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ADJOINTABILITY OF OPERATORS

ON HILBERT C∗–MODULES

V. M. MANUILOV

Abstract. Can a functional f ∈ H∗A = HomA(HA;A) on the non-self-dual Hilbert
moduleHA over a C∗-algebra A be represented as an operator of some inner product
by an element of the module HA, this inner product being equivalent to the given
one? We discuss this question and prove that for some classes of C∗-algebras the
closure with respect to the given norm of unification of such functionals for all
equivalent inner products coincides with the dual module H∗A. We discuss the
notion of compactness of operators in relation to representability of functionals. We
also show how an operator on HA in some situations (e.g. if it is Fredholm) can be
made adjointable by change of the inner product to an equivalent one.

Introduction

Let A be a C∗-algebra with unity. We consider Hilbert A-modules overA [8], i.e.

(right) A-modules M together with an A-valued inner product 〈·, ·〉 : M ×M−→A
satisfying the following conditions:

(i) 〈x, x〉 ≥ 0 for every x ∈M and 〈x, x〉 = 0 iff x = 0,

(ii) 〈x, y〉 = 〈y, x〉∗ for every x, y ∈M ,

(iii) 〈·, ·〉 is A-linear in the second argument,

(iv) M is complete with respect to the norm ‖x‖2 = ‖〈x, x〉‖A.

By M∗ = HomA(M ;A) we denote A-module dual to M consisting of continuous

A-valued functionals. Let HA be the right Hilbert A-module of sequences a = (ak),

ak ∈ A, k ∈ N such that the series
∑
a∗kak converges in A in norm with the

standard basis {ek} and let Ln(A) ⊂ HA be the submodule generated by the

elements e1, . . . , en of the basis. An inner A-valued product on the module HA

can be given by 〈x, y〉 =
∑
x∗kyk for x, y ∈ A. It is known [9] that in the case

when A is a W ∗-algebra an inner product can be naturally extended to the dual

module H∗A.

By an operator S from a Hilbert C∗-module M to another module N we mean

a bounded A-homomorphism from M to N which possesses an adjoint operator

S∗ from N to M (of course there always exists an adjoint operator S∗ from N

(or N∗) to M∗).
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One of the essential distinctions between Hilbert C∗-modules and Hilbert spaces

is the existence of non-self-dual modules (i.e. such that M∗ 6= M). In other

words there is no Riesz representation theorem for Hilbert C∗-modules and not

all operators have an adjoint. In some papers [3], [11] it is shown that it is useful

sometimes to consider on M other inner products defining norms equivalent to the

given one. We show how in some situations one can make an operator have an

adjoint by changing an inner product to another one equivalent to the given one.

Partial result in this direction was announced in [6].

1. Representability of Functionals on Hilbert C∗-modules

In this section we study the question of representability of functionals on a

Hilbert C∗-module M as inner products by elements from M . Define F to be the

set of functionals of the form

x 7−→ 〈y, x〉β (x, y ∈M,β ∈ B)

where B is the set of all inner products 〈·, ·〉β , defining norms equivalent to the

given one. We call a functional f ∈ M∗ representable if f ∈ F . Let A∗∗ be an

enveloping W ∗-algebra for A. By HA we denote the standard Hilbert A-module

l2(A) with the standard basis {ei}. The extension of the given inner product from

HA∗∗ to H∗A∗∗ [9] we also denote by 〈·, ·〉. Obviously we have H∗A ⊂ H
∗
A∗∗ .

Proposition 1.1. If f ∈ H∗A is representable then there exists an element

z ∈ HA such that the operator inequality

(1) α〈z, z〉 ≤ β〈f, f〉 ≤ 〈f, z〉 ≤ γ〈f, f〉 ≤ δ〈z, z〉

holds for some positive numbers α, β, γ, δ.

