A with ¢ = ¢, and
[ o .
(1.12) rF(f) = lim [E,, (F)" A= mEmequn(f)“.
— 0O n

Furthermore we get using the proof of Lemma 6 in [3] that
o
(1.13) logr F(f) =p(R(Q),T,T).

If (A, =) is a full version of the Markov diagram of T with respect to Y, or if
p(R(Q), T,f) >limy_ %Sn(R(Q),f), then we have

[
(1.14) logr F(F) =p(R(Q),T,T).

Lemma 1. Let T: [0,1] - [0, 1] be a piecewise monotonic map with respect to
the finite partition Z, let ¥: [0, 1] —» R be a piecewise constant function with respect
to Z, let K [N, and let Q [k. Suppose that p(R(Q),T,f) >
limp_ o %Sn(R(Q),f). Then for every € > 0 there exists an r [N, such that
for every version (A, -) of the Markov diagram of T with respect to Z@) t
exists an irreducible C A} with A(c) D for all ¢ [C] such that logr Fc(f) >
P(R(Q), T, f) —e.

Proof. We can suppose that € is small enough to ensure p(R(Q),T,f) — ¢ >
limp_ o %Sn(R(Q), f). As Lemma 5 of [4] remains true in our situation, it implies
our result excluding the property A(c) D for all c [CCl Suppose that there exists
a ¢ [Clwith A(c) r . Then A(c) = {x} for an x [Xzq)(Q). As every c CA
with card A(c) = 1 has at most one successor, and as C is irreducible, we have that
every d [Clhas at most one succpssor and card A(d) = 1. This impIieﬁ)y (1@,
(1.9) and (1.10) that logr Fc(f) < limp_ %Sn(R(Q),f). As logr Fc(F) >
p(R(Q), T, f)—¢, this contradicts p(R(Q), T, f)—e > lim,_ o %Sn(R(Q), f), which
finishes the proof. 1

2. Continuity of the Markov Diagram

In this section let T: [0,1] - [0, 1] be a piecewise monotonic map with respect
to Z. Let K [N, and let Q = (a1,az,...,axk—1,a2«) [ Qk. Suppose that Y is
a finite partition of [0, 1], which refines Z, such that a; C{infY,supY :Y [CYI}
for every j [{L,2,.. .,%ﬁ’t—ll,ZIﬁ. Let Y(Q) be the set of all maximal open
subintervals of X(Q) 1, Y , and let Ty be the completion of T with
respect to Y (Q). Throughout this section we shall use the notations Tg, Xg, ...
instead of Ty gy, Xy(qg), --- - Asin Section 1 let I be the set of all isolated points
in X(AQ), lo the set of all isolated points in X (Q), and lg : = lo C{fY,supY :
Y [YKQ)}.
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If Q = (31,32, ...,k —-1,32x) [Qk, then denote the completion of T with
respect to Y (Q) by T (Y (Q) is the set of all maximal open subintervals of X (Q) [
(LedyY')). Again we shall use throughout this section the notations T, Xg, - ..
instead of Ty &), Xy 5y, --- - Now we shall define a map Y : X5 - Y. To this
end we set first E; ;= {infY,supY :Y [CYI}\{0,1}. Let x [X5. If i(x) Y Ha,
then there exists a unique Y [CY with fi(x) Y. Set Y(X) :=Y in this case.
Otherwise we have either x = f(x)” or x = f{(x)", and there exist exactly two
Y~,Y* [CYIwith Y~ <Y ™*, such that i(x) CYI" nY *. Now set Y (x) :=Y ~, if
X=F(x)",and Y (X) := Y™, if x = f(x)". Observe that this definition contains
the definition of Y : Xg - V.

The aim of this section is to show, that the Markov diagrams of T with respect
to Y(Q), resp. Y((S) have similar initial parts, if Q and 6 are su [Lciehtly close.
The method of the proof of this result is the same as in the proof of Lemma 6 in
[4], but the details are dilerknt. As the proof is very technical we omit it.

