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COEXISTENCE OF SINGULAR AND REGULAR SOLUTIONS
FOR THE EQUATION OF CHIPOT AND WEISSLER

F. X. VOIROL

1. Introduction

In this paper, we are interested in the existence of positive solutions of

1
Au—|O@+AuP =0 on Bg,

P
(Pee) u=0 ondBR,

where Br is a ball in R" of radius R and

__2p

This problem was introduced in 1989 by M. Chipot and F. Weissler (cf. [CW])
in connection with the study of the nonlinear parabolic equation

U =Au— | A+ |ul’  onBgr > (0,T),
u=0 on 0Br x (0, T),
u(x,0) = ug on Bg.

One can show that the solutions of (Pgg) are radially symmetric (using the
technique of Gidas-Ni-Nirenberg [GNN]) and so we consider the solution u, of

:l n_].D .
e - u— U +AulP =0 ifr>0,

% u(0) = a,

u¢o) =0,

(Pa)

where a > 0.
We will denote by z(a) the first zero of u, if it exists; if ug > 0 on [0, +00), we
will set z(a) = +oo.
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We know from [CW)] that z verifies the relation z(a) = a~ "z z(1); we have

then only two possibilities
— either z(a) = +oo for all a> 0 and (Pg) has no solution for any R;

—or z(a) is finite for all a > 0 and z is a decreasing function from [0, +c0) into
[0, +00) (cf. [CW, Lemma 4.7]); in this case, (Ps.) has one and only solution
for any R.

The range of A is crucial for the behaviour of the map z.
In their paper, M. Chipot and F. Weissler show the following result:

Theorem. If q= % and p < ;25 the equation

n—1
r

) u'(r) + u(r) — uin)|® + Au(n)lP =0

has a solution in the form of u(r) = kr~521 if and only if A < A, p where

(2p)P _ P
(p+1)P*12p—np+n)P  (p+1)(2p—np+n)P’

)\n’p =

When n = 1 the equation (I) becomes autonomous and if u: r B Kr 5T is a
solution of (1), the function u;: r B (r + c)_p_zf, is a solution too. If A < Aqp,
then it follows from the Cauchy theorem and a translation argument (see [CW])
that the problem (Pg.) has no solution. This is also the case when n = 1 and
A< A1p (see [CW] or [V, Proposition 1.7]).

In a more recent paper (see [FQ]), M. Fila and P. Quittner show that the

condition A > A, implies that z(a) is finite for all a = 0; but the case A = Anp
2

where we could have coexistence of the singular solution u(r) = kr~ 77 and
solutions of (P5) with z(a) finite was open. We solve this issue here. Indeed we
show :

— — 2p)P
Theorem A. Assume q = 22, Anp = ety and
1) n=2
2) n=3and1<p< 3.
Let u, be the solution of (Py). Then there exists )\E,p < An,p such that z(a) is
finite for A > A,

Remark 1. When A = A, p, there exists only one solution of (I) of the form
u(r) = kr~pot (according to the proof of Proposition 5.5 in [CW]) and its graph
cuts the one of the solution of (P,) for any a > 0 (see [V, Proposition 1.6]). In
the case )\E,p < A < An,p the equation (I) has two distinct solutions in the form
u(r) = kr~1 whose graphs cut those of the solutions of (P,).

In the case 25 <p < 2—1‘3 there always exist singular solutions of (I). We show
here the following theorem:
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Theorem B. Assume l<p<1.*2, n=3and q=

A= 1 n(p—1)2°PqP*?t
TP (p+1)P*T  (2p+2—np + n)P+L’
then z(a) is finite for any a > 0.

+1 If A= Anp where

Remark 2. As in the case where p < -2, the graphs of regular and singular
solutions are crossing. In order to prove Theorems A and B, following [FQ], we
introduce a two dimensional autonomous system. The main properties of this
system are recalled in Section 2. The Sections 3, 4 and 5 are devoted to the cases
n=2n=3andp<3:%, n>3and1<p<n+2 respectively.

2. Transformation of the Problem to an Autonomous System

Let u be a solution of (Py). We consider (X, Y): t 3 X(t) Y (1) deflned by

%t) ru =

@ it) =r up 1,
%t) =et.