Proof. It was proved in [3] using results of L. Brown [1] that due to the fact

that the module HA is countably generated, any inner product equivalent to the

given one is of the form 〈x, y〉β = 〈Sx, Sy〉, where S ∈ EndA(HA) is an invertible

bounded operator. S need not have an adjoint operator in the module HA but it

has an adjoint operator acting from HA to H∗A. If f is representable then f = S∗Sz

for some S and some z ∈ HA, the operator 〈f, z〉 ∈ A is positive and we have

〈f, z〉 = 〈S∗Sz, z〉 = 〈Sz, Sz〉 = 〈z, z〉β .

Due to invertibility of S we can find [3] positive numbers a and b such that

a〈z, z〉 ≤ 〈z, z〉β ≤ b〈z, z〉

and consequently

(2) a〈z, z〉 ≤ 〈f, z〉 ≤ b〈z, z〉.
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We now estimate 〈f, f〉 = 〈S∗Sz, S∗Sz〉. Since a2 ≤ S∗S ≤ b2, so we have

(3) a2〈z, z〉 ≤ 〈f, f〉 ≤ b2〈z, z〉.

Gluing together (2) and (3) we obtain (1). �

We call a functional F ∈ M∗ non-singular if there exists an element z ∈ M

such that spectrum of the operator 〈f, z〉 ∈ A is separated from zero. In this case

without any loss of generality we can consider the operator 〈f, z〉 as positive with

〈f, z〉 ≥ c > 0 for some number c. The following example shows that there exist

singular functionals with the property 〈f, f〉 = 1.

Example 1.2. Let A = L∞ ([0; 1]). Define f ∈ H∗A as a sequence of functions

f = (fk(t)), where

fk(t) =

{
1, t ∈

[
1
2k

; 1
2k−1

]
,

0, for other t.

It is obvious that 〈f, f〉 = 1. We show that the spectrum of 〈f, z〉 is not separated

from zero for all z = (zk) ∈ HA. Since the series
∑∞
k=1 z

∗
kzk is convergent in norm

in A, for any ε > 0 we can find a number n such that ‖
∑∞
k=n+1 z

∗
kzk‖ < ε. Then

if t < 1/2n we have |fk(t)zk(t)| < ε, and consequently |〈f, z〉(t)| < ε. Hence f is

singular. As 〈f, z〉 is not invertible for all z ∈ HA and 〈f, f〉 = 1, the inequality

(1) is violated, hence f is not representable.

Proposition 1.3. Let f ∈M∗ be non-singular. Then it is representable.

Proof. The Cauchy-Schwarz inequality gives us

0 < c ≤ 〈f, z〉 ≤ ‖f‖〈z, z〉1/2,

therefore the module SpanAz is isomorphic to A. One can check that M can be

decomposed into the (not orthogonal) direct sum:

M = SpanAz ⊕Ker f.

If x ∈M , then put

a = 〈f, z〉−1 · 〈f, x〉; y = x− za.

Then x = za + y, and y ∈ Ker f . Uniqueness of such decomposition is obvious.

The rest of the proof follows from a simple corollary of the following result of

E. V. Troitsky [13]:

Proposition 1.4. Let M = M1 ⊕M2 be a topological decomposition into a

direct sum (not necessarily orthogonal) of closed modules. Then there exists a new
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inner product on M equivalent to the given one with respect to which the given

decomposition is orthogonal.

Proof. Define an operator J : M−→M by

Jx =

{
x, if x ∈M1,

−x, if x ∈M2.

As it is shown in [13], the inner product

〈x, y〉β = 〈x, y〉+ 〈Jx, Jy〉

is equivalent to the given one because the operator J is bounded due to the fact

that M1 and M2 are closed. Orthogonality of these modules with respect to this

inner product is obvious. �

If we take M1 = SpanAz and M2 = Ker f and take a new inner product

as in the previous proposition then z would be orthogonal to Ker f . Put z′ =

z · 〈z, z〉−1
β · 〈f, z〉. Then we have 〈f, x〉 = 〈z′, x〉β . Hence f is representable. �

Theorem 1.5. Let A be a C∗-algebra of stable topological rank one. Then the

set of representable functionals on HA is dense in H∗A with respect to the given

norm.

