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NO SLICES ON THE SPACE OF

GENERALIZED CONNECTIONS

P. W. MICHOR and H. SCHICHL

Abstract. On a fiber bundle without structure group the action of the gauge group
(the group of all fiber respecting diffeomorphisms) on the space of (generalized)
connections is shown to admit no slices.

1. Introduction

In modern mathematics and physics actions of Lie groups on manifolds and

the resulting orbit spaces (moduli spaces) are of great interest. For example, the

moduli space of principal connections on a principal fiber bundle modulo the group

of principal bundle automorphisms is the proper configuration space for Yang-Mills

field theory (as e.g. outlined in [3], [19], and [14]). The structure of these orbit

spaces usually is quite complicated, but sometimes it can be shown that they are

stratified into smooth manifolds. This is usually done by proving a, so called, slice

theorem for the group action. Also, very recent research in theoretical physics is

connected to moduli spaces: e.g. invariance of Euler numbers of moduli spaces of

instantons on 4-manifolds [19], moduli spaces of parabolic Higgs bundles, which

are connected to Higgs fields [9], [13]. In algebraic topology moduli spaces play

an important role, either, [8], [16], [17], and also the definition of the famous

Donaldson Polynomials involves moduli spaces ([2]).

The result presented in this paper is connected to a slice theorem for the orbit

space of connections on a principal fiber bundle modulo the gauge group, proved

by [6]. The situation considered in this paper is a generalization of that.

For a general survey on slice theorems and slices see [4], where a slice theorem

for the space of solutions of Einstein’s equations modulo the diffeomorphism group

is proved.

The non-existence of the slice theorem in the case of (generalized) connections

on a fiber bundle modulo the gauge group is connected to the fact that the right

action of Diff(S1) on C∞(S1,R) by composition admits in general no slices, except
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when restricted to the space of functions which have finite codimension at all

critical points [1]. For more information on (generalized) see [10], [11], or Section 9

of [5].

2. Definitions

A (fiber) bundle (p : E → M,S) consists of smooth finite dimensional mani-

folds E, M , S and a smooth mapping p : E → M . Furthermore, each x ∈ M has

an open neighborhood U such that E | U := p−1(U) is diffeomorphic to U ×S via

a fiber respecting diffeomorphism:

E | U
ψ

p

U × S

pr1

U

In the following we assume that M and S, hence E are compact.

We consider the fiber linear tangent mapping Tp : TE → TM and its kernel

ker Tp =: V E, which is called the vertical bundle of E. It is a locally splitting

vector subbundle of the tangent bundle TE.

A connection on the fiber bundle (p : E → M,S) is a vector valued 1-form

Φ ∈ Ω1(E;V E) with values in the vertical bundle V E such that Φ ◦ Φ = Φ and

imΦ = V E; so Φ is just a projection TE → V E.

The kernel ker Φ is a sub vector bundle of TE, it is called the space of hor-

izontal vectors or the horizontal bundle, and it is denoted by HE. Clearly,

TE = HE ⊕ V E and TuE = HuE ⊕ VuE for u ∈ E.

If Φ: TE → V E is a connection on the bundle (p : E → M,S), then the

curvature R of Φ is given by the Frölicher-Nijenhuis bracket

2R = [Φ,Φ] = [Id−Φ, Id−Φ] ∈ Ω2(E;V E).

R is an obstruction against involutivity of the horizontal subbundle in the following

sense: If the curvature R vanishes, then horizontal vector fields on E also have a

horizontal Lie bracket. Furthermore, we have the Bianchi identity [Φ, R] = 0 by

the graded Jacobi identity for the Frölicher-Nijenhuis bracket.

3. Local description

Let Φ be a connection on (p : E → M,S). Let us fix a fiber bundle atlas (Uα)

with transition functions (ψαβ), and let us consider the connection ((ψα)−1)∗Φ ∈
Ω1(Uα × S;Uα × TS), which may be written in the form

(((ψα)−1)∗Φ)(ξx, ηy) =: −Γα(ξx, y) + ηy for ξx ∈ TxUα and ηy ∈ TyS,
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since it reproduces vertical vectors. The Γα are given by

(0x,Γ
α(ξx, y)) := −T (ψα) ·Φ · T (ψα)−1 · (ξx, 0y).

We consider Γα as an element of the space Ω1(Uα;X(S)), a 1-form on Uα with

values in the Lie algebra X(S) of all vector fields on the standard fiber. The Γα

are called the Christoffel forms of the connection Φ with respect to the bundle

atlas (Uα, ψα).

The transformation law for the Christoffel forms is

Ty(ψαβ(x, )) · Γβ(ξx, y) = Γα(ξx, ψαβ(x, y))− Tx(ψαβ( , y)) · ξx.

The curvature R of Φ satisfies

(ψ−1
α )∗R = dΓα + 1

2 [Γα,Γα]∧X(S).

Here dΓα is the exterior derivative of the 1-form Γα ∈ Ω1(Uα,X(S)) with values

in the convenient vector space X(S).

4. The gauge group

The gauge group Gau(E) of the finite dimensional fiber bundle (p : E →M,S)

with compact standard fiber S is, by definition, the group of all fiber respecting

diffeomorphisms

E
f

−−−−→ E

p

y yp
M

Id
−−−−→ M.

The gauge group acts on the space of connections by Φ 7→ f∗Φ = Tf−1.Φ.T f . By

naturality of the Frölicher-Nijenhuis bracket for the curvatures, we have

Rf
∗Φ = 1

2 [f∗Φ, f∗Φ] = 1
2f
∗[Φ,Φ] = f∗RΦ = Tf−1.RΦ.Λ2Tf.

Now it is very easy to describe the infinitesimal action. Let X be a vertical vector

field with compact support on E, and consider its global flow FlXt .

Then we have d
dt
|0(FlXt )∗Φ = LXΦ = [X,Φ], the Frölicher Nijenhuis bracket,

by [5]. The tangent space of Conn(E) at Φ is the space TΦ Conn(E) = {Ψ ∈
Ω1(E;TE) : Ψ|V E = 0}. The ”infinitesimal orbit” at Φ in TΦ Conn(E) is {[X,Φ] :

X ∈ C∞c (E ← V E)}.
The isotropy subgroup of a connection Φ is {f ∈ Gau(E) : f∗Φ = Φ}. Clearly,

this is just the group of all those f which respect the horizontal bundleHE = ker Φ.

It is in general not compact and infinite dimensional. The most interesting object

is of course the orbit space Conn(E)/Gau(E).
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5. Slices

Let M be a smooth manifold, G a Lie group, G ×M →M a smooth action,

x ∈ M, and let Gx = {g ∈ G : g · x = x} denote the isotropy group at x. A

contractible subset S ⊆M is called a slice at x, if it contains x and satisfies

(1) If g ∈ Gx then g · S = S.

(2) If g ∈ G with g · S ∩ S 6= ∅ then g ∈ Gx.

(3) There exists a local section χ : G/Gx → G defined on a neighborhood V

of the identity coset such that the mapping F : V × S → M, defined by

F (v, s) := χ(v) · s is a homeomorphism onto a neighborhood of x.

We have the following additional properties

(4) For y ∈ F (V × S) ∩ S we get Gy ⊂ Gx, by (2).

(5) For y ∈ F (V × S) the isotropy group Gy is conjugate to a subgroup of

Gx, by (3) and (4).

6. Counter-example [15, 6.7]. The action of the gauge group Gau(E) on

Conn(E) does not admit slices, for dimM ≥ 2.

We will construct locally a connection, which satisfies that in any neighborhood

there exist connections which have a bigger isotropy subgroup. Let n = dimS, and

let h : Rn → R be a smooth nonnegative bump function, which satisfies carrh =

{s ∈ Rn| ‖s − s0‖ < 1}. Put hr(s) := rh(s0 + 1
r
(s − s0)), then carrhr = {s ∈

Rn| ‖s − s0‖ < r}. Then put hs1r (s) := h(s − (s1 − s0)) which implies carrhs1r =

{s ∈ Rn| ‖s− s1‖ < r}. Using these functions, we can define new functions fk for

k ∈ N as

fk(s) = hsk
‖z‖/2k

(s),

where z := s∞−s0
3 for some s∞ ∈ Rn and sk := s0 +z(2

∑k
l=0

1
2l
−1− 1

2k
). Further

set

fN(s) := e
− 1
‖s−s∞‖2

N∑
k=0

1

4k
fk(s), f(s) := lim

N→∞
fN(s).

The functions fN and f are smooth, respectively, since all the functions fk are

smooth, and on every point s at most one summand is nonzero. carr fN =⋃N
k=0{s ∈ Rn| ‖s − sk‖ <

1
2k
‖z‖}, carr f =

⋃∞
k=0{s ∈ Rn| ‖s − sk‖ <

1
2k
‖z‖},

fN and f vanish in all derivatives in all xk, and f vanishes in all derivatives

in s∞.

Let ψ : E|U → U × S be a fiber bundle chart of E with a chart u : U
∼=−→ Rm

on M , and let v : V
∼=−→ Rn be a chart on S. Choose g ∈ C∞c (M,R) with ∅ 6=

supp(g) ⊂ U and dg ∧ du1 6= 0 on an open dense subset of supp(g). Then we can

define a Christoffel form as in 3 by

Γ := g du1 ⊗ f(v)∂v1 ∈ Ω1(U,X(S)).
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This defines a connection Φ on E|U which can be extended to a connection Φ on

E by the following method. Take smooth functions k1, k2 ≥ 0 on M satisfying

k1 + k2 = 1 and k1 = 1 on supp(g) and supp(k1) ⊂ U and any connection Φ′ on

E, and set Φ = k1ΦΓ + k2Φ′, where ΦΓ denotes the connection which is induced

locally by Γ. In any neighborhood of Φ there exists a connection ΦN defined by

ΓN := g du1 ⊗ fN (s)∂v1 ∈ Ω1(U,X(S)),

and extended like Φ.

Claim. There is no slice at Φ.

Proof. We have to consider the isotropy subgroups of Φ and ΦN . Since the

connections Φ and ΦN coincide outside of U , we may investigate them locally on

W = {u : k1(u) = 1} ⊂ U . The curvature of Φ is given locally on W by 3 as

(1) RU := dΓ− 1
2 [Γ,Γ]

X(S)
∧ = dg ∧ du1 ⊗ f(v)∂v1 − 0.

For every element of the gauge group Gau(E) which is in the isotropy group

Gau(E)Φ the local representative over W which looks like γ̃ : (u, v) 7→ (u, γ(u, v))

by 3 satisfies

Tv(γ(u, )).Γ(ξu, v) = Γ(ξu, γ(u, v))− Tu(γ( , v)).ξu,(2)

g(u)du1 ⊗ f(v)
∑
i

∂γ1

∂vi
∂vi = g(u)du1 ⊗ f(γ(u, v))∂v1 −

∑
i,j

∂γi

∂uj
duj ⊗ ∂vi .

Comparing the coefficients of duj⊗∂vi we get the following equations for γ overW .

∂γi

∂uj
= 0 for (i, j) 6= (1, 1),

g(u)f(v)
∂γ1

∂v1
= g(u)f(γ(u, v))−

∂γ1

∂u1
.(3)

Considering next the transformation γ̃∗RU = RU of the curvature 3 we get

Tv(γ(u, )).RU (ξu, ηu, v) = RU(ξu, ηu, γ(u, v)),

dg ∧ du1 ⊗ f(v)
∑
i

∂γ1

∂vi
∂vi = dg ∧ du1 ⊗ f(γ(u, v))∂v1 .(4)

Another comparison of coefficients yields the equations

f(v)
∂γ1

∂vi
= 0 for i 6= 1,

f(v)
∂γ1

∂v1
= f(γ(u, v)),(5)
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whenever dg∧du1 6= 0, but this is true on an open dense subset of supp(g). Finally,

putting (5) into (3) shows

∂γi

∂uj
= 0 for all i, j.

Collecting the results on supp(g), we see that γ has to be constant in all directions

of u. Furthermore, wherever f is nonzero, γ1 is a function of v1 only and γ has to

map zero sets of f to zero sets of f .

Replacing Γ by ΓN we get the same results with f replaced by fN . Since

f = fN wherever fN is nonzero or f vanishes, γ in the isotropy group of Φ

obeys all these equations not only for f but also for fN on supp fN ∪ f−1(0). On

B := carr f\ carr fN the gauge transformation γ is a function of v1 only, hence it

cannot leave the zero set of fN by construction of f and fN . Therefore, γ obeys

all equations for fN whenever it obeys all equations for f . Thus, every gauge

transformation in the isotropy subgroup of Φ is in the isotropy subgroup of ΦN .

On the other hand, any γ having support in B changing only in v1 direction not

keeping the zero sets of f invariant defines a gauge transformation in the isotropy

subgroup of ΦN which is not in the isotropy subgroup of Φ.

Therefore, there exists in every neighborhood of Φ a connection ΦN whose

isotropy subgroup is bigger than the isotropy subgroup of Φ. Thus, by property

5.5 no slice exists at Φ. �

7. Counter-example [15, 6.8]. The action of the gauge group Gau(E) on

Conn(E) also admits no slices for dimM = 1, i.e. for M = S1.

The method of 7 is not applicable in this situation, since there is no function

g satisfying dg ∧ du1 6= 0 on an open and dense subset of supp(g). In this case,

however, any connection Φ on E is flat. Hence, the horizontal bundle is integrable,

the horizontal foliation induced by Φ exists and determines Φ. Any gauge trans-

formation leaving Φ invariant also has to map leaves of the horizontal foliation to

other leaves of the horizontal foliation.

We shall construct connections Φλ
′

near Φλ such that the isotropy groups in

Gau(E) look radically different near the identity, contradicting 5.5.

Let us assume without loss of generality that E is connected, and then, by re-

placing S1 by a finite covering, if necessary, that the fiber is connected. Then there

exists a smooth global section χ : S1 → E. By [12, p. 95] there exists a tubular

neighborhood π : U ⊂ E → im(χ) such that π = χ ◦ p|U (i.e. a tubular neigh-

borhood with vertical fibers). This tubular neighborhood then contains an open

thickened sphere bundle with fiber S1 × Rn−1, and since we are only interested

in gauge transformations near IdE , which e.g. keep a smaller thickened sphere

bundle inside the larger one, we may replace E by an S1-bundle. By replacing

the Klein bottle by a 2-fold covering, we may finally assume that the bundle is

pr1 : S1 × S1 → S1.
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Consider now connections where the horizontal foliation is a 1-parameter sub-

group with slope λ we see that the isotropy group equals S1 if λ is irrational, and

equals S1 times the diffeomorphism group of a closed interval if λ is rational.

8. Consequences. For every compact base manifold M and every compact

standard fiber S, which are at least one dimensional, there are connections on the

fiber bundle E, where the action of Gau(E) on Conn(E) does not admit slices.
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