We will recall some results of [FQ] in Propositions 1 and 2.
First we find, since rit) = r(t)
—(ru™%+ r2uu + u'f2u”

X(t) = 7
Legrled g0 p2ym
T ou TI:I u -
2 _
— X2 + X — r_ (_UISq A p (n 1)uE|

and we obtain
XHO) = (2= n)X + X2+ AY — X1 Y 551,
On the other hand,
Y 't) = 2r?uPt + r?(p — L)uP2u't
] uO
=r2uP™t 2+r(p—1)—
(| — U
=Y 2—(p-—-1X.
Since u verifies also u(0) = a and u0) = 0, we have

: . _ , Y@® _
tllmooY ® = t1@00X(t) =0, according to (2), and I|m L X(1) )\.
This last equality results from %(% — If t — —oo, then r — 0 and ﬂiﬂ -

—)\“T(O) since u™+ "~Lyt= |uf" — AuP and lim, .o “?r) = u™0). These results
are summarized in the following proposition:
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Proposition 1. Let u be a solution of (Py). If (X,Y) is defined by (2) then
(X,Y) is a solution of the autonomous system

1 N
X(t) = 22 mx+x + 2y —xpryE,

3
v yt) =y 2—(p—1)x
and we have
i — i _ . Y() _n
(4) Jim Y(@® = lim X(@®) =0, lim G = %

Let us recall also (according to a lemma in [FQ]) that an orbit of (3) starting
when t = ty in the first quadrant {(x,y)|x = 0, y = 0} stays in this quadrant
when t > to. Moreover, there exists only one orbit coming from the origin O, its
slope is {.

The continuous dependence of solutions of (P;) on A implies that if z(a) is finite
for all a when A = A p, then there exists )\E,p < An,p Such that we have the same
behaviour for all A C@R,, An p].

In the computation below we set for convenience A = An p.

Moreover, define f and g by

F(X,y) = (2= N)X + X2 + Ay — XPH1yP+T,
axy) =y 2—(p—-Dx.

We see that g(x,y) =0 if y = 0 or if X = x; where x; := ﬁ
We are going to study the set I" defined by

r={xy)|x=0,y=0, f(x,y) =0}

When n = 2 this set is one half of the parabola defined by x = 0 and y =

+1

x> AMp+1) P (see Proposition 2). It cuts the straight line x = x; at one point
only (see Figure 1).

We study also the position (W_JLFh respect-tp M) of the orbit O of the system (3)
corresponding to the map t @ X (t), Y (t) . We show that

(a) O is located above I when 0 < X(t) < x; because on the corresponding
part of I the vector field is “vertical and oriented upwards”,

(b) O cuts the straight line x = x; above I' (by linearization of the vector
field around the point of intersection of I with this straight line),

(c) X(t) blows up in finite time (see Figure 1).

When n = 3, I is tangent to the straight line x = x; (for A = Anp) and
located in the half-plane defined by x < x; (see Figure 2). We show next that for
0 < X(t) < x1, O is located above I', and that if X(t) > x; then Xt) > 0 and
Y %t) < 0. Then we deduce that X (t) blows up in finite time.
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Proposition 2. Let A = An , and x be fixed, x > 0, then (X, y) has a unique

p+1

[
minimum for y = h(x) := x? )\(p + 1) P . This minimum is

'%‘ L

m(x) =f x h(x) =x(n—2) -

The vector field f(x,y),g(x,y) has on the half straight line x = x; andy =0
only one singular point A = (X1, Y1) with y; = h(xy).

Proof. Put h(x) = x? )\(p +1) by . We have

2P __pP_
Xp+1y p+1

of
Gy EAT o

so that

%(x,y) <0 if 0<y<h(x) and %(x,y) >0 if y>hX).
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Therefore, the map y B f(Xx,y) has a unigue minimum for y = h(x). Its value is

0, O g 55—
FRhx) =@—nx+x2Xe+rD > —p

AP (p+1)'
But
N OO0 Gk 2
AP p+l P = ————
2p—np+n
and ) "
)\B(p+l)pT—p_(p_1)|%|_lE|
AP (p+ 1)t 2

