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SUPER–GEOMETRIC QUANTIZATION

I. VAISMAN

Abstract. Let K be the complex line bundle where the Kostant-Souriau geomet-
ric quantization operators are defined. We discuss possible prolongations of these
operators to the linear superspace of the K-valued differential forms, such that the
Poisson bracket is represented by the supercommutator of the corresponding oper-
ators. We also discuss the possibility to obtain such super-geometric quantizations
by (anti)Hermitian operators on a Hilbert superspace. We apply our general con-
siderations to Kähler manifolds and to cotangent bundles of Riemannian manifolds.

1. Recalling Geometric Quantization

In differential geometry, the problem of geometric quantization is a two stage

problem which can be stated in the following terms (e.g., [10], [9]).

Stage 1 — Prequantization. Let M be a Poisson manifold with the Poisson

bracket

(1.1) {f, g} = P (df, dg) (f, g ∈ C∞(M)).

Find linear representations of the Lie algebra (1.1) on the space Γ(K) of cross

sections of a complex line bundle K over M by differential operators of order one

and symbol equal to the Hamiltonian vector field XP
f .

Stage 2 — Quantization. Restrict prequantization in such a way as to obtain

irreducible anti-Hermitian1 representations of a subalgebra of C∞(M) with bracket

(1.1) on a Hilbert space derived from Γ(K).

In this paper, we define the problem of super-geometric quantization as the

problem of prolonging the representations mentioned above to linear and Hilbert

superspaces.
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1The fact that we use anti-Hermitian operators here is just a technicality. If these operators
are multiplied by a purely imaginary constant they become Hermitian operators.
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Now, let us be more precise. While more general prequantization represen-

tations may exist [5], [9], we consider only the fundamental Kostant-Souriau

representation. The latter is given by the operators

(1.2) f̂σ = ∇Xfσ + 2π
√
−1fσ (f ∈ C∞(M), σ ∈ Γ(K)),

where ∇ is a connection on K which preserves a Hermitian metric h of K.

The condition that (1.2) is a representation means

(1.3) {̂f, g} = f̂ ◦ ĝ − ĝ ◦ f̂ ,

and this condition is equivalent to

(1.4) Ω(Xf ,Xg) = −2π
√
−1{f, g},

where Ω is the curvature of ∇. In particular, (1.4) shows that K, h and ∇ exist

iff P defines an integral Poisson cohomology class (namely, the image of the inte-

gral first Chern class of K) [9], and, then, we say that (M,P ) is a quantizable

Poisson manifold. In the symplectic case, the integrality condition is just that

the symplectic form represents an integral cohomology class [10].

Furthermore, let D be the bundle of complex valued halfdensities of M (e.g.,

[6], [7]). Then (1.2) extends to Γ(K ⊗D) by

(1.5) f̂(σ ⊗ ρ) = (f̂σ)⊗ ρ+ σ ⊗ LXfρ (σ ∈ Γ(K), ρ ∈ γ(D))

where L denotes the Lie derivative, and Stokes’ theorem shows that the operators

(1.5) are anti-Hermitian on Γc(K⊗D) (c means “with compact support”) endowed

with the scalar product

(1.6) 〈σ1 ⊗ ρ1, σ2 ⊗ ρ2〉 =

∫
M

h(σ1, σ2)ρ1ρ̄2

(the bar means complex conjugation) i.e., we have

(1.7)
〈
f̂α, β

〉
+
〈
α, f̂β

〉
= 0 (α, β ∈ Γc(K ⊗D)).

Of course, we may complete Γc(K ⊗D) to a Hilbert space but, we still remain in

the prequantization stage since we do not have irreducibility.

Now, the stage of quantization is based on the notion of a polarization, for

which we adopt here a new definition that includes the classical definition as a

particular case. Let F denote the sheaf of Poisson algebras of germs of complex

valued C∞ functions of M with the bracket (1.1). Then, a polarization P of

(M,P ) is a subsheaf P of F whose stalks are abelian subalgebras of the stalks

of F .