Proof. The proof is reduced to the verification of density of non-singular func-

tionals in H∗A. As A has stable topological rank one, so the set of invertible

elements is dense in A. If f = (fi) ∈ H∗A, then we can find in A an invertible

element g1 such that ‖g1 − f1‖ < ε. Putting g = (g1, f2, f3, . . . ) ∈ H∗A and taking

z = e1 = (1, 0, 0, . . . ) ∈ H∗A, we obtain the invertibility of 〈g, z〉 and ‖g− f‖ < ε.�
Notice that the class of C∗-algebras of stable topological rank one evidently

includes commutative ∗-algebras of functions on spaces of dimension one. It was

shown in [10] that this class includes also C∗-algebras of irrational rotation. It

includes also finite W ∗-algebras.

The situation with respect to representability of functionals in the general case

is more complicated. Namely for purely infinite algebras there exist open sets of

non-representable functionals. To show that consider the following

Example 1.6. Let A be the C∗-algebra of all bounded operators on an infinite-

dimensional Hilbert space. As it is shown in [3], there exists an isomorphism of

modules S : A−→H∗A. Put f = S(a) with a ∈ A. Then the condition 〈f, x〉 = 0

can be written as 〈S(a), S(b)〉 = 0 with b = S−1(x) ∈ A, hence 〈a, b〉 = a∗b = 0.

If a is invertible then we have Ker f = 0 — a situation which is impossible for

Hilbert spaces. But if f is representable, 〈f, ·〉 = 〈z, ·〉β with z ∈ HA, then Ker f

cannot be zero. Therefore the functional f = S(1A) ∈ H∗A is not representable

and it possesses a neighborhood consisting of non-representable functionals.



ADJOINTABILITY OF OPERATORS ON HILBERT C∗–MODULES 165

2. Compactness and Adjointability of Operators

on Hilbert C∗-modules

It was noticed recently [13] that in some cases we can make an operator on a

Hilbert C∗-module adjointable by change of the inner product to an equivalent

one. Namely E. V. Troitsky showed that if an operator T ∈ EndA(HA) lies in the

image of a representation of a compact group G, T = Tg for g ∈ G, then averaging

on G the given inner product we can obtain a new inner product equivalent to

the given one such that T is unitary with respect to this inner product. In this

section we show some other situations where operators on Hilbert C∗-modules can

be made adjointable.

Consider the closed ideal BK(HA) of Banach-compact operators generated

by operators of the form y〈f, ·〉 with y ∈ HA, f ∈ H∗A in the Banach algebra

EndA(HA). By Kβ(HA) we denote the C∗-algebra of compact operators [5], [7]

in the Hilbert C∗-module (HA, 〈·, ·〉β).

Theorem 2.1. Let A be a C∗-algebra with dense set of invertible elements.

Then we have

BK(HA) =
⋃
β∈B

Kβ(HA),

where bar denotes the closure with respect to the given norm.

Proof. It is sufficient to approximate operators of the form

x 7−→
n∑
i=1

yi〈f
(i), x〉.

Without loss of generality we can suppose that the i-th coordinates f (i) of f are in-

vertible operators. Suppose that we have found an inner product 〈·, ·〉β with respect

to which the functionals f (i) (i ≤ k) are of the form 〈
∑i
j=1 ejaj , · 〉βk with aj ∈ A.

Define an inner product 〈·, ·〉βk+1
approximating the operator

∑k+1
i=1 yi〈f

(i), · 〉 as

follows. Let 〈·, ·〉βk+1
coincide with 〈·, ·〉βk on the module Lk(A) generated by the

first k elements of the standard basis e1, . . . , ek, and on its orthogonal complement

Lk(A)⊥ we define 〈·, ·〉βk+1
so that it is equivalent to 〈·, ·〉βk and

f (k+1)|Lk(A)⊥ = 〈ek+1ak+1, · 〉βk+1

with some ak+1 ∈ A. Then we have

f (k+1) =

(
k∑
i=1

eif
(k+1)
i + ek+1ak+1, ·

)
βk+1

.
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Notice that the representations of the functionals f (i), i ≤ k have not changed

because Lk(A) and Lk(A)⊥ are orthogonal with respect to both inner products

〈·, ·〉βk and 〈·, ·〉βk+1
. �

Remark. Although the set
⋃
β∈B

Kβ(HA) has no natural structure of an algebra,

its norm closure surprisingly is a Banach algebra. For comparison we would like

to state also the following result of M. Frank [3]:

Proposition 2.2. One has ⋂
β∈B

Kβ(HA) = 0.