We obtain finally

1 N 1
f%‘, h(x)g(z—n)x+x2(p—1)?—1 =x(n—2) I%lz le—1.

C1 |
The fact that the vector field T(X,y), g(x,y) hatpn the @If straight line
defined by x = x1, y = 0 only one singular point A = X3,h(x;) can be deduced
easily from the expression for m(x). This completes the proof of Proposition 2. 1

On the set E defined by E = {(x,y) |0 T <xwY >|£L}, we haV@(x,y) > 0. Ih
we consider an orbit defined byamapt 3  X;(t), Y1(t) suchthat Xi(to), Yi(to)
i[s__,in E, we hﬂe a priori three possible behaviours since the vector field

T(X,¥),9(X,y) has no singular point in E:

1) either Y1(t) - +ooast - a (with a = +oco or a real) and Xy (t) < x; for
t=to;

2) either the orbit cuts the straight line X = Xg;

3) or this orbit has A as the limit-point as t - oo.

First note that the case 1) cannot occur since from the formulae (3) for X(t)

and Y,t) we could deduce limsup, __ ;((Rtt)) = 72\ Since lim¢_ o Y1(t) = +oo, we
1

would get lim¢_ o X1 (t) = +oo which yields a contradiction with X (t) < x;.

3. The Casen = 2

In this section we prove Theorem A for n = 2.

According to Propositiop-2, for agy x > 0 the map y 3 f(x, y) has a unique
minimum and its value is ¥ x,h(x) = 0when n = 2. The set defined by f(xy) =
0, x =0, y = 0 is then one half of the parabola defined by y = h(x) = x> A(p +

o1

1) ® . Moreover, if x>0,y >0 and y 8 h(x) then f(x,y) > 0. O
Since lim¢_ — ;((L(g =0= % the orbit O defined by the map t B X(t), Y (t)
is in a neighbourhood of the origin above the parabola.
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The vector field I?(x,y), a(x,y) I:rlmas two singular points in the first quadrant
of the plane: the origin O = (0,0) and A = (X1,Yy1) with y1 = h(X1).

If 0 ¢ < x1 anghy = h(x), then f(x,y) =0 and g(x,y) >0, so that the orbit
of t B X(1),Y (t) can cut the line X = X3 at (X1,Yy) with y = vy; or have A as
the limit point. Let us show that in fact the f'ﬁt possibility popurs.

For this, linearize the vector field (x,y) B f(X,y),9(X,y) at the point A. We
have

of oy 2p
XY =X

2p  __p
XP+IYy ™ P+,

xiw)_:}yp_}f1 and g—;(x, y)=A—

p+1
(| [p}2 | [Clp+2
Since A(p+1) * =E5_l;—l@1,we have h(x) = x2 A(p+1) 7 =x2|;l%1ng
and
ﬁlElh(x)ELZXI?I— P x_%xw%pﬂ_lm—o for any x
ax B p+1 p yx

Next, since y B f(x1,y) has its minimum for y = y; then %(xl, y1) = 0. We

have also §2(x1,y1) = —5%; B ' and 33 (x1,y1) = 0. Thus we obtain
Lol or [ 1 o ,
(5) o o Gayn= _ 4 et
ax dy —1 p

Let us now show that the orbit cuts the straight line x = x; at AP= (xq,y})
with y'>y;. Consider the set E of the plane defined by

Ef={(x,y)10<x<x;, h(x) =y =<y}
and let us set
a=x—Xy, b=y—yi.

On the other hancﬂet Cy :I'ERxl) be the slope of the tangent line to the parabola
at the point A = Xy, h(x1) . We can see (cf. Figure 1) that if (x,y) is in EY then
g < C;. Next, from (5) there exists (3 0 such that -[¥xa<O0and —[xb=<0
imply, as f =0 on E,

C

0<f(x,+a, y1+b)<W2+Cl)(a+b)
where 1,
02:—L pr1 :@(Xll)’l)
p—1 p ox
and
aC,

(6) g(x1+a,y1 +b) > R
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If (x,y) [CEMis close to A then —[% a < 0 and —[% b < 0 so we can deduce from
the fact that aC; < b that

C2 aCZ
- e @ + C - <
1C,(+Cy@HaC) = e

f(xp+ay,+b) <
and, finally,
g(x1+a, y1+h)

foutayith) 2

1 (|
using (6). So we obtain that an orbit of the vector field f(X,y),g(X,y) passing,
for t = to, through a point (x,y) in EMsuch that

—[¥Xa<0 and —[xb=0 where a=x—x1, b=y—vy;

(cf. Figure 2) cuts for t; > to the straight line x = x; at (xq,y]J with y['> y;.
Since orbits cannot intersect, E]e orbit Olflas to cut ttEIIine X = é above A.

Now )&p T3 implies g X(1),Y () < 0 and f X(t),Y(t) > 0 except if
Y (t) = h X(t) ; then, if t =t Y (t) < Y (t]), on the other hand X is increasing.
The first %Pation qﬁS) shows that there exist a > 0 and X, > 0 such that x > x,
implies £ x(t),y(t) > ax?. We deduce from this that X blows up in a finite time
T and z(a) =e'.

4. TheCasenzSand1<p<%

Proposition 3. Let A =Anp. Thecurve ' = {(X,y)[x=0, y=0, f(x, y) =
0} admits a tangent line at every point. The half straight line defined by x = c,
y =0 cuts I at one point if ¢ = ﬁ, two points if n—2<c < pf—l one point if
0=sc<n-—2.

Moreover, ' = I'y [T} where 'y and I, are the graphs of some functions h;
and h,,

M ={(.y) My = h(x)}, M2 ={(x,y) LOly =h(x)}

(see Figure 2).

Proof. One has f(x,0) = (2 — n)x + x? so that f(:,0) < 0 on (0,n —2) and
f(-,0) >0 o0n (n— 2, +0c0). On the other hand, according to Proposition 2, for x
fixed, x > 0, the map y B f(Xx, y) attains its unique minimum at y = h(x); its

value is
| 1
m(x)=x(n—2)L}_TI2 1x—1 .

This minimum is negative if 0 < X < X3, zero if X = X; and positive if X > Xx;. A
half line x = C, y = 0 has then in common with I
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—one pointif0<C <n-—2orif C =x,,
— two points if n—2 < C < Xy,
— no point if X > X;.

Next, if 0 < x < x; and y & h(x), then $L(x,y) 8 0. For A = I%,h(xl)
we have m'{x;) = n—2. Since g—)f/(A) =0and mP= I + h'jg—; it follows that
g—f((A) 8 0. This shows that for every point M = (x,y) of I' such that y > 0,
either $(M) £ 0, or $L(M) B 0.

The above considerations show that there exist two functions h;: [n—2,%;] - R
and hy: [0,%;] - R such that f(x,y) = 0 if and only if y = h1(X) or y = h,(X),
hy, hy verifying the following conditions:

1) if n—2 < x < x; then hy(X) < h(x);

2) if 0 < x < x; then h(X) < h(X);

3) h(x1) .: h'l(xl) : h2(X1). - 1 ]
Moreover, h; is dilerentiable at 0 since f(X,y) = 2—n)x+Ay+0 x2+y?2
and h5{0) = 25:2. We can verify also that hi{n —2) = 0.

Since I is di[erkntiable at (x1,y:1), there exists x’ [(D,X1), such that h; is
decreasing on [x[ Xi]. —

Let us consider now the orbit O of t B I;I((t),Y (t)l.jlt is located above the
graph I, of h, in a neighbourhood of O since h5{0) = ”T_Z and lim¢_, —e % =2
according to Proposition 1. Since g ils_—lcontinqgljs, for any € > 0 there exists
n > 0 such that € < x ﬁxf‘ implliels g X, ho(x) >n. Since, on the other hand,
0 < x < x{'implies f x, ho(xX) = 0; the prpit O stays above I, when 0 <
X (t) < x{! Finally, xf’< X(t) < x; implies g X(t), Y(t) =0 and Y (t) > hy(xD)
(cf. Figure 2).

O cuts then the straight line X X1 sinq%lon this straight line, the only singular
point of the vector field is A = X3, h2(x1) and hy(x1) < ha(XD) (let us recall that
according to 3) above hz(@ = h(xl)hWe can fir]ijp as in tr‘lif:ase n = 2, noting
that if X(t) > x; then £ X(t),Y(t) > 0and g X(t),Y () < 0 which implies
that Y (t) is bounded and that X (t) blows up in a finite time T, hence z(a) = e”.

5. The(:asen23and1<p<2_j2

Ifp=:25thenn—2= ﬁ and the previous method cannot be applied.

Moreover, if p —» -85 then 2p—np+n - 0and Anp — +oo. We introduce here
another method which gives in both cases -5 < p < % and 1 <p< ;%5 anew
value

1 22p+1(p _ 1) n pp+1 _

=

AN
TP P T+ @2p+2—np+n) P

such that A = A implies that z(a) is finite for any a > 0. When p < 25,
Anp < Anp if pis near ;2.
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The idea is to use the dissymmetry of the level lines of f: (x,y) B f(X,y). In
fact, if 0 <y <y (Wherel%lis given in (8) below) and a [(0,x;) then we show

fxi+a,y)>f(xi—q,vy),

g +a,y) = —g(x1 —a, y)
and we show also that A = A, p implies O is below the line y = yo.

If Oy is the part of O in the set {(X,y)|0 < x < X1}, then O is above S(0O;)
in the set {(x,y) | X = x1} where S(O1) is the reflection of O; with respect to the
straight line X = X;. This shows that X(t) > x; implies Xt) > 0 and we can
conclude as in the proofli;{ TITA_ec])rem A (notice that n — 2 < 2x3).

First, we see that 9f x3,y =0 if and only if

_ _ .2
(2—n)+2x o+

)

p—1 _1_
1 X p+1 yp+1 = 0

with x = X1 i.e.
p—1 2p 2
Now, we show the following lemma:
Lemma. If B [(FYyp,0) and a (0, x1) then

f(xa+0a,yo+B) > f(xs —q, yo +B).

Proof. We have

1 [e=h
) ﬁ%‘ El(2—n)+ 4 _ % 2 PTURT
ox (Yo = p—1 p+1 p—1 Yoo =
and
f(xi+a, yo +B)
1 |:||:|2

=@2-n) p—1 vt o +A(Yo +B)

L ,

- ——+a " (yo+p)r.

p—1
Using the Taylor-Lagrange formula for the last term we obtain

f(x1+a, yo+B) G

:(2—n)p%1+(2—n)u+ p—il +%G+02+7\(yo+[3)
_@2 + 2p N '%(H; 2p p—1t Hlz )
p—1 p+1 p—1 2p+1p+1 p—1
1 2p p—11p O e M
+ 6o ol

6p+1p+1 p+1 -1
ep+1p p p O

X Yo+ (o +0) P
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where0<=8<1land0=<0"<1.
Using (9) we see that the only terms which are not symmetric in a are

Cop B '% o+ 88) 753
p+1 p—1 p+ly0
and
. .
1 2p p—1Hdo O b |

1
— +1 - +1
6p+1p+1 p—1 p_1+90( o YoP +p (Yo +8) *p .

The term || 1 ]
1 —__b_
+1 [ +1
YoP +p+1(YO+9%) P

equal to (yo + B)ﬁ is positive and (yo + 6%)":)_51 too. Since B < 0 we see that
the signs of this expression and a are the same. This shows that f(x; +a,yo+p) >
(X1 —a,yo + B) provided B [{(Fyo,0) and a (D, X;). 1

It it easy to see that g(x; + a,yo + B) = —g(X1 — a,yo + B) for any B and a
since

L - L] 12 &
g ﬁ+a Yo+B =@Uo+B) 2—(p—1) m"'a ==(Yo+B)(p— Do
Consequently, (7) is verified.

Now, we use the fact (cf. Theorem 2 of [FQ]) that if (X,Y): tB3 X(t) Y (t)
corresponds to u then 0 < X(t) < x; implies

n
A=+ ®

Y (t) < X(1).

In particular, if X(t) = x; then Y (t) < W p 7. Consequently, the orbit
O corresponding to u cuts the straight line x = x below Ao := (X1, Yo) provided

n 2
A—(p+1) P Dp-1

= Yo.

Since the last inequality is equivalent to the condition A = An p, We see that this
is a su [Lcieht condition to have z(a) finite for any a > 0.
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