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A REMARK ON ALMOST MOORE

DIGRAPHS OF DEGREE THREE

E. T. BASKORO, M. MILLER and J. ŠIRÁŇ

Abstract. It is well known that Moore digraphs do not exist except for trivial
cases (degree 1 or diameter 1), but there are digraphs of diameter two and arbitrary
degree which miss the Moore bound by one. No examples of such digraphs of
diameter at least three are known, although several necessary conditions for their
existence have been obtained. A particularly interesting necessary condition for the

existence of a digraph of degree three and diameter k ≥ 3 of order one less than the
Moore bound is that the number of its arcs be divisible by k + 1.

In this paper we derive a new necessary condition (in terms of cycles of the so-
called repeat permutation) for the existence of such digraphs of degree three. As
a consequence we obtain that a digraph of degree three and diameter k ≥ 3 which
misses the Moore bound by one cannot be a Cayley digraph of an Abelian group.

1. Introduction and Preliminaries

The well known degree/diameter problem for digraphs is to determine the

largest order nd,k of a digraph of (out)degree at most d and diameter at most k.

A straightforward upper bound on nd,k is the Moore bound Md,k:

nd,k ≤Md,k = 1 + d+ d2 + · · ·+ dk.

It is well known that nd,k = Md,k only in the trivial cases when d = 1 (directed

cycles of length k + 1) or k = 1 (complete digraphs of order d + 1), see [12]

or [7]. For k = 2, line digraphs of complete digraphs are examples showing that

nd,2 = Md,2 − 1 if d ≥ 2. On the other hand, if d = 2 then n2,k < M2,k − 1

for k ≥ 3 (see [11]). Moreover, from the necessary conditions obtained in [10] it

follows that, for example, n2,k < M2,k − 2 for 3 ≤ k ≤ 107, k 6= 274485, 5035921.

The question of whether or not equality can hold in nd,k ≤Md,k− 1 for d ≥ 3 and

k ≥ 3 is completely open.

For convenience, a digraph of (out)degree at most d, diameter at most k (where

d ≥ 3 and k ≥ 2) and order Md,k− 1 will be called a (d, k)-digraph. It is an easy
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exercise to show that a (d, k)-digraph must, in fact, be diregular of degree d and

its diameter must be equal to k.

Several necessary conditions for the existence of (d, k)-digraphs have been

proved in [2], [3], [4], [5], [6]. In particular, for d = 3 it was proved in [3] that

(3, k)-digraphs do not exist if k is odd or if k + 1 does not divide 9
2 (3k − 1). All

these conditions refer in one way or another to the so-called repeats which were

first introduced in [3] and which we recall next.

Let G be a (d, k)-digraph. A simple counting argument shows that for each

vertex u of G there exists exactly one vertex r(u) in G with the property that

there are two u → r(u) walks in G of length not exceeding k. The vertex r(u)

is called the repeat of u. It can be shown [3] that the mapping v 7→ r(v) is an

automorphism of G. In what follows we shall therefore refer to r as the repeat

automorphism of the (d, k)-digraph G.

Very recently, for d = 3 it has been proved in [6] that all cycles of the re-

peat automorphism r (when written as a permutation of the vertex set of a

(3, k)-digraph) must have the same length. However, cycles of length one are

impossible, due to an earlier result of [3] which says that for k ≥ 3 and d ≥ 2 there

is no (d, k)-digraph for which r is an identity automorphism.

The purpose of this note is to examine the other extreme; we show that the

cycles of a repeat automorphism of a (3, k)-digraph cannot be too long (Section 4,

Theorem 1). As a consequence of our method we shall prove that a (3, k)-digraph

cannot be a Cayley graph of an Abelian group. We use an algebraic approach to

the problem; the basics are introduced in Sections 2 and 3.

2. Algebraic Background

Let G be a digraph and let Γ be a subgroup of Aut (G), the group of all au-

tomorphisms of G, viewed as a group of permutations of the vertex set V (G). In

addition, let us assume that Γ is semi-regular on V (G), that is, for any ordered

pair of vertices u, v ∈ V (G) (possibly u = v) there exists at most one automor-

phism g ∈ Γ such that g(u) = v. Then we may define the quotient digraph G/Γ

as follows. The vertex set V (G/Γ) is the set of all orbits O(u) = {g(u); g ∈ Γ} of

the group Γ on V (G). If O(u), O(v) is any ordered pair of vertices of the quotient

digraph G/Γ (that is, any pair of orbits of Γ on V(G); we do not exclude the case

O(u) = O(v)) and if in the original digraph G there are t arcs emanating from u

and terminating in O(v), then there will be t parallel arcs in G/Γ emanating from

O(u) and terminating at O(v). Note that in the case when O(u) = O(v) the t arcs

will become t loops attached at the vertex O(u). The fact that quotient digraphs

are well defined (i.e., incidence in the quotient graph does not depend on the choice

of a particular vertex in the orbit) is an easy consequence of semi-regularity of Γ

on V (G). It is more important to notice that the projection ρ : V (G) → V (G/Γ)

given by ρ(u) = O(u) is a digraph epimorphism.
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Note that if, in the situation above, the group Γ is regular on V (G) – that is, if

for any ordered pair (u, v) ∈ V (G)×V (G) there exists exactly one automorphism

g ∈ Γ such that g(u) = v – then G is isomorphic to a Cayley digraph for the group

Γ and the quotient digraph G/Γ consists of a single vertex only (with d loops

attached to it if G is d-regular).

We shall soon be facing the following converse problem: Given a digraph H,

what are the possible digraphs G and semi-regular subgroups Γ < Aut (G) for

which the quotient digraph G/Γ is isomorphic to H? A complete answer can be

given in terms of the so-called voltage assignments and lifts. Voltage assignments

on (undirected) graphs were introduced in the early 70’s [8] as a dual form of

current graphs; the latter played a key role in proving the famous Map Color

Theorem. Most of the theory (summarised in [9]) can be immediately transferred

to digraphs, and in what follows we outline only the basic facts.

Let H be a digraph, possibly containing directed loops and/or parallel arcs.

Let Γ be an arbitrary group. Any mapping α : D(H) → Γ is called a voltage

assignment on H. The lift of H by α, denoted by Hα, is the digraph defined

as follows: V (Hα) = V (H) × Γ, D(Hα) = D(H) × Γ, and there is an arc (x, f)

in Hα from (u, g) to (v, h) if and only if f = g, x is an arc from u to v, and

h = gα(x). The mapping π : Hα → H which erases the second coordinates, that

is, π(u, g) = u and π(x, g) = x for each u ∈ V (H), x ∈ D(H) and g ∈ Γ, is called

a natural projection. Clearly, π is a digraph epimorphism; the sets π−1(u) and

π−1(x) are called fibres above the vertex u or above the arc x, respectively.

For any two vertices in the same fibre π−1(u) there exists an automorphism

of the lift which sends the first vertex to the second. Indeed, without loss of

generality, let (u, id), (u, g) ∈ π−1(u) be a pair of such vertices. Then it can be

easily checked that the mapping Bg : Hα → Hα, given by Bg(v, h) = (v, gh)

for each (v, h) ∈ V (Hα), is an automorphism of the lift Hα such that Bg(u, id) =

(u, g). Observe that the collection Γ̃ = {Bg; g ∈ Γ} forms a semi-regular subgroup

(isomorphic to Γ) of the group Aut(Hα); the fibres coincide with the orbits of Γ̃.

A close connection between quotients and lifts may already be apparent from the

definitions. Indeed, the basic result on semi-regular group actions on undirected

graphs, which is Theorem 2.2.2 of [9], immediately translates to the following

directed version:

Proposition 1. Let G be a digraph and let Γ < Aut (G) be a semi-regular

subgroup on V (G). Then there exists a voltage assignment α on the quotient

digraph G/Γ in the group Γ such that the lift (G/Γ)α is isomorphic to G.

Thus, for a given quotient digraph H, all possible digraphs G (and semi-regular

groups Γ on V (G)) such that G/Γ ' H can be re-constructed by considering

voltage assignments on the digraph H and the corresponding lifts.
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3. The Diameter of a Lift

We shall also be interested in recovering some properties of a lift from properties

of the quotient. For this purpose we outline the connection between closed walks

in the quotient and in the lift. Let α be a voltage assignment on a digraph H

in a group Γ. Let W = x1x2 . . . xm be a walk in H, i.e., an arc sequence in

which the terminal vertex of xi−1 coincides with the initial vertex of xi for each

i, 2 ≤ i ≤ m (we allow an arc to be used repeatedly). The number m is the

length of the walk W . The walk W is closed if the initial vertex of x1 and the

terminal vertex of xm coincide. The net voltage of W is simply the product

α(W ) = α(x1)α(x2) . . . α(xm). For convenience, at each vertex we also admit a

trivial closed walk of length 0 and of unit net voltage.

It is easy to see that for each walk W = x1x2 . . . xm in H from a vertex u

to vertex v and for each g ∈ Γ there exists a unique walk W̃ in the lift Hα

emanating from the vertex (u, g) and such that π(W̃ ) = W . This walk has the

form W̃ = (x1, g)(x2, gα(x1)) . . . (xm, gα(x1)α(x2) . . . α(xm−1)); it emanates in the

lift from the vertex (u, g) and terminates at the vertex (v, gα(W )). The walk W̃

is often called a lift of W .

Note that for any two distinct vertices (u, g), (v, h) in V (Hα) there exists a path

W̃ of length at most k from (u, g) to (v, h) if and only if the projection W = π(W̃ )

is a walk in the digraph H of length at most k from u to v with α(W ) = g−1h.

This immediately implies the following result on the diameter of the lift (cf. [1]):

Lemma 1. Let α be a voltage assignment on a digraph H in a group Γ. Then

diam(Hα) ≤ k if and only if for each ordered pair of vertices u, v of H (possibly

u = v) and for each g ∈ Γ there exists a walk of length ≤ k from u to v whose net

voltage is g.

For any vertex u ∈ H and any non-negative integer t let α[u; t] denote the set

of all distinct voltages on closed walks in H of length t emanating from u. We

now have an obvious corollary of Lemma 1:

Lemma 2. Let α be a voltage assignment on a digraph H in a group Γ. If the

diameter of the lift Hα is equal to k, then for each vertex u ∈ H,

k∑
t=0

|α[u; t]| ≥ |Γ|

Proof. According to Lemma 1 (the case u = v), if diam (Hα) = k then for each

u ∈ V (H) and for each g ∈ Γ there exists a closed walk at u of length ≤ k whose

net voltage is equal to g. In other words, the union of all sets α[u; t], 0 ≤ t ≤ k, is

equal to Γ; this proves our inequality. �
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4. Results

Recall that for d ≥ 3 and k ≥ 2, by a (d, k)-digraph we understand any diregular

digraph of degree d, diameter k and order Md,k − 1. When referring to cycles of

the repeat automorphism r we mean the cycles in the cycle decomposition of r,

written as a permutation of V (G).

Theorem 1. Let G be a (3, k)-digraph, k ≥ 3, let n = |V (G)|, and let r be the

repeat automorphism of G. Then all cycles of r have equal length, smaller than

3n log3 k/(k + 1− log3 k).

Proof. Let Γ be the cyclic subgroup of Aut(G) generated by r. By Theorem 3

of [6], Γ acts semi-regularly on V (G) with all orbits of equal size; let m be the

size of each orbit. Consider the quotient digraph H = G/Γ and let V (H) = q;

clearly n = |V (G)| = mq. In order to prove our theorem it is sufficient to show

that q > (k + 1− log3 k)/(3 log3 k).

According to Proposition 1, there exists a voltage assignment α on the quotient

digraph H in the (cyclic) group Γ such that the lift Hα is isomorphic to the original

digraph G. Although we have no information about the structure of the quotient

digraph H (except that it has q vertices, each of degree three), we nevertheless

may establish an upper bound on the number of distinct voltages on its closed

walks as follows.

Let xi, 1 ≤ i ≤ 3q be the collection of all arcs of H and let α(xi) = ai ∈ Γ

be the corresponding voltages. Fix a vertex u ∈ V (H) and estimate the number

of elements in the set α[u; t] for a fixed t ≤ k. Let W be a closed walk in H of

length t, emanating from (and terminating at) u. Assume that the walk traverses

ji times the arc xi, where
∑3q
i=1 ji = t. The net voltage of W is then α(W ) =∑3q

i=1 jiai. From this we immediately see that the number of voltages appearing in

the set α[u; t] is never greater than the number of ordered 3q-tuples (j1, . . . , j3q)

of nonnegative integers whose sum is equal to t. The number of such ordered

decompositions is well known to be equal to
(
t+3q−1

3q−1

)
. For the number of possible

voltages on all closed walks at u of length ≤ k we therefore obtain:

(1)
k∑
t=0

|α[u; t]| ≤
k∑
t=0

(
t+ 3q − 1

3q − 1

)
=

(
k + 3q

3q

)

Since diam (Hα) = k, by Lemma 2 and the inequality (1) we have |Γ| ≤
(
k+3q

3q

)
.

Recalling that the liftHα is isomorphic to our (3, k)-digraphG with n = 3(3k−1)/2

vertices and that |Γ| = m = n/q, we obtain

(2)
3(3k − 1)

2q
≤

(
k + 3q

3q

)
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In order to eliminate q, we observe that `
(
k+`
`

)
< k`+1 for each k ≥ 3 and ` ≥ 1.

(Indeed, this is trivially true for ` = 1, 2, and an easy induction works for ` ≥ 2.)

Combining this inequality with (2) we finally obtain

3k+1 ≤ 2q

(
k + 3q

3q

)
+ 3 ≤ 3q

(
k + 3q

3q

)
< k3q+1 ,

and hence q > (k + 1− log3 k)/(3 log3 k). The proof is complete. �

We have the following obvious corollary announced earlier.

Corollary 1. Let G be a (3, k)-digraph, k ≥ 2, and let r be the repeat auto-

morphism of G. Then r cannot consist of a single cycle.

Proof. If k ≥ 3, the result follows directly from Theorem 1 because q > 1. For

k = 2 it is sufficient to observe that the inequality (2) is not valid for q = 1. �

The last result can be extended slightly by reformulating it in terms of Cayley

digraphs. Let Γ be a (finite) group and let X be a generating set for Γ. The

Cayley digraph C(Γ,X) has vertex set Γ, and for any ordered pair of vertices

g, h ∈ Γ there is an arc emanating from g and terminating at h whenever gx = h

for some x ∈ X. We observe that C(Γ,X) is a vertex-transitive digraph of degree

|X|; the group Γ acts regularly on the vertex set of the Cayley digraph by left

translations.

Corollary 2. Let G be a (3, k)-digraph, k ≥ 2. Then G cannot be a Cayley

digraph of an Abelian group.

Proof. Assume that a (3, k)-digraph G is isomorphic to a Cayley digraph

C(Γ,X) where Γ is an Abelian group. Since Γ acts regularly on V (G), the quotient

digraph G/Γ consists of precisely one vertex incident to three loops. Examining

the proof of Theorem 1 one quickly sees that it is valid for all Abelian (not only

cyclic) groups. The Corollary follows. �
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