SUPER–GEOMETRIC QUANTIZATION 101

If P is given, we may look at the linear space

(1.8) Γ0(K) = {σ ∈ Γ(K) / ∇Xϕσ = 0, ∀ϕ ∈ P},

and we may apply the operators (1.2) to Γ0(K) if Γ0(K) 6= {0}. It is easy to

see that, ∀f ∈ C∞(M) such that {ϕ, f} ∈ P whenever ϕ ∈ P , f̂(Γ0(K)) ⊆
Γ0(K). The set Q(M,P) of such functions f is a Lie subalgebra of (C∞(M), { , })
which includes all the real global sections ψ of P , and for these ψ one has ψ̂σ =

2π
√
−1ψσ, ∀σ ∈ Γ0(K), as needed for irreducibility [10].

Furthermore, if Γ0(K) has nonzero elements with compact support, it may

be possible to adapt conveniently the scalar product (1.6), and obtain a Hilbert

space where (1.7) holds ∀f ∈ Q(M,P). Otherwise, the idea is to project the whole

configuration onto a lower dimensional quotient manifold N , if possible, and get

a similar scalar product by integration over N [10], [7], [9].

The basic types of polarizations encountered in applications are as follows

(e.g., [10]).

1) Let (M2n, ω) (dω = 0) be a quantizable symplectic manifold, with the Poisson

brackets defined by ω, and assume that M has a real Lagrangian foliation L. Then,

the sheaf P of germs of functions which are constant along the leaves of L is a

polarization called a real Lagrangian polarization. An important particular

case is that of a cotangent bundle M = T ∗N , where ω = dθ, θ := the Liouville

1-form of T ∗N , and L is the foliation by the fibers of T ∗N . In this case, if

σ ∈ Γ0(K), supp σ is noncompact (it is a union of fibers), and the scalar product

will be defined by integration over N and not over T ∗N .

2) Let (M2n, ω) be a quantizable symplectic manifold which admits compatible

Kähler metrics. Then, if g is such a metric, the sheaf P of germs of holomorphic

functions with respect to the corresponding complex structure is a polarization

called a Kähler polarization. In this case, K is a holomorphic line bundle (e.g.,

[7]), and

Q(M,P) = {f ∈ C∞(M) / Xf = X1,0
f +X0,1

f , X1,0
f holomorphic},

where the upper indices indicate the complex type. Equivalently, if J is the tensor

of the complex structure, then LXfJ = 0. We say that X is an analytic vector

field, and we distinguish in this paper between the terms analytic and holomorphic

for vector fields i.e., X is analytic and its component X1,0 is holomorphic.

Furthermore, we may forget about halfdensities, and make Γ0c(K) into a Hilbert

space by the scalar product

(1.9) 〈σ1, σ2〉 =

∫
M

h(σ1, σ2)d(vol g) (σ1, σ2 ∈ Γ0c(K)),

and the property (1.7) follows again from Stokes’ theorem.
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2. Super-Geometric Prequantization

Now, we proceed to the discussion of super-geometric quantization. We start

with a quantizable Poisson manifold (M,P ) and a quantization complex line bun-

dle K. Let us emphasize that we do not intend to discuss geometric quantization

of supermanifolds, as in [3]. Neither do we consider any kind of supermanifolds

[1]. But, we shall use the terminology of superalgebra (e.g., [4]).

With (M,P,K), we can associate a natural complex linear superspace

(2.1) S(K) = S+(K)⊕ S−(K).

where

S+ = ⊕i≥0 ∧
2i (M,K), S− = ⊕i≥0 ∧

2i+1 (M,K),

and ∧h(M,K) are the spaces of K-valued forms on M , and it is possible to extend

the Kostant-Souriau prequantization (1.2), (1.5) to S(K).

We did this in [8] as follows. Since ∧h(M,K) = Γ((∧hT ∗M)⊗K), one has the

well-known covariant exterior differential

(2.2) D(α⊗ σ) = (dα)⊗ σ + (−1)deg αα ∧∇σ,

and the covariant Lie derivative

(2.3) L∇X(α⊗ σ) = (LXα)⊗ σ + α⊗∇Xσ,

where α ∈ ∧hM, σ ∈ Γ(K), and X is a vector field on M . These operators have

the same global expressions as d and LX , except for the fact that the action of

X on functions is replaced by the action of ∇X on sections of K. Notice also the

formula

(2.4) L∇X = Di(X) + i(X)D

which follows from (2.2) and (2.3).

Now, if (1.2) is extended to S(K) by

(2.5) f̂A = L∇XfA+ 2π
√
−1fA (A ∈ S(K)),

it follows from (1.4) that the commutator condition (1.3) is still valid. Indeed [8],

using (2.3) we get

(2.6) L∇XL
∇
Y A− L

∇
Y L
∇
XA− L

∇
[X,Y ]A = Ω(X,Y )A,

where Ω is the curvature of ∇, and then, (1.4) is obtained by a straightforward

computation.
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The operators f̂ preserve the degree of a form. Thus, if we want to give a role to

the structure (2.1), it is natural to define a super-geometric prequantization

of M on K as a prolongation of (2.5) of the form

(2.7) f̃A = f̂A+ 2π
√
−1l(f)(A) (A ∈ S(K)),

where l(f) is an odd endomorphism of S(K), such that the following commutation

condition holds

(2.8) {̃f, g} = s[f̃ , g̃].

In the right hand side of (2.8), one has the supercommutator [4] of the operators

f̃ , g̃, and we denoted it by the index s. Brackets without this index will denote

usual commutators.

Proposition 2.1. The operation ∗ defined by

(2.9) f ∗ θ = [f̂ , θ] = f̂ θ − θf̂ ,

(f ∈ C∞(M), θ ∈ EndS(K)) is a representation of the Lie algebra (C∞(M),

{ , }) on EndS(K) which leaves End−S(K) invariant, and (2.7) is a super-

geometric prequantization iff l is a 1-cocycle with values in End−S(K), and with

respect to the representation (2.9), such that

(2.10) l2(f) = 0, ∀f ∈ C∞(M).

Proof. The results are rather straightforward since, in view of (1.3), (2.8) is

equivalent to

(2.11) l({f, g}) = [f̂ , l(g)] + [l(f), ĝ], l(f)l(g) + l(g)l(f) = 0,

∀f, g ∈ C∞(M). �

Corollary 2.2. ∀c ∈ End−S(K) such that [f̂ , c]2 = 0, ∀f ∈ C∞(M), the

operators

(2.12) f̃c(A) = L∇XA+ 2π
√
−1fA+ 2π

√
−1[f̂ , c](A)

(A ∈ S(K)) define a super-geometric prequantization.

Proof. [f̂ , c] is the coboundary of c in the Lie algebra cohomology mentioned in

Proposition 2.1. �

We note some important particular cases in
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Proposition 2.3. Let θ be a complex valued 1-form, and V be a complex vector

field on the Poisson manifold (M,P ). Then, (2.7) is a super-geometric prequanti-

zation for each of the following choices of l:

l1(f) = e(LXf θ), l2(f) = i([Xf , V ]),(2.13)

l3(f) = l1(f) + l2(f).

Proof. In (2.13), e means “exterior product by”, and i means “interior product

by”. l1 is obtained by using Corollary (2.2) for c = e(θ), and l2 is obtained for

c = i(V ). �

Remark 2.4. If we take c = D, then, using (2.4) and the well known fact that

D2 = e(Ω), we get

l(f) = e(i(Xf )Ω− 2π
√
−1df),

which is 0 in the symplectic case because of (1.4).

Now, as in Section 1, we can relate super-geometric prequantization with a

scalar product. Namely, we consider again the complex line bundle D of halfden-

sities over M , and use the bundle K ⊗D instead of K. Then, instead of (2.1), we

have

(2.14) S̃(K) := S(K ⊗D) := S̃+(K)⊕ S̃−(K),

which consists of forms with values in K ⊗D organized as those in (2.1).

Furthermore, we put on M a Riemannian metric g, and define a scalar product

of ∧pc(M,K ⊗D) (i.e., forms with a compact support) by

(2.15) 〈α1 ⊗ σ1 ⊗ ρ1, α2 ⊗ σ2 ⊗ ρ2〉 =

∫
M

g(α1, α2)h(σ1, σ2)ρ1ρ̄2 ,

where αi ∈ ∧p(M), σi ∈ Γ(K), ρi ∈ Γ(D) (i = 1, 2). Then, we get

Proposition 2.5. Assume that (2.7) is a super-geometric prequantization

where the odd cocycle l is Hermitian with respect to gh. Then, the extension

of (2.7) defined by

(2.16) f̃(A⊗ ρ) = (f̃A)⊗ ρ+A⊗ LXfρ

satisfies the commutator property (2.8), and, if Xf is a Killing vector field for g,

f̃ is anti-Hermitian with respect to (2.15).

Proof. That f̃ of (2.16) also satisfies (2.8) follows by a straightforward calcula-

tion. (Notice that l(f) extends to S̃(K) by l(f)(A⊗ρ) = (l(f)A)⊗ρ.) Furthermore,

by the metric gh we mean

gh(α1 ⊗ σ1, α2 ⊗ σ2) = g(α1, α2)h(σ1, σ2),
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and l(f) are supposed to be gh-Hermitian. The anti-Hermitian character (1.7) of

the present situation follows by using Stokes’ theorem under the form (e.g., [6])∫
M

LXf (g(α1, α2)h(σ1, σ2)ρ1ρ̄2) = 0.

�

3. Super-Geometric Quantization

Now, we combine super-geometric prequantization with a polarization and this

process is super-geometric quantization.

Let (M,P ) be a Poisson manifold endowed with the prequantization (2.7),

(2.16), and the scalar product (2.15), and let P be a polarization of M . Then, we

shall define the linear superspace

(3.1) S0(K) = {A ∈ S(K) / L∇XϕA = 0, i(Xϕ)A = 0, ∀ϕ ∈ P}.

Using (2.5), (2.6) and (1.4), we see easily that ∀A ∈ S0(K), ∀f ∈ Q(M,P), one

has f̂A ∈ S0(K). We recall that (Section 1)

Q(M,P) = {f ∈ C∞(M) / {ϕ, f} ∈ P , ∀ϕ ∈ P}.

Furthermore, in order to deal with the odd part of (2.7), we restrict ourselves

to Q′(M,P) ⊆ Q(M,P), where we define that f ∈ Q′(M,P) if it satisfies the

following supplementary conditions

(3.2) [L∇Xϕ , l(f)] = 0, s[i(Xϕ), l(f)] = 0, ∀ϕ ∈ P .

Then, we get

Proposition 3.1. ∀f ∈ Q′(M,P) and ∀A ∈ S0(K), we have f̃A ∈ S0(K),

for f̃ defined by (2.7). In particular, if the 1-form θ and the vector field V of M

are such that LXϕθ = i(Xϕ)θ = 0, [Xϕ, V ] = 0, ∀ϕ ∈ P, the prequantizations of

Proposition 2.3 induce quantization formulas on S0(K), ∀f ∈ Q(M,P).

Proof. The first assertion follows straightforwardly from the definitions. For

the second assertion, we check that (3.2) holds for the cocycles l1 and l2 of (2.13),

and ∀B ∈ S(K):

L∇Xϕ((LXf θ) ∧B)− (LXf θ) ∧ L
∇
XϕB = (LXϕLXf θ) ∧B

= (LXfLXϕθ + LX{ϕ,f}θ) ∧B = 0,

i(Xϕ)((LXf θ) ∧B) + (LXf θ) ∧ (i(Xϕ)B) = (i(Xϕ)LXf θ)B

= (LXf i(Xϕ)θ + i(X{ϕ,f})θ)B = 0,

L∇Xϕ i([Xf , V ])B − i([Xf , V ])L∇XϕB = i([Xϕ, [Xf , V ]])B

= i([X{ϕ,f}, V ])B + i([Xf , [Xϕ, V ]])B = 0,

i(Xϕ)i([Xf , V ])B + i([Xf , V ])i(Xϕ)B = 0.
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�

Furthermore, if we want a good scalar product, we may try to adapt conve-

niently formula (2.15), but, since we know from Proposition 2.5 that we shall need

to ask Xf to be a Killing vector field for g, it is simpler to look at the subspace

S0c(K) of the elements of S0(K) which have a compact support, and put

(3.3) 〈α1 ⊗ σ1, α2 ⊗ σ2〉 =

∫
M

g(α1, α2)h(σ1, σ2)d(vol g)

(while, of course, M is assumed to be oriented). This scalar product vanishes on

forms of different degrees. Hence, it makes S0c(K) into a pre-Hilbert superspace,

which, afterwards, will be completed to a Hilbert superspace. Then, just as for

Proposition 2.5, we deduce

Proposition 3.2. Assume that the cocycle l is Hermitian with respect to the

metric gh, and put

(3.4) Q′′(M,P) = {f ∈ Q′(M,P) / LXf g = 0}.

Then, the operator f̃ of (2.7), associated with any f ∈ Q′′(M,P) is anti-Hermitian

with respect to the metric (3.3).

Proof. Make explicit the Lie derivative in the Stokes’ formula∫
M

LXf (g(α1, α2)h(σ1, σ2)d(vol g)) = 0.

�

Corollary 3.3. Assume that, ∀ϕ ∈ P, LXϕg = 0. Assume that there exists

a 1-form θ on M such that ∀ϕ ∈ P one has LXϕθ = 0, i(Xϕ)θ = 0, and define

V = ]gθ. Then, the cocycle l3 of (2.13) is g-selfadjoint, and ∀f ∈ Q(M,P) such

that Xf is a Killing vector field for g the superquantization f̃ of (2.7) with l = l3
is defined on S0(K), and it is anti-Hermitian with respect to (3.3).

Proof. By the definition of V , we have g(V,Z) = θ(Z) for any vector field Z of

M , and the hypotheses of Proposition 3.1 are satisfied. Furthermore, we also see

that ]g(LXf θ) = LXfV = [Xf , V ]. Hence, the g-adjoint of e(LXf θ) is i([Xf , V ]),

and the result follows. �

4. Kähler and Lagrangian Polarizations

Now, we shall apply the general Propositions of Section 3 to the two basic

examples mentioned in Section 1 i.e., where M is a symplectic manifold and P is

either a Kähler or a real Lagrangian polarization of M .

In the case of a Kähler polarization we get
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Proposition 4.1. Let (M,ω) be a quantizable symplectic manifold, and P a

Kähler polarization of M , with the corresponding complex structure J and met-

ric g. Then K is a holomorphic line bundle, S0(K) is the linear superspace of

the K-valued holomorphic forms of (M,J), and, ∀f ∈ Q(M,P), the Hamiltonian

vector field Xf is Killing. Furthermore, if θ is a holomorphic 1-form on M , (2.7)

with l(f) = e(LXf θ) is a super-geometric quantization on S0(K), ∀f ∈ Q(M,P).

Moreover, if

Q0(M,P) := {f ∈ Q(M,P) / ]gLXf θ̄ is holomorphic},

then (2.7) with

(4.1) l(f) = e(LXf θ) + i([Xf , ]g θ̄])

is an anti-Hermitian super-geometric quantization of Q0(M,P) on S0(K) seen as

a Hilbert superspace with the scalar product (3.3).

Proof. We already recalled in Section 1 that K is holomorphic and that, ∀f ∈
Q(M,P), Xf is analytic (LXfJ = 0). Since, of course, LXfω = 0, we also have

LXf g = 0. The assertion about the super-geometric quantization with the odd

cocycle e(LXf θ) follows from Proposition 3.1.

Finally, we claim that, ∀f ∈ Q0(M,P), the conditions (3.2) are also satisfied for

the cocycle l(f) = i([Xf , ]gθ̄]). Indeed, the second condition (3.2) is well known,

and, as shown during the proof of Proposition 3.1, the first condition (3.2) is

satisfied if

(4.2) [Xϕ, [Xf , ]gθ̄]] = 0, ∀ϕ ∈ P .

By taking ϕ equal to the local complex coordinates zi of (M,J), we see that

the antiholomorphic tangent bundle T0,1M of (M,J) has local bases of the form

{Xϕi}, for some ϕi ∈ P . Hence, (4.2) means that [Xf , ]g θ̄] preserves T0,1M . On

the other hand, since Xf is Killing, we have

(4.3) [Xf , ]gθ̄] = ]g(LXf θ̄),

and this is a vector field of the complex type (1, 0). Accordingly, (4.2) holds iff

[Xf , ]g θ̄] is a holomorphic vector field, as claimed.

Now, if we use again Proposition 3.1, and the argument of Corollary 3.3, namely,

that the adjoint of e(θ) is i(θ̄), we obtain the last assertion of Proposition 4.1. �

We shall also add a few more results about the space Q(M,P) of a Kähler

polarization.
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Proposition 4.2. i) For a Kähler polarization P, f ∈ Q(M,P) iff

(4.4) ∇ī

(
∂f

∂z̄j

)
= 0,

where (zi) are complex coordinates and ∇ is the Riemannian connection of the

Kähler manifold (M, g, J).

ii) If the Kähler manifold M is compact, f ∈ Q(M,P) iff

(4.5) ∆df − 2]−1
r ]gdf = 0,

where ∆ is the Laplace operator and r is the Ricci tensor of g.

Proof. i) The condition (4.4) follows immediately from the local coordinate

expression of a Hamiltonian vector field Xf .

ii) In (4.5) the definition of ]−1
r is similar to that of ]−1

g , but ]r may not exist.

It is well known that, if M is compact, Xf is analytic iff

∆(]−1
g Xf )− 2]−1

r Xf = 0

(e.g., see Proposition 2.140 in [2]). But, it follows easily that ]−1
g Xf = −df ◦ J ,

and, using the known properties of ∆ in the Kähler case, the previous relation

becomes

(∆df) ◦ J + 2]−1
r J]gdf = 0.

If this equality is composed by J , and if we remember that r is compatible with

J , (4.5) follows. �

Remark 4.3. 1) If M is a compact connected Kähler-Einstein manifold, (4.5)

becomes

(4.6) ∆f − 2κf = const.,

where κ is the (constant) scalar curvature of g.

2) If the Ricci curvature of the compact Kähler manifold M is negative definite,

Q(M,P) = R. Indeed, in this case M has no non zero analytic vector fields (e.g.,

Proposition 2.138 in [2]).

In order to exemplify the case of a Lagrangian polarization, we consider the

basic situation of a cotangent bundle M = T ∗N with the symplectic form

(4.7) ω = −dθ + p∗F,

where θ is the Liouville form, p T ∗N → N is the natural projection, and F is an

exact 2-form F = dλ of N (the electromagnetic term). Thus, if qi are local
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coordinates on N , and pi are covector coordinates, we have (with the Einstein

summation convention)

(4.8) θ = pidq
i, λ = λi(q)dq

i.

Then, K may be taken trivial, the K-valued forms are just complex valued forms,

the connection ∇ can be defined by the global, flat connection form 2π
√
−1(θ−λ),

and the prequantization formula (2.5) becomes

(4.9) f̂A = LXfA+ 2π
√
−1(θ(Xf )− λ(Xf ) + f)A (A ∈ ∧M ⊗C).

Furthermore, the polarization P is defined as the sheaf of germs of lifts to T ∗N

of functions on N (i.e., functions of the (qi) alone), and

(4.10) Q(M,P) = {f ∈ C∞(M) / f = µ(Y ) + ϕ},

where Y is a tangent vector field of N , µ(Y ) is its momentum µ(Y ) = piY
i

(Y = Y i(∂/∂qi)), and ϕ ∈ P (e.g., [10]).

We shall use the notions of complete and vertical lift as defined, for instance,

in [Y]. Then, it is easy to obtain

(4.11) Xϕ = vertical lift of dϕ =
∂ϕ

∂qi
∂

∂pi
, ∀ϕ ∈ P ,

and, for a vector field Y of N

Xµ(Y ) = −complete lift of Y − vertical lift of i(Y )F(4.12)

= −Y i
∂

∂qi
+ vertical part

(vertical means tangent to the fibers of T ∗M).

From (4.11) we see easily that S0(K) can be identified with the linear superspace

of the complex valued differential forms of the base manifold N .

An odd cocycle l is provided by the Liouville form θ and, as we know, it is

l(f) = e(LXf θ) (f ∈ C∞(T ∗N)). In particular, using (4.11) and (4.12), we get for

f = µ(Y ) + ϕ ∈ Q(M,P)

(4.13) l(µ(Y ) + ϕ) = e(−i(Y )F + dϕ),

which is a 1-form on N . Hence, this cocycle l defines a super-geometric quantiza-

tion of Q(M,P) on S0(K). Moreover, we can prove
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Proposition 4.4. With the notation above, and with respect to a fixed Rie-

mannian metric g on the base manifold N , the formula

f̃A = −LYA+ 2π
√
−1(ϕ+ λ(Y ))A + 2π

√
−1(−i(Y )F + dϕ) ∧A(4.14)

+ 2π
√
−1i(−i(Y )F + dϕ)A (A ∈ ∧∗N ⊗C)

defines a super-geometric quantization of the observables f = µ(Y )+ϕ ∈ Q(M,P),

such that Y is a g-Killing vector field of N , on the linear superspace ∧∗cN ⊗ C
(c means “with compact support”) with the odd-even grading. This quantization is

by anti-Hermitian operators with respect to the scalar product defined by g on the

forms of N .

Proof. In the right hand side of (4.14), the first two terms are f̂A (as one can

see by using (4.9), (4.11), (4.12)), and the third term is the odd cocycle (4.13).

Moreover, the operator of the fourth term is the g-adjoint of the operator of the

third term. Therefore, we must only check that this fourth term behaves like a

superquantization 1-cocycle i.e., it satisfies the conditions (2.11), ∀f = µ(Y ) +

ϕ, g = µ(Z) + ψ, where Y,Z are g-Killing vector fields of N , ϕ,ψ ∈ C∞(N). The

second condition (2.11) is obvious, and, for the first, we compute the corresponding

expressions for l(f) = i(−i(Y )F + dϕ), and in the following cases.

a) f = ϕ, g = ψ. Then, with (4.11), {f, g} = 0, and l({f, g}) = 0. Furthermore,

[ϕ̂, l(ψ)] = 0, [l(ϕ), ψ̂] = 0.

b) f = ϕ, g = µ(Z). Then, {f, g} = Xfg = Zf , and l({f, g}) = i(dZϕ).

Furthermore, we obtain

[ϕ̂, l(g)] + [l(ϕ), ĝ] = i([Z, ]gdϕ]) = i(]gdZϕ) = i(dZϕ).

We used that ∀α ∈ ∧1(M), i(α) := i(]gα), and that Z is Killing i.e., LZ]g = 0.

c) f = µ(Y ), g = µ(Z). Then

(4.15) {f, g} = Xµ(Y )µ(Z)
(4.12)

= −µ([Y,Z])− F (Y,Z),

and, since dF = 0,

l({f, g}) = i(i([Y,Z])F − d(F (Y,Z)))(4.16)

= −i(i(Z)LY F − LY i(Z)F + d(F (Y,Z)))

= −i(i(Z)di(Y )F − i(Y )di(Z)F + 2d(F (Y,Z))).

Furthermore, using again the general relations that exist among LX , i(X), d for

any vector field X, we get

[f̂ , l(g)] + [l(f), ĝ] = i([Z, ]gi(Y )F ]− [Y, ]gi(Z)F ])(4.17)

= i(]gLZi(Y )F − ]gLY i(Z)F )
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(because Y , Z are Killing vector fields), and the final result will be the same as

in (4.16). �

Remark 4.5. If λ is used instead of θ, the same results as in Proposition 4.4,

can be proven in the same way for

f̃A = −LYA+ 2π
√
−1(ϕ+ λ(Y ))A−(4.18)

− 2π
√
−1(LY λ) ∧A− 2π

√
−1i([Y, ]gλ])A.

In (4.18), the notation and the hypotheses are the same as in Proposition 4.4.
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série A (Physique théorique) 31 (1979), 5–24.

8. , Geometric quantization on spaces of differential forms, Rend. Sem. Mat. Torino 39
(1981), 139–152.

9. , On the geometric quantization of the Poisson manifolds, J. Math. Physics 32 (1991),
3339–3345.

10. Woodhouse N., Geometric quantization, Clarendon Press, Oxford, 1980.
11. Yano K. and Ishihara S., Tangent and cotangent bundles, M. Dekker, Inc., New York, 1973.

I. Vaisman, Department of Mathematics, and Computer Science, University of Haifa, Israel,
e-mail: i.vaisman@uvm.haifa.ac.il


