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APPROXIMATION OF CRYSTALLINE DENDRITE

GROWTH IN TWO SPACE DIMENSIONS

A. SCHMIDT

Abstract. The phase transition between solid and liquid in an undercooled liquid
leads to dendritic growth of the solid phase. The problem is modelled by the Stefan
problem with a modified Gibbs-Thomson law, which includes the anisotropic mean
curvature corresponding to a surface energy that depends on the direction of the
interface normal. A finite element method for discretization of the Stefan problem
is described which is based on a weak formulation of the anisotropic mean curvature
flow. Numerical experiments with a nearly crystalline anisotropy are presented.

Introduction

Phase transition between liquid and solid phase with dendritic growth of the

solid phase inside an undercooled liquid can be modeled by the Stefan problem

with a modified Gibbs-Thomson law which accounts for anisotropic surface tension

and kinetic undercooling [8].

We denote by θ(x, t) the temperature in a domain Ω ⊂ Rn and by Γ(t) the

moving free boundary with normal velocity V and anisotropic mean curvature Cα.

The sign of these two scalar quantities is chosen such that for a growing convex

solid, both V and Cα are positive. Let ν denote the outer normal to the solid

region. The system of equations consists of the heat equation (1) in both solid

and liquid regions, the Stefan condition (2), and the Gibbs-Thomson relation (3).

Assuming for simplicity unit thermal conductivities in both phases and unit latent

heat, the system reads

θt −∆θ = 0 in Ω \ Γ(t),(1) [
∂θ

∂ν

]
+ V = 0 on Γ(t),(2)

θ + β(ν)V + Cα = 0 on Γ(t),(3)

together with initial conditions for θ and Γ as well as boundary conditions for

the temperature. We assume that Γ does not meet the domain’s boundary and
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will not change its topology but stays equivalent to the initial interface, like a

sphere Sn−1.

The modified Gibbs-Thomson relation (3) enables the growth of dendritic struc-

tures, as it incorporates the influence of an anisotropic mobility and an anisotropic

interface energy, which can be motivated by the underlying crystalline structure

of the solid. For this reason one assumes that the kinetic coefficient β and the

interface energy depend only on the direction of the surface normal ν. This is

appropriate for the case of single solid crystals. Besides the normal velocity of

the interface, the Gibbs-Thomson relation includes an anisotropic mean curva-

ture (or weighted mean curvature) Cα, which reduces to the mean curvature

of the interface (scaled by some material constant) in the case of constant isotropic

interface energy.

Taylor [12] compares several different formulations of (weighted) mean curva-

ture for smooth and crystalline anisotropy, however, a weak formulation which is

well suited for manifolds of weak regularity (only Lipschitz or H1) and a finite ele-

ment approximation is not directly included. In [13], geometric models for crystal

growth based on these curvature formulations are presented. Bellettini and Paolini

[3] treat mean curvature flow in the context of Finsler geometries, where not only

the interface but also the surrounding space exhibits some anisotropic structure.

This leads to somewhat different equations. Rybka considers the Stefan problem

with purely crystalline interface motion and studies existence and uniqueness of

solutions as well as asymptotic behaviour for vanishing solid phase.

Dziuk [4] uses a weak formulation of the mean curvature for a finite element

approximation of motion by mean curvature. Convergence of the semidiscrete

method for curves (discretized in space) was shown in [5]. Recently, this conver-

gence result was extended to the case of smooth anisotropies [6].

In [2], [11] we presented a finite element method for the approximation of den-

dritic growth in two and three space dimensions, where we use a Gibbs-Thomson

law of the form

θ + β(ν)V + α(ν)CΓ = 0 on Γ(t),

where CΓ is the usual mean curvature. This includes the general case of weighted

mean curvature for smooth anisotropies in two dimensions, but not in three di-

mensions. The method is based on Dziuk’s discretization of mean curvature evo-

lution [4]. Recently, Veeser [14] proved convergence and error estimates for the

corresponding semidiscretization in space in two dimensions.

Here we consider the twodimensional situation and describe the extension of the

above mentioned finite element method to the case of true anisotropic interface

energy which enables the finite element approximation of the general weighted

mean curvature case also in three dimensions as well as the consideration of non

smooth anisotropies. First numerical results for nearly crystalline anisotropy in

two space dimensions are presented.
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1. Motion by Anisotropic Curvature

In this section we study the first variation of the anisotropic surface energy,

which is connected to the motion by anisotropic mean curvature via the corre-

sponding gradient flow.

Let Γ be a smooth closed curve embedded in R2 and ν the outer unit normal

vector field on Γ. The isotropic surface energy E (or measure) of Γ is given by

E(Γ) :=

∫
Γ

1 do.

The first variation of E involves the mean curvature CΓ of Γ, as we will see below,

and the mean curvature flow is the gradient flow for E. Motion by anisotropic

curvature can be derived in a similar way, as we describe now. Given an anisotropic

surface energy weight function α : S1 → R, α > 0, which depends only on the

normal direction, the anisotropic surface energy Eα(Γ) is defined as

Eα(Γ) :=

∫
Γ

α(ν) do.

Let α be extended 1-homogeneously to the whole R2 such that α(λν) = λα(ν) for

all λ ≥ 0. We want to derive weak formulas of the first variation of Eα and the

corresponding gradient flow.

Let Γ be given via a periodic parametrization x : I ⊂ R → R2 with do(xs) =

|xs| > 0 the surface element at x and ν(xs) = x⊥s /|xs| the unit normal to Γ (where
⊥ denotes rotation by −π/2). For a periodic perturbation ϕ : I → R2 of x, the

first variation of Eα(x) := Eα(Γ) in direction of ϕ is

〈〈E′α(x), ϕ〉〉 =
d

dε

∣∣∣∣
ε=0

Eα(x+ εϕ)

=
d

dε

∣∣∣∣
ε=0

∫
I

α(ν(xs + εϕs)) do(xs + εϕs)

=

∫
I

Dα(ν(xs)) ·Dν(xs) · ϕs do(xs) + α(ν(xs)) D(do)(xs) · ϕs ,

where we only used the chain rule. The gradient Dα(ν) is sometimes called “Cahn-

Hoffman ξ-vector” in the literature.

Using the explicit formulas for ν and do, the variation can be expressed in the

following way (where 〈 · , · 〉 denotes the euclidian scalar product of vectors in R2):

〈〈E′α(x), ϕ〉〉 =

∫
I

〈
Dα
( x⊥s
|xs|

)
, ϕ⊥s −

x⊥s
|xs|2

〈ϕs, xs〉

〉
+ α

( x⊥s
|xs|

)〈 xs

|xs|
, ϕs

〉
=

∫
I

(〈
Dα
( x⊥s
|xs|

)
,
xs

|xs|

〉〈
xs

|xs|
,
ϕ⊥s
|xs|

〉
+ α

( x⊥s
|xs|

)〈 xs

|xs|
,
ϕs

|xs|

〉)
|xs| ,
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since ϕ⊥s −
x⊥s
|xs|
〈ϕs,

xs
|xs|
〉 = ϕ⊥s −

x⊥s
|xs|
〈ϕ⊥s ,

x⊥s
|xs|
〉 = xs

|xs|
〈ϕ⊥s ,

xs
|xs|
〉. This leads to the

following non parametric formulation for a perturbation ϕ : Γ→ R2:

(4) 〈〈E′α(Γ), ϕ〉〉 =

∫
Γ

(
〈Dα(ν),∇id〉 〈∇id,∇ϕ⊥〉+ α(ν)〈∇id,∇ϕ〉

)
do,

where ∇ is the tangential gradient (or covariant derivative) on Γ and id: Γ→ R2

is the identity vector field on R2 (the embedding of Γ). This formulation is well

suited for an isoparametric finite element discretization, see Section 2.