Lemma 2. Let T:[0,1] - [0,1] be a piecewise monotonic map with respect
to the finite partition Z, let K [N, and let Q = (a1,ay,...,ak—-1,a2k) [Qk.
Suppose that Y is a finite partition of [0, 1], which refines Z, such that a; [
{infY,supY :Y L[YI} for every j [{1,2,...,2K —1,2K}. Then for every r [Nl
there exists a 6 > 0, such that for every (5 [Qk, which is d-close to Q, there
exists a version (A, —) of the Markov diagram of T with respect to Y(Q), and
a full version (A, —) of the Markov diagram of T with respect to Y (Q) with the
following properties.

(1) There exists a function ¢: A, — Ay, such that ¢(A;) = Ao, and
card ~*(c) < 2 for every ¢ [CA,. If ¢ CA, and either card$p~1(c) > 1
or ¢ FQLA,), then Afe) =4£x} for an x [Xo(Q). _

(2) For c,d A, with A ¢(c) [ the property ¢ — d in A implies ¢(c) -
¢(d) in A. Furthe~rmore c,d Ijii_r, q@ - ¢(d) in A and d is not a
fuepessor ﬁlc ifq_—]A imply I1;_h]at ﬁﬁ;l(d) = {)5}, where x ii contained in

To infA ¢(c) ,Tg supA ¢(c) . Ifc,d CAy, ¢ - din A, and ¢(d) is
not a successor of ¢(c) in A, then there exisﬁl, d@rlﬂith@ ~ dq in
A, d(c1) = (), d(c) —» d(d1) in A, and A §(d1) 5 Arg(d) -

(3) Ifc CA,andY [Misatisfy Y (x) =Y forall x CA ¢(c) ,thenY(X) =Y
for all x CA(C).

4) Ifc Ay, and dg = ¢(c) - dp - -+ - dy is a path of length r in A,
tﬁen therel—_e,xistﬁ most r + 1 dilerent paths co =¢ - ¢; —» -+ - Cf in
A with A ¢(cj) = A(d;) for j Cf1,2,...,r}.

3. Continuity of the Pressure and the Hausdorff Dimension

In this section we shall use the results of Section 2 to prove continuity results
about the pressure and the Hausdor Cdimension.
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Theorem 1. Let T: [0,1] — [0,1] be a piecewise monotonic map with respect
to the finite partition Z, let f: [0,1] - R be piecewise continuous with respect to
Z,let K [N, and let Q [CQk. Then for every € > 0 there exists a 6 > 0, such
that Q@ [CQk is d-close to Q implies

P(RQ), T,F) <p(RQ),T,f) +¢.

Furthermore, if p(R(Q), T, ) > limy . o %Sn(R(Q),f), then for every € > 0 there
exists a 6 > 0, such that Q [Qk is 6-close to Q implies

IP(RQ), T, ) —p(R(Q),T,F)| <e.

Proof. Suppose that Q = (a1,a2,...,8k—1,a2k) [ Qk. Let € > 0. By the
piecewise continuity of f there exists a finite partition Y = {Y1,Y2,...,Yn} with
Yy <Y <--- <Yy of [0,1] refining Z, such that a; C{InfY,supY : Y [Y}
for every j [{1,2,...,2K} and supy v Supy .y il T (X) — F(Y)| < 5. If x Y1 for
a'’Y [, then define f1(X) := infy1f(y). Then f1:[0,1] - R is a piecewise
constant function with respect to Y, and we have for every x [0, 1]

(3.1) X)) — = < f1(x) < F(X) .

€
2
This implies for every @ [CQx

(3.2) P(R(Q), T,F) — = < p(R(Q), T,f1) <p(RQ), T, f).

NI m

We show at first, that there exists a & > 0, such that p(R(@),T,f) <
P(R(Q),T,F) +¢, if Q [Qxk is d-close to Q. O O

Set R :=exp(p(R(Q),T,f)+ 5). By (1.13) and (3.2) we get r Fa(f1) <R
for every\/version (A, -) of the Markov diagram of T with respect to Y(Q). As
limr_ o "r+1=1we getusing (1.10) that there exists an r [CNlwith

(3.3) (r + 1) [En(f) CXR"

for every version (A, -) of the Markov diagram of T with respect to Y (Q). We
fix this r for the rest of this part of this proof.

By Lemma 2 there exists a 8 > 0, such that the conclusions of Lemma 2 are
true for every 6 [Qk, which is 6-close to Q.

Let Q CQk be 3-close to Q, and suppose that (A, —), resp. (A, ) are the
versions of the Markov diagrams of T with respect to Y (Q), resp. Y(@) occuring
in the conclusion of Lemma 2. For ¢ A let f. be the unique real number with
fi(x) = f. for all x CA(c), and for ¢ A let f[c_—lbe theunique real number
with f1(X) = fc for all x Iﬂ(c) Set F(fy) : Fea(f1) CdlKIand F(fl)
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(| ~
Fea(f1) .4z Let &1 Ar — Ar be the function occurring in the conclusion of
Lemma 2. By (1.11) and (1.12) we get

— ) e

(3.4) rL_Ifl(fl) ms sup e,

CLA$ co=c-c1 - —Cr j=0

where the sum is taken over all paths ¢ - ¢; - -+ - ¢, of length r in A with
Co =cC. AscC IIIO we have cg,C1,...,Cr IIIr

Fix c IIIO. Ifco - ¢1 - -+ > crisapathoflengthrin A with Co = ¢, then (1)
and (2) of Lemma 2 gives that there exists a pat&po —djl - -+ - dy of length
rin Ar with do = ¢(co) Ao and A(dj) = A ¢(c;) for all j CID,1,...,r}.
Set - Cp o> e o Cr) :=dyp - d; - -+ 5 dr. By (3) of Lemma 2 we
get o efa = j=o ef4i . Furthermore (4) of Lemma 2 gives that for a fixed
do - dl — +-+ > dy there are at most r + 1 dierent pathscp - ¢; » - - ¢ in
A with co=cand x(co - €1 » -+ > C):=dop - dy - -+ - dr. This implies

I:Irfl_T:I 1 rTl_fd_j

(3.5) e <=(r+1) e,
Co=C—C1 - —Cr j=0 do=¢(c)»d1 -+ —dr j=0

where the first sum is taken over all paths cg - ¢1 —» -+ - ¢, of length r in A
with ¢g = ¢, and the second over all paths dg - d; - -+ - dy of length r in A
with do = ¢(c). =

Now @:]11) 63) (3.4) and (3.5) imply r F(fl) = (r + 1)[F(f))" ¥ R".
Hence r F(f1) < R. As (A -) is a full version of thﬁ\/l I?ixf diagram of T
with respect to Y(Q) (1.14) glves p(R(Q) T f1) = logr F(fl) IEE]W (3@ and
the definition of R imply p(R(Q) T,f)< p(R(Q) T,f))+£=logr F(f;) +5 <
logR + £ =p(R(Q), T, f) + &, which shows the first part of this theorem.

It remalns to show that there exists a 6 > 0, such that Q [CQk is 6-close to Q
implies p(R(Q), T, F)>p(R(Q), T, F) —&, if p(R(Q), T, ) >limn . oo £Sn(R(Q), T).
We can assume that € is small enough to ensure p(R(Q), T,f) > ¢ + Iimnam%
Sn(R(Q), T). By (3.1) and (3.2) this implies

(36)  pRQ).T.f)> Jim “SyR(Q),F)+ 5 > lim “Sa(R(Q).F).

Using (3.2) we get by Lemma 1 that there exists an r [N, such that for every
version (A, —) of the Markov diagram of T with respect to Y (Q) there exists an
irreducible C A} with A(c) D for all ¢ [Cland

L] ]
(3.7 logr Fc(f1) >pR(Q).T,f1) — 5=p(RQ).T,.f)—¢.

N ™

Fix this r for the rest of this proof.
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By Lemma 2 there exists a 8 > 0, such that the conclusions of Lemma 2 are
true for every 6 [Qk, which is 6-close to Q.

Let Q CQk be 3-close to Q, and suppose that (A, —), resp. (A, ) are the
versions of the Markov diagrams of T with respect to Y (Q), resp. Y (Q) occurring
in the conclusion of Lemma 2. Define f;, fc, If(fl) and ¢ analoguous as in the first
part of this proof. Let C [CA} be irreducible with A(c) D for all ¢ ] such that
(3.7) is satisfied. Now (1) and (2) of Lemma 2 imply that ¢: C - Cis bijective
and satisfies for c,d [CClthat ¢ — d in A is equivalenl%lq)(c) - &(d) in A, where

