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ADAPTIVE FAST MARCHING AND LEVEL SET

METHODS FOR PROPAGATING INTERFACES

J. A. SETHIAN

Abstract. Adaptivity provides a way to construct optimal algorithms for tracking
moving interfaces which arise in a wide collection of physical applications. Here,
we summarize the development and interconnection between Narrow Band Level
Set Methods and Fast Marching Methods, which provide efficient techniques for
tracking fronts. We end with a small collection of examples to demonstrate the
applicability of the techniques.

1. Introduction

Over the past ten years, a collection of numerical techniques have been de-

veloped to track propagating interfaces that arise in physical phenomena. These

techniques allow for evolution under complex speed laws, including the effects of

curvature and anisotropy, easily couple to the underlying physics, allow for natural

topological change in the evolving interface, including splitting and merging, and

are unchanged in three or more space dimensions. They take on a partial differ-

ential equations approach to the interface problem, casting the motion as either

an initial value or boundary value partial differential equation, and rely on finite

difference approximations to provide convergence, consistent numerical techniques

of high order. Because of this reliance on finite difference schemes, the error of the

solution is known at the start, and can be rigorously controlled.

At their core, these techniques hinge on the “viscosity solutions” view of the

underlying equations, in which the correct weak solution is chosen which inter-

prets the propagating front as a physical boundary between two regions. Two

such techniques are Level Set techniques, introduced by Osher and Sethian [6],

and Fast Marching Methods, introduced by Sethian in [12]. Both grew out

of the theory of curve and surface evolution developed in [9], [10], [11], which

develops the notion of weak solutions and entropy limits for evolving interfaces,

and links upwind numerical methodology for hyperbolic conservation laws to front
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propagation problems. Both become computationally efficient through the use of

adaptive methodology.

In this review, we discuss the development of these techniques, describe the

regimes in which each is appropriate, show how they are interrelated, and show

how adaptivity leads to optimal techniques.

The outline of this paper is as follows. First, we discuss the two main interface

perspectives: the initial value level set technique, and the boundary value station-

ary perspective. Next, we discuss the role of entropy-conditions and singularities in

propagating interfaces, and the value of upwind schemes for approximating gradi-

ents to extract the correct entropy satisfying solution. Then, we discuss the role of

adaptivity, leading to the Narrow Band Level Set Method and the Fast Marching

Method. Finally, we end with a few examples to demonstrate the various tech-

niques. For complete details and a review of the applications of Fast Marching

and Level Set Methods, see [13].

2. Two Views of Propagating Interfaces

Given a moving closed hypersurface Γ(t), that is, Γ(t) : [0, 1]→ RN , propagating

with a speed F in its normal direction, we wish to produce a partial differential

equations formulation for the motion of the hypersurface propagating along its

normal direction with speed F , where F can be a function of various arguments,

including the curvature, normal direction, etc. Our goal is an “Eulerian” formu-

lation – that is, one in which the motion of the interface is described in terms of

its action on an underlying fixed coordinate system.

Here, we imagine that the speed function F can be quite complex, depending

not just on the geometry of the front, but also on the solution of various partial

differential equations on either side of the interface, and which may include the

interface as internal boundary conditions. For example, in crystal growth and

dendritic solidification, (see [14]), the problem may dictate the solution of the

heat equation on either side of the front, as well two internal boundary conditions

which relate the speed of the interface to jumps in the heat and local surface

tension.

Two possible ways to formulate this problem are given below, depending on the

complexity of the speed function F .

2.1 The Stationary Boundary Value Perspective

Suppose that the speed function F is always strictly positive1. In this case, we

may cast the evolving interface problem as a stationary, boundary value partial

differential equation, see Figure 2.1.

1or strictly negative
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T (x, y) = Time when Front

crosses point (x, y)
 
 

 T (x, y) = 0 for (x, y) on initial front

Figure 2.1. Transformation into Stationary Boundary value PDE.

Let T (x, y) be the time at which the interface crosses the point (x, y); then we

can write an equation for the solution T as

|∇T |F = 1

T = 0 on Γ .

We note that:

1. The above is a boundary value partial differential equation; the goal is to

construct the solution surface T (x, y) away from the value on the boundary

curve.