Now we give a geometrical description of compact operators. Let S ⊂ HA be

a bounded subset. We call it A-precompact if for every ε > 0 there exists a free

finitely generated A-module N ∼= An; N ⊂ HA such that dist(S,N) < ε.

Proposition 2.3. Let T be an operator on HA (resp. an operator having an

adjoint). Then the following conditions are equivalent:

(i) T ∈ BK(HA) (resp. T is compact);

(ii) the image T (B1(HA)) of the unit ball B1(HA) is A-precompact.

Proof. If the first statement is valid then it is sufficient to prove that one can

find an approximating module N ∼= An for a finite set of elements of HA. This

can be done by the method of [2]. So suppose now that (ii) is valid. Then for any

ε > 0 we can find elements b1, . . . , bk ∈ HA with 〈bi, bj〉 = δij which generate a

module N ⊂ HA and dist(T (B1(HA)), N) < ε. Denote by PN a projection onto

N and consider the operator PNT . It can be decomposed in the form

(4) PNTx = b1〈f1, x〉+ · · ·+ bn〈fn, x〉

with fi ∈ H∗A. As for any x ∈ B1(HA) we can find an element b ∈ N with

‖Tx− b‖ < ε, so

‖Tx− PNTx‖ = ‖Tx− b+ b− PNTx‖

= ‖Tx− b‖+ ‖PN (b− Tx)‖ ≤ ε+ ‖PN‖ ε = 2ε,

hence ‖T − PNT‖ ≤ 2ε and T belongs to the norm closure of operators of the

form (4). If T is adjointable then PNT is also adjointable, hence fi ∈ HA and T

is compact. �

Remember that an operator is called Fredholm if it is invertible modulo the ideal

of compact operators. As in the case of Hilbert modules one has two definitions

of compactness (with and without adjointness), so there are also two definitions
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of Fredholmness. By a Banach-Fredholm operator we understand an operator

which is invertible modulo the ideal of the Banach-compact operators. Notice

that this definition does not depend on a Hilbert structure. Now we show that

Banach-Fredholm operators in Hilbert modules over arbitrary unital C∗-algebras

can be made adjontable by a change of inner product. Unfortunately the case

of C∗-algebras without unit is much more difficult and we intend to consider it

somewhere else. The interest in the space of Banach-Fredholm operators lies in the

fact that due to contractibility of the general linear group of all bounded operators

of the module HA [12] this space can be considered as a classifying space for the

topological K-theory with coefficients in the C∗-algebra A.

Theorem 2.4. Let M , N be Hilbert C∗-modules isomorphic to HA,

T : M−→N be a Banach-Fredholm operator having no adjoint. Then there ex-

ist new inner products on these modules equivalent to the given ones so that T is

adjointable with respect to these inner products.

Proof. Consider a Banach-compact operator K ∈ BK(M,N),

(5) K =
∞∑
i=1

yi〈fi, ·〉

with yi ∈ N , fi ∈M∗. �
Lemma 2.5. Let S : M−→N be an invertible operator, S ∈ EndA(M ;N).

Then the operator S + K is diagonal for some decompositions M = M1 ⊕M2;

N = N1⊕N2, where M1, N1 are finitely generated projective modules, direct sums

are not necessarily orthogonal and (S +K)|M2 is an isomorphism.

Proof. Without loss of generality we can consider the sum (5) to be finite and

the elements yi to be such that 〈yi, yi〉 = δij. Denote by N1
∼= An the A-module

generated by these yi, i = 1, . . . , n. Put

M1 = S−1(N1); M2 = S−1(N⊥1 )

and define an operator

R : N⊥1 −→N1 by Ry = K(S−1y), y ∈ N⊥1 .

Then the module (S +K)(M2) is of the form

N2 = (S +K)(M2) = {y +Ry, y ∈ N⊥1 }.

This module is obviously closed and N = N1 ⊕ N2 (not orthogonal direct sum).

Indeed, if we denote by P1 and P2 the orthoprojections on N1 and on N⊥1 respec-

tively, then an element z ∈ N can be decomposed:

z = (P1z −RP2z;P2z +RP2z).
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As we have

(S +K)(M1) ⊂ N1, (S +K)(M2) = N2,

so the operator S+K is diagonal with respect to the chosen decompositions of M

and N . �
If T : M−→N is Banach-Fredholm then there exists an operator Q : N−→M

such that TQ−1 and QT−1 are Banach-compact. Then by standard methods [7],

[4] one can find a decomposition

T : M1 ⊕M2−→N1 ⊕N2

where M1 and N1 are projective and finitely generated, T |M2 : M2−→N2 is an

isomorphism, but direct sums need not be orthogonal. By the Proposition 1.4 we

can make them orthogonal by changing inner products on M and N to equivalent

ones. Further, as T |M2 is an isomorphism, we can correct the inner product on

N2 so that this isomorphism preserves Hilbert module structure. Then T |M2 is

an identity, hence adjointable. But T |M2 is an operator acting in the auto-dual

modules, hence it is also adjointable, so T is adjointable. �
Finally we show how the averaging theorem of [13] can be generalized from

compact to amenable groups in the case of W ∗-algebras in order to find an ap-

propriate inner product. We state the following theorem for the group Z but the

proof is valid for all amenable groups.

Theorem 2.6. Let A be a W ∗-algebra and let T : M−→M be an operator such

that all its powers are uniformly bounded, ‖Tn‖ ≤ C, n ∈ Z. Then there exists an

inner product 〈·, ·〉β equivalent to the given one so that T is unitary with respect

to this inner product.

Proof. Let A∗ be a predual Banach space for A. For any φ ∈ A∗ define a

function fx,y on Z by

fx,y(n) = φ(〈Tnx, Tny〉)

for x, y ∈M . By supposition this function is bounded. Put

φx,y = lim
n→∞

1

2n+ 1

n∑
k=−n

fx,y(k).

Fixing x and y we obtain a linear bounded map

ax,y : A∗−→C; φ 7−→ φx,y.

This map is an element of (A∗)
∗ = A. Define a new inner product on M by

〈x, y〉β = ax,y ∈ A. We must check that 〈·, ·〉β is an inner product. Its sesquilin-

earity is obvious. If φ ∈ A∗ is a state then fx,x(n) ≥ 0, hence φ(〈x, x〉β) = φx,x ≥ 0.

Suppose that 〈x, x〉β = 0 for some x ∈M . Then we have φx,x = 0. But as

〈x, x〉 = 〈T−k(T kx), T−k(T kx)〉 ≤ C2〈T kx, T kx〉,
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so 1
C2 fx,x(0) ≤ fx,x(n) and

1

2n+ 1

n∑
k=−n

fx,x(k) ≥
1

C2
fx,x(0),

hence φx,x ≥
1
C2 fx,x(0) and by supposition we must have fx,x(0) = 0, i.e.

φ(〈x, x〉) = 0 for an arbitrary state φ. But then 〈x, x〉 = 0, hence x = 0. So

〈·, ·〉β is an inner product. The property 〈Tx, Ty〉β = 〈x, y〉β is obvious, so T is

unitary. Equivalence of 〈·, ·〉 and 〈·, ·〉β follows directly from the estimate

1

C2
〈x, x〉 ≤ 〈T kx, T kx〉 ≤ C2〈x, x〉

being valid for all k. �
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