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n–TRANSITIVITY OF CERTAIN DIFFEOMORPHISM GROUPS

P. W. MICHOR and C. VIZMAN

Abstract. It is shown that some groups of diffeomorphisms of a manifold act
n-transitively for each finite n.

Let M be a connected smooth manifold of dimension dimM ≥ 2. We say

that a subgroup G of the group Diff(M) of all smooth diffeomorphisms acts

n-transitively on M , if for any two ordered sets of n different points (x1, . . . , xn)

and (y1, . . . , yn) in M there is a smooth diffeomorphism f ∈ G such that f(xi) = yi
for each i.

Theorem. Let M be a connected smooth (or real analytic) manifold of dimen-

sion dimM ≥ 2. Then the following subgroups of the group Diff(M) of all smooth

diffeomorphisms with compact support act n-transitively on M , for each finite n:

(1) The group Diffc(M) of all smooth diffeomorphisms with compact support.

(2) The group Diffω(M) of all real analytic diffeomorphisms.

(3) If (M,σ) is a symplectic manifold, the group Diffc(M,σ) of all symplec-

tic diffeomorphisms with compact support, and even the subgroup of all

globally Hamiltonian symplectomorphisms.

(4) If (M,σ) is a real analytic symplectic manifold, the group Diffω(M,σ) of

all real analytic symplectic diffeomorphisms, and even the subgroup of all

globally Hamiltonian real analytic symplectomorphisms.

(5) If (M,µ) is a manifold with a smooth volume density, the group

Diffc(M,µ) of all volume preserving diffeomorphisms with compact sup-

port.

(6) If (M,µ) is a manifold with a real analytic volume density, the group

Diffω(M,µ) of all real analytic volume preserving diffeomorphisms.

(7) If (M,α) is a contact manifold, the group Diffc(M,α) of all contact dif-

feomorphisms with compact support.

(8) If (M,α) is a real analytic contact manifold, the group Diffω(M,α) of all

real analytic contact diffeomorphisms.
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Result (1) is folklore, the first trace is in [8]. The results (3), (5), and (7) are

due to [3] for 1-transitivity, and to [1] in the general case. Result (2) is from [7].

We shall give here a short uniform proof, following an argument from [7]. That

this argument suffices to prove all results was noted by the referee, many thanks

to him.

Proof. Let us fix a finite n ∈ N. Let M (n) denote the open submanifold of all

n-tuples (x1, . . . , xn) ∈Mn of pairwise distinct points. Since M is connected and

of dimension ≥ 2, each M (n) is connected.

The group Diff(M) acts on M (n) by the diagonal action, and we have to show,

that any of the subgroupsG described above acts transitively. We shall show below

that for each G the G-orbit through any n-tuple (x1, . . . , xn) ∈ M (n) contains an

open neighborhood of (x1, . . . , xn) in M (n), thus any orbit is open; since M (n) is

connected, there can then be only one orbit. �

Lemma. Let M be a real analytic manifold. Then for any real analytic vector

bundle E → M the space Cω(E) of real analytic sections of E is dense in the

space C∞(E) of smooth sections. In particular the space Xω(M) of real analytic

vector fields is dense in the space X(M) of smooth vector fields, in the Whitney

C∞-topology.

Proof. For functions instead of sections this is [2, Proposition 8]. Using results

from [2] it can easily be extended to sections, as is done in [6, 7.5]. �

The cases (2) and (1). We choose a complete Riemannian metric g on M and

we let (Yij)
m
j=1 be an orthonormal basis of TxiM with respect to g, for all i. Then

we choose real analytic vector fields Xk for 1 ≤ k ≤ N = nm which satisfy the

following conditions:

|Xk(xi)− Yij |g < ε for k = (i− 1)m+ j,

|Xk(xi)|g < ε for all k /∈ [(i− 1)m+ 1, im],(9)

|Xk(x)|g < 2 for all x ∈M and all k.

Since these conditions describe a Whitney C0 open set, such vector fields exist by

the lemma. The fields are bounded with respect to a complete Riemannian metric,

so they have complete real analytic flows FlXk , see e.g. [4]. We consider the real

analytic mapping

f : RN →M (n)

f(t1, . . . , tN ) :=

 (FlX1
t1
◦ . . . ◦ FlXNtN )(x1)

. . .

(FlX1
t1
◦ . . . ◦ FlXNtN )(xn)


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which has values in the Diffω(M)-orbit through (x1, . . . , xn). To get the tangent

mapping at 0 of f we consider the partial derivatives

∂

∂tk

∣∣∣
0
f(0, . . . , 0, tk, 0, . . . , 0) = (Xk(x1), . . . ,Xk(xn)).

If ε > 0 is small enough, this is near an orthonormal basis of T(x1,...,xn)M
(n) with

respect to the product metric g × . . .× g. So T0f is invertible and the image of f

contains thus an open subset.

In case (1), we can choose smooth vector fields Xk with compact support which

satisfy conditions (9). �

For the remaining cases we just indicate the changes which are necessary in this

proof.

The cases (4) and (3). Let (M,σ) be a connected real analytic symplectic

smooth manifold of dimension m ≥ 2. We choose real analytic functions fk for

1 ≤ k ≤ N = nm whose Hamiltonian vector fields Xk = gradσ(fk) satisfy condi-

tions (9). Since these conditions describe Whitney C1 open subsets, such functions

exist by [2, Proposition 8]. Now we may finish the proof as above. �

Contact manifolds.

Let M be a smooth manifold of dimension m = 2n+ 1 ≥ 3. A contact form

on M is a 1-form α ∈ Ω1(M) such that α ∧ (dα)n ∈ Ω2n+1(M) is nowhere zero.

This is sometimes called an exact contact structure. The pair (M,α) is called a

contact manifold (see [5]). The contact vector field Xα ∈ X(M) is the unique

vector field satisfying iXαα = 1 and iXαdα = 0.

A diffeomorphism f ∈ Diff(M) with f∗α = λf · α for a nowhere vanishing

function λf ∈ C∞(M,R \ 0) is called a contact diffeomorphism. Note that

then λf = iXα(λf · α) = iXαf
∗α = f∗(i(f−1)∗Xαα) = f∗(if∗Xαα). The group of

all contact diffeomorphisms will be denoted by Diff(M,α).

A vector field X ∈ X(M) is called a contact vector field if LXα = µX · α for

a smooth function µX ∈ C∞(M,R). The linear space of all contact vector fields

will be denoted by Xα(M) and it is clearly a Lie algebra. Contraction with α

is a linear mapping again denoted by α : Xα(M) → C∞(M,R). It is bijective

since we may apply iXα to the equation LXα = iX dα + dα(X) = µX · α and

get 0 + iXαdα(X) = µX ; but the equation uniquely determines X from α(X) and

µX . The inverse f 7→ gradα(f) of α : Xα(M)→ C∞(M,R) is a linear differential

operator of order 1.

The cases (8) and (7). Let (M,α) be a connected real analytic contact manifold

of dimension m ≥ 2. We choose real analytic functions fk for 1 ≤ k ≤ N =

nm such that their contact vector fields Xk = gradα(fk) satisfy conditions (9).
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Since these conditions describe Whitney C1 open subsets, such functions exist by

[2, Proposition 8]. Now we may finish the proof as above. �

The cases (6) and (5). Let (M,µ) be a connected real analytic manifold of

dimension m ≥ 2 with a real analytic positive volume density. We can find a real

analytic Riemannian metric γ on M whose volume form is µ. Then the divergence

of a vector field X ∈ Vect(M) is divX = ∗d ∗ X[, where X[ = γ(X) ∈ Ω1(M)

(here we view γ : TM → T ∗M) and ∗ is the Hodge star operator of γ. We also

choose a complete Riemannian metric g.

First we assume that M is orientable. We choose real analytic (m − 2)-forms

βk for 1 ≤ k ≤ N = nm such that the vector fields Xk = (−1)m+1γ−1 ∗dβk satisfy

conditions (9). Since these conditions describe Whitney C1 open subsets, such

(m − 2)-forms exist by the lemma. The real analytic vector fields Xk are then

divergence free since divXk = ∗d ∗ γXk = ∗ddβk = 0 Now we may finish the proof

as usual.

For non-orientableM , we let π : M̃ →M be the real analytic connected oriented

double cover of M , and let ϕ : M̃ → M̃ be the real analytic involutive covering

map. We let π−1(xi) = {x1
i , x

2
i }, and we pull back both metrics to M̃ , so γ̃ := π∗γ

and g̃ := π∗g. We choose real analytic (m − 2)-forms βk ∈ Ωm−2(M̃) for 1 ≤
k ≤ N = nm whose vector fields Xβk = (−1)m+1γ̃−1 ∗ dβk satisfy the following

conditions, where we put Y pij := Txpijπ
−1 · Yij for p = 1, 2:

|Xβk(xpi )− Y
p
ij |g̃ < ε for k = (i− 1)m+ j, p = 1, 2,

|Xβk(xpi )|g̃ < ε for all k /∈ [(i− 1)m+ 1, im], p = 1, 2,(10)

|Xβk |g̃ < 2 for all x ∈ M̃ and all k.

Since these conditions describe Whitney C1 open subsets, such (m − 2)-forms

exist by the lemma. Then the vector fields 1
2 (Xβk + ϕ∗Xβk) still satisfy the

conditions (10), are still divergence free and induce divergence free vector fields

Zβk ∈ X(M) which satisfy the conditions (9) on M as in the oriented case, and

we may finish the proof as above. �
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