In the isotropic case, α = const, integration by parts gives on closed curves or

for perturbations which vanish on ∂Γ

〈〈E′α(Γ), ϕ〉〉 = −α

∫
Γ

〈∆id, ϕ〉 do,

where ∆ is the Laplace-Beltrami operator on Γ. Now, ∆id is just the mean cur-

vature vector ~CΓ of Γ, which gives E′α(Γ) = −α~CΓ. Thus, the gradient flow for

Eα is in the isotropic case just mean curvature flow ~V = α~CΓ, where the velocity

of a moving manifold is equal to α times mean curvature. With the given sign

convention for the scalar quantities V and CΓ, it holds νV = ~V = α~CΓ = −ανCΓ.

Similarly, the gradient flow for anisotropic surface energy is the anisotropic

curvature flow (or weighted mean curvature flow)∫
Γ

〈~V , ϕ〉 do = 〈〈E′α(Γ), ϕ〉〉

for all smooth perturbations ϕ, and with

~Cα := E′α(Γ),

we have the anisotropic curvature flow equation

~V = ~Cα .

Depending on the smoothness of α and Γ, this equation holds only in a weak sense.

For smooth α it is easy to show that this leads (for curves) to ~V = (α̃ + α̃′′)~CΓ,

if α(ν) = α̃(γ), where γ = ∠(ν, e1) is the angle between the normal and the e1

coordinate axis.

The connection between anisotropic curvature flow ~V = ~Cα and the Gibbs-

Thomson relation βV = −Cα− θ is given after conversion to scalar quantities (by

multiplying with ±ν, such that the scalar mean curvature for a convex solid phase

is positive, and the scalar velocity for an expanding solid is positive), and by using

the temperature as an additional forcing term.
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Using the 1-homogeneity of α, we can derive a simpler expression for the first

variation, which is not so well suited for a finite element formulation of anisotropic

mean curvature flow like (4), but can be used to evaluate the anisotropic curvature.

〈〈E′α(x), ϕ〉〉 =
d

dε

∣∣∣∣
ε=0

∫
I

α(x⊥s + εϕ⊥s ) =

∫
I

〈Dα(x⊥s ), ϕ⊥s 〉

=

∫
I

〈
Dα
( x⊥s
|xs|

)
,
ϕ⊥s
|xs|

〉
|xs|,

which leads to the intrinsic equation

(5) 〈〈E′α(Γ), ϕ〉〉 =

∫
Γ

〈Dα(ν),∇ϕ⊥〉 do .

Wulff Shapes For a given anisotropy α, the Wulff shape Wα is defined as

Wα =
{
x ∈ Rn | 〈x, ν〉 ≤ α(ν) ∀ ν ∈ Sn−1

}
.

It is known that anisotropic curvature flow of an initially convex curve converges

to a self-similarly shrinking Wulff shape [7]. If the polar graph of 1/α (the Frank

diagram) is strictly convex (i.e. α̃+ α̃′′ > 0), then Wα is strictly convex, too. For

crystalline anisotropies of k-fold symmetry,

(6) α̃k(γ) = ε max
{

cos(γ − 2πj/k); j = 0, . . . , k − 1
}
,

α̃k + α̃′′k is concentrated at discrete angles and vanishes almost everywhere, and

the corresponding Wulff shape is a regular k-polygon. For crystalline curvature

flow without driving forces, the Wulff shape faces are the only directions which

appear in an evolving manifold. We will see in the numerical results that Wulff

shape faces are preferred in the free boundary problem, too.

2. A Finite Element Method for Dendrite Growth

Let Vh ⊂ H1(Ω) and Vh,0 = Vh ∩H1
0 (Ω) be finite element spaces of continuous

piecewise polynomial functions on a regular triangulation of Ω. After time dis-

cretization with time step size τm = tm− tm−1, we denote by θmh ∈ Vh the discrete

temperature and by Γmh a continuous, piecewise polynomial discrete interface at

time tm. Let Wm
h ⊂ H1(Γmh ) be the isoparametric finite element space of piece-

wise polynomial functions on Γmh . The discretization of the interface is totally

independent from the temperature mesh, and coupling between both is only done

via integrals over the free boundary.

For discretization of the interface evolution, we proceed according to [4] by

parametrizing Γmh over Γm−1
h via xmh : Γm−1

h → R2, xmh ∈ (Wm−1
h )2. After multi-

plying the Gibbs-Thomson relation (3) by the normal ν in order to get a vector
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valued equation, we use equation (4) for a variational formulation and derivation

of a finite element method. This leads to a highly nonlinear equation for xmh , as the

normal νm (which is a parameter to α and Dα) and the tangential derivative ∇ on

Γmh all depend on the parametrization. To avoid this nonlinear problem, we use a

linearization which uses the normal vector field νm−1 and tangential derivatives ∇
corresponding to the old interface Γm−1

h . This leads to the following semi-implicit,

linearized problem for xmh ∈ (Wm−1
h )2:∫

Γm−1
h

β
xmh − id

τm
ϕh + 〈Dα(νm−1),∇id〉〈∇xmh ,∇ϕ

⊥
h 〉+ α(νm−1) 〈∇xmh ,∇ϕh〉

= −

∫
Γm−1
h

θm−1
h 〈νm−1, ϕh〉, ∀ϕh ∈ (Wm−1

h )2.

As we are using isoparametric finite elements, we can define the new discrete

interface by

Γmh := xmh (Γm−1
h ).

After integration by parts in the solid and liquid subdomains with a test function

ψh ∈ Vh, the heat equation (1) leads to a parabolic problem for θmh ∈ Vh with a

right hand side given by a line integral:∫
Ω

θmh − θ
m−1
h

τm
ψh + 〈∇θmh ,∇ψh〉 =

∫
Γmh

V ψh, ∀ψh ∈ Vh.

We use the Gibbs-Thomson relation (3) to replace the velocity V and get∫
Ω

θmh − θ
m−1
h

τm
ψh + 〈∇θmh ,∇ψh〉+

∫
Γmh

1

β
θmh ψh = −

∫
Γmh

1

β
Cαψh, ∀ψh ∈ Vh,

which gives a more stable discretization by including the temperature at the in-

terface implicitely. The right hand side is evaluated by calculating 〈〈~Cα,
1
βψhν〉〉 =

〈〈E′α(Γmh ), 1
βψhν〉〉. Instead of using here (4), we can take advantage of the simpler

expression (5).

The two finite element methods described above are coupled to a method for

simulation of the free boundary problem. The simplest coupling is the following:

In each time step, the coupled method first computes the new discrete interface Γmh
using the old temperature θm−1

h . The new temperature θmh is then computed by

using this new interface. More elaborate couplings are possible, using extrapolation

techniques or higher order time discretizations.

Adaptive Methods. Instead of using one single finite element space Vh for all

time steps, the triangulation is adapted to the actual solution based on a posteriori
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error indicators and local refinement and coarsening of the mesh, see [11]. This

leads to finite element spaces V mh for the discrete temperature θmh . An additional

mesh transfer operator Imh is needed in order to project the old temperature θm−1
h

from Vm−1
h to the new space. For adaptive modifications of the temperature mesh,

we use local refinement and coarsening of triangles based on bisection methods

[1]. This leads to compatible triangulations after mesh changes such that an

interpolation error |θm−1
h −Imh θ

m−1
h | > 0 is introduced only during coarsening, not

by local refinement operations.

The interface discretization has to be adapted, too. During the evolution, large

parts of the interface can grow out of initially small interface regions. For curves,

this adaption can be done by bisecting polygon pieces, which grow longer than a

specified threshold length. This simple criterion generates usually good numerical

results. More elaborate error indicators for local adaption of the polygon can be

derived.

3. Numerical Simulations with Nearly Crystalline Anisotropy

Simulations with smooth anisotropy were presented in [2], [11]. Our aim here

is to approximate dendritic growth with the crystalline anisotropy αk(ν) given in

terms of α̃k(γ), compare (6).

The equation for anisotropic mean curvature flow (4) makes sense if Γ is Lip-

schitz, because then the Sobolev space H1(Γ) is well defined [15] and id|Γ ∈ H1(Γ)

holds. The Lipschitz continuity of our discrete interfaces Γmh is guaranteed by

the definition via piecewise polynomial continuous parametrizations. For the

anisotropy, additional regularity is needed in order to be able to evaluate α(ν)

and Dα(ν). As Γ is only Lipschitz, the normal vector field ν is only L∞; the

discrete normal νm is piecewise smooth but jumps at discrete points. For integra-

tion of Dα(ν), we now need α ∈ C1-regularity. This means that the crystalline

anisotropy αk, which is only Lipschitz, can not be used directly.

We use a periodic regularization α̃k,δ(γ) ∈ C1(R) which is defined in the fol-

lowing way. Set

α̃k,δ(γ) = δ +

 α̃k(γ) if
∣∣∣γ − (2j + 1)π

k

∣∣∣ > δ, j = 0, . . . , k − 1,

p(γ) otherwise,

where δ > 0 is the regularization parameter and p(γ) are pieces of quadratic

polynomials such that α̃k,δ ∈ C1 holds, see Figure 1. Corresponding Wulff shapes

are shown in Figure 2. The simulations presented below were done with δ = 0.1.

Numerical results. We present results from two simulations. Both are done

with piecewise quadratic finite element discretizations of the temperature and the
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Figure 1. Crystalline anisotropy α̃6 (solid) and regularization

α̃6,δ (dotted) for δ = 0.1.

Figure 2. Wulff shapes for crystalline anisotropy α̃6 (left)

and regularization α̃6,0.1 (right).

interface curve. The domain is Ω = (−4,+4)2, the initial curve is a circle of

radius R0 = 0.1. The anisotropic coefficients in the Gibbs-Thomson relation are

α = 0.001α6,0.1 and β(ν) = 0.01 (isotropic kinetic coefficient). Boundary value

for the temperature is θ = −0.5 on ∂Ω.

In the first simulation, the parameter for temperature mesh adaption is tol =

0.02. We use a fixed time step size of τ = 0.00025. The simulation runs over a time

interval [0, 2.25] of 9000 time steps. The curve pieces are allowed to have a length of

0.005, with bisection refinement if they grow longer. Figure 3 shows the evolving

interface at time t = 0.0, 0.25, 0.5, . . . , 2.25 (after 0, 1000, . . . , 9000 time steps).

The outer square depicts the domain boundary ∂Ω. In Figure 4, a zoom to the

upper right part of the interfaces is shown. It shows clearly that the Wulff shape

faces are preferred directions for the interface, too. But in regions of high velocity,

especially near the dendrite tips, where the temperature is more negative and thus

the forcing term in the mean curvature equation is larger, intermediate directions

appear, too. Zooms of the locally adapted temperature meshes at t = 0.25, 2.0 are

shown in Figures 5 and 6.
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Figure 3. Example 1 – Interface curves at t = 0.0, 0.25, 0.5, . . . , 2.25.

Figure 4. Example 1 – zoom of interface curves at t = 0.0, 0.25, 0.5, . . . , 2.25.
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Figure 5. Example 1 – zoom of temperature mesh at t = 0.25.

Figure 6. Example 1 – zoom of temperature mesh at t = 2.0.
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The complete meshes consist of 3316 and 39942 triangles. The meshes are

highly refined where the temperature gradient exhibits a large variation. This

gradient varies most rapidly near fast moving parts of the interface, compare

the Stefan condition (2). This results in the local refinement near the inter-

face.

The second simulation is included to demonstrate some numerical effects, which

may happen if time step size or mesh size are chosen too coarse. The sim-

ulation is done with a fixed time step size τ = 0.001 and the parameter for

temperature mesh adaption is tol = 0.05. All other parameters are the same

as for the first simulation. The interface curve at time t = 1.25 is shown in

Figure 7.

Figure 7. Example 2 – too large time steps may result in interface

topology changes.

Due to the larger noise introduced by the coarser numerical approximation, side

branches of the interface develop more easily. Additionally, the interface curve

intersects itself, which is equivalent to a change of topology of the solid phase (the

code did not check for such singularities). In our numerical experiments, such

self intersections occur only when the time step size is too large; time step size

reduction always eliminates such singularities.
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