C:= ?)_1(C) CAL. Using (3)of Lemma2weget . . . . e =
do=0(O) ~ds - ~dn  j=o €' for every ¢ [Cland every n [N, where the first

sum is taken over all pathscy — €1 — --- — cp of length nin C with co = ¢, and the
second over all paths do T_d11 - %‘-ﬂof qu%h nlﬂc wiﬁI do = ¢(c). By (1.9)
and (1.10) this implies r Fc(f1) =r Fe(f) = Fﬁl) .I—l:'ence (HS), (Tﬁ)
and (3.7) give p(R(Q),T,f) = p(R(Q),T,f1) = logr F(f1) = logr Fc(f1) >
p(R(Q), T, ) — &, which finishes the proof. 1

We give an example, where the pressure is not lower semi-continuous. Let
T:[0,1] - [0,1], Z and f: [0,1] - R be defined as in (4.4) and (4.5) of [4], that
means Z :={(0, 1), (3, 1. 3. 9. (3. D},

é for x [0, 1],
B §’—2x for x CT3, 31,
B %—3 for x (13, 3],

3
I__LI— 2x  for x 03.1],
£ for x C]Q, 3],
f(x) = %— 10 forx 3, 2],
—30x for x 3, 1].
SetK:=1landsetQ:= (%, 1) [Q; (note that elements of Q; are not intervals!).
Then we have R(Q) = [0, 2] [{1}, the nonwandering set of (R(Q), T) is [0, ] [
{%} and p(R(Q), T,f) = 10. The function f is so large at the isolated fixed
point 2, such that it dominates the pressure on the rest of the nonwandering set.
As we shall see below this fixed point can be destroyed by an arbitrarily small
perturbation. The condition p(R(Q), T,f) > limy_ o %Sn(R(Q), T) excludes such
a phenomenon. For £ [C(0, %) define Q¢ : = (% —¢,1) [Q;. Then Q¢ is e-close
to Q. We have R(Q:) = [0, % — g] {1}, the nonwandering set of (R(Q:),T)
is [0, 1], and p(R(Q¢), T, F) = log2, which shows that the pressure is not lower
semi-continuous in this case.
Now we shall show that the topologii:al entropy is continuous. Ifweset f =0in

‘[heorem 1, we get that |hep(R(Q),T) — hwp(R(Q), T)| < & for every
Q [Qk, which is su Lciehtly close to Q, if hiop(R(Q),T) > 0. If otherwise

Tx
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htop(R(Q);T) = 0, then Theorem 1 gives also |ht0p(R(6), T)— hiop(R(Q), T)<e
for every Q [Qk, which is su Lciehtly close to Q, since hop(R(Q), T) = 0. Hence
we have proved the following result.

Corollary 1.1. LetT:[0,1] - [0, 1] be a piecewise monotonic map, Igt K [N,
and let Q [Qk. Then for every € > 0 there exists a d > 0, such that Q [Qk is
0-close to Q implies

Ihtop(R(Q), T) — hop(R(Q), T)| <.

[
Now we shall show that Q B HD R(Q) is continuous, if T is expanding. To
this end we need the following result, which is proved in [3] (see also Lemma 7
of [4]).

Lemma 3. Let T: [0, 1] - [0, 1] be an expanding piecewise monotonic map, let
K [N, and let Q [CQk. Then the map t 3 p(R(Q), T, —tlog |T%ﬁfineﬁ)n R
is continuous and strictly decreasing, has a unique zero tg, and HD R(Q) =tg.

Using Lemma 3 and Theorem 1 a proof analoguous to the proof of Theorem 3
in [4] shows the continuity of the Hausdor Cdimension.

Theorem 2. Let T: [0,1] - [0,1] be an expanding piecewise monotonic map,
let K [N, and let Q CQk. Then for every € > 0 there exists a 6 > 0, such that

Q [Qk is d-close to Q implies
Bm %(G)D— HD I:RI(Q)EEL €.

Theorem 2 and Corollary 1.1 are generalizations of Theorem 4 in [6], where
continuity of the topological entropy and the Hausdor [_dimension is shown, if T is
an expanding C2-di Ledmorphism of the circle. In [5] it is shown that t B h¢op(R¢)
and t @ HD (Ry) are continuous for expanding C?-di [edmorphisms of the circle,
where Ry : = mj";OTl \TJ(0—1t,0+t) (we assume that 0 is a fixed point of T,
and intervals on T are defined in the usual way).

4. The Set of Points, Whose Orbit Is Not Dense

Throughout this section let T: [0,1] - [0, 1] be an expanding piecewise mono-
tonic map. We show that for every t [0, 1] there exists [a_r]closed, T-invariant
R¢ %1} with HD (R¢) = t. Furthermore we show HD {x []0,1] : w(X) &
[0,1]} =1.

As T is expanding it follows from [1], that T has periodic @]ints. Hence fix an
Xo []0,1] and apyn [N with T"xo = Xo. Set K := card {Xo, T X0, T?Xo, ...,
T 1Ix0} (40,1} —1, and choose ¢g < ¢; < --- < Ck, such that {co,C1,...,Cck} =
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{Xo0, TXo, ..., T""Ixo} [{0,1}. For every j [{l1,2,...,K} we choose a b; [
(cj—1.cj). Let s []Q,1]. Define for j [{1,2,...,K}

azj—1(s) : = max{cj—1,bj —s},

4.1) )
azj(s) := min{cj,bj +s},
and set
[ [
(4.2) Qs = al(s), az(S), Caey aZK_l(s), aZK(s) .

Then Qs [Qk and {Xo, TXo, ..., T" X} CRIQs) for every s [J0,1]. If s1,s, [
[0,1] and |s1 — s2] <€, then Qs, is e-close to Qs,. Furthermore we have R(Qo) =
[0, 11—&,’1(1 {)ﬁe_TIT X0, - - - 'Tn_|:1|X0} %{Ql) Ao, TXo, ... ,Tn_1Xo} {0, 1}. Hence
HD R(Qo) =1and HD R(Q:1) = 0. Therefore we have the following result.

| |
Lemma 4. The function Iilg H%R(Qs) defiﬁd on I{El 1] is continuous and
decreasing, and satisfies HD R(Qp) =1 and HD R(Q;) =0.

Now we can prove the following result.

Theorem 3. Let T:[0,1] - [0,1] be an expanding piecewise monotonic map.
Then for every t []D,1] there exists a closed, T-invariant Ry [0, 1] with
HD (Ry) =t

Proof. This is an easy consequence of Lemma 4 and the intermediate value
theorem. 1

Remarks. (1) Using the results of [1] we can show that for every t []0,1]
there exists a topologically transitive, closed, T-invariant R¢ [0, 1] with Ry =
mj";oFt\T—J’ G¢, where F¢ and G are finite unions of (not necessarily open) in-
tervals, such that HD (R¢) = t.

(2) If X is a finite union of closed intervals, T: X — R is piecewise monotone
with respect to Z, such that (T,Z) is %clasﬁl aﬁ:ﬁefined in [4], and R(T)
is defined as in [4], then for every t [ 0,HD R(T) there exists a closed, T-
invariant Ry [CRI[T), which canEb'e chosen as in (1), with HIZID (Ry) =t

Now we shall show that HD {x []Q,1]: o(x) & [0,1]} = 1. Observe that for

x [0, 1] the condition w(x) & [0, 1] is equivalent to the condition that the orbit
of x is not dense.

Theor?ﬂ 4. Let T:[0,1] - [O, H_-Pe an expanding piecewise monotonic map.
Then HD {x [4,1]: w(x) E[0,1]} = 1.

| (|
Proof. If s > 0, then [ ai(s),ax(s) []0,1]\ R(Qs). Hence R(Qs) [1
{x [0,1] : o(x) & [0, 1]} for every-§ > 0. I%y Lemma 4 there exists a sequence
(Sn)nmin (0,1] with limy o HD R(Qs,) = 1. Set R := [hiR(Qs,). Then
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(| (|
R X [0,1] : w(X) E [0,1]} and HD (R) = sup,xrHD R(Qs,) = 1, which
implies the desired result. 1

Remark. If X is a finite union of closed intervals, T: X - R is piecewise
monotone with respect to Z, such }ﬁat (T,Z) is of class E* aslﬂFfinedl'ﬂ [4]1—_é1]nd
R(T) is defined as in [4], then HD {Xx [(R(T): w(X) 2 R(T)} =HD R(T) .

If T is an expanding C?-di[edmorphism of the circle, then Theorem 3 and
Theorem 4 can be easily deduced from [5].
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