2. If the speed function F depends only on position and first derivatives of the

solution T , the resulting equation is a static Hamilton-Jacobi equation.

3. If the speed function F depends only on the position (x, y), then the resulting

equation is the familiar Eikonal equation.

4. In any case, the solution T typically is multi-valued; although we require

that the speed function F be strictly positive, this in itself does not ensure

that the solution T only reflects a single crossing of the point (x, y). In fact,

below we shall restrict our solution to the so-called viscosity solution which

limits the solution to the first crossing time T .
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2.2 The Initial Value Level Set Perspective

In the more general case of an arbitrary speed function F which may change

sign, a different view is given by the Level Set Perspective, introduced by Osher

and Sethian [6]. If we embed the propagating interface as the zero level set of a

higher dimensional function φ, that is, let φ(x, t = 0), where x ∈ RN be defined

by

(1) φ(x, t = 0) = ±d;

where ±d is the signed distance to the interface from the point x, taken as positive

if x is outside and negative if x is inside. An initial value partial differential

equation can be obtained for the evolution of φ, namely

φt + F |∇φ| = 0(2)

φ(x, t = 0) given(3)

This is known as the level set equation.

Note that the construction of the initial value PDE given in Eqn. (3) means

that the velocity F is now defined for all the level sets, not just the zero level set

corresponding the interface itself. We can be a little more precise about this by

rewriting the level set equation as

(4) φt + Fext|∇φ| = 0

where Fext is some velocity field which, at the zero level set, equals the given

speed F . In other words,

Fext = F on φ = 0

This new velocity field Fext is known as the “extension velocity”. In many cases,

construction of this extension velocity requires considerable effort, see [3] for fast

techniques for doing so.

2.3 Advantages of the Eulerian PDE Perspective

The advantages of these perspectives include the following:

•As discussed in [9], [10], [11], shocks and rarefactions can develop in the slope,

corresponding to corners and fans in the evolving interface, and numerical tech-

niques designed for hyperbolic conservation laws can be exploited to construct

upwind schemes which produce the correct, physically reasonable entropy solu-

tion. These are naturally captured in the above representations.

•The front is free to change topology as it evolves; no special care is required.

In the stationary perspective, the front at time t is given by the set of all (x, y)

such that t = T (x, y). In the level set perspective, the front at time t is given
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by the set of all points (x, y) such that φ(x, y, t) = 0. In both cases, while the

solution T and φ are single-valued function, the lower-dimensional set of points

corresponding to the front may break, merge, and consist of multiple regions.

•Finite difference schemes may be employed to compute the solution to the pde’s

in a relatively straightforward manner.

•There are no differences in the above construction for hypersurfaces propagating

in three or more space dimensions.

In order to compute the solution of the above boundary value and initial value

equations, we need to exploit the use of upwind schemes in hyperbolic conservation

laws, and the connection to theory of viscosity solutions developed by Crandall

and Lions [4].

3. Entropy Solutions, Upwind Schemes, and Viscosity Solutions

It is well-known, (see [10], [13]), that both of the above equations of motion

become non-differentiable for certain initial data, and appropriate weak solutions

must be built. Several solutions are possible once a singularity occurs, including

the swallowtail solution. The appropriate weak solution comes from satisfying

the entropy condition introduced in [10]; which may be summarized as follows.

Imagine the interface as a propagating flame front; with the requirement that once

the front burns past a certain point it stays burnt. This selects a unique solution

beyond the occurrence of singularities. There are several different ways to interpret

this selection process:

•A Curvature Regularization View: In the presence of a curvature term, the

solution remains smooth for all time, see [10]. The chosen solution is the limiting

solution as the regularizing curvature term vanishes.

•A Wave Front View: The correct solution is obtained from Huyghen’s princi-

ple, that is, the solution is the envelope of all disturbances located on the initial

front and expanding isotropically with local speed F . Thus, the chosen weak

solution corresponds to the first arrival time of information from the front.

•An Optics View: The chosen weak solution is the first term in the standard

optics expansion corresponding the local Eikonal equation, and caustics that

arrive from later waves are ignored.

•The Viscosity Solutions Framework: The solution to the equation of mo-

tion is defined in terms of the effect on smooth test functions on the solution,

see [4]. In the case of a smooth solution, this “viscosity solution” is identical

to the classical one; in the case of a non-differential viscosity solution, it is then

proved that the solution is the viscous limit of the same equation with a diffusive

smoothing term. For details, see [4], [13].
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The viscosity solutions view is the most rigorous and precise, however, all lead

to the same construction.

In order to approximate the equations of motion, the key idea is to select an

approximation to the gradient operator ∇T or ∇φ which correctly chooses this

correct limiting weak solution. One of the simplest such upwind entropy satisfying

approximations to a gradient ∇T was given in [6], namely

|∇T | ≈
[
max(D−xij T, 0)2 + min(D+x

ij T, 0)2 + max(D−yij T, 0)2(5)

+ min(D+y
ij T, 0)2

]1/2
.

Here, we have used standard finite difference notation, namely that D−xij T =
Ti,j−Ti−1,j

∆x , where ∆x is the space step; the other operators are defined similarly.

The crucial point in this (or any such appropriate) numerical scheme is the correct

direction of the upwinding and treatment of sonic points. For details and an

extensive review, see [13].

Employing these upwind operators, we may now easily write down workable

(though inefficient) schemes for both the stationary and level set perspectives:

•Stationary Perspective:

Find Tij such that

[
max(D−xij T −D

+x
ij T, 0)2 + max(D−yij T −D

+y
ij T, 0)2

]1/2
= 1./Fij .

where here we have chosen the upwind operator given in [8]. Our reason for

doing so is that it provides an slightly less diffusive operator, which in fact is

also easier to work with.

•Level Set Perspective:

Compute the evolution of φij , where

φn+1
ij = φnij + (∆t)(Fij)

[
max(D−xij φ, 0)2 + min(D+x

ij φ, 0)2

+ max(D−yij φ, 0)2 + min(D+y
ij φ, 0)2

]1/2
.

Here, we have employed standard finite difference notation. The first scheme

requires an iteration to construct the solution; one starts with an initial guess,

and iterates until convergence. This, for example, is the approach taken in [8].

The second scheme is an explicit, time-marching algorithm which requires one to

compute the evolution of all, the level sets, not just the zero level set correspond-

ing to the interface itself. In fact, both schemes can be made efficient through

adaptivity; this is the topic of the next section.
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4. Efficient Front Propagation Schemes through Adaptivity

4.1. Adaptivity for Level Set Methods: the Narrow Band Approach

The straightforward level set method introduced in [6] is a somewhat time-con-

suming algorithm. We can make a rough operation count as follows; consider a

curve propagating in two-dimensions with speed F = 1, and suppose one chooses

a time step that exactly matches the CFL condition, so that ∆t/∆x = 1. Then

with N points in each space direction, a total of N2 points are updated every time

step, with roughly N time steps required for the interface to propagate its way

from the center out to the edge of the computational domain, yielding an O(N3)

algorithm.

The narrow band method, introduced in [1], is an adaptive level set method

that limits computational labor to a grid points located in a narrow band around

the front. Grid points around the front are kept in a one-dimensional array, and

updated using the level set equation until the the interface nears the edge of this

narrow band, at which point a new narrow band is re-initialized. Figure 4.1 shows

how the narrow band tags a collection of nearby grid points.

Figure 4.1.

By employing this technique, the computational labor for a curve propagating in

two dimensions drops to O(kN2), where k is the width of the narrow band. An

extensive discussion about narrow band methods, choice of sizes, accuracy, and

other details may be found in [1].

4.2 Adaptivity for the Stationary Approach: Fast Marching

Methods

As described above, the solution to the stationary equation typically requires

iteration to construct the solution surface. In fact, as developed in [12], the

key observation in Fast Marching Methods is to exploit the fact that use of an

upwind difference operator prescribes an ordering of the points so that iteration

is not required, and the solution may be constructed in a single pass. Information

propagates “one way”, that is, from smaller values of T to larger values. Hence, the
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fast marching algorithm rests on “solving” Equation (3) by building the solution

outward from the smallest T value. The idea is to sweep the front ahead in an

upwind fashion by considering a set of points in narrow band around the existing

front, and to march this narrow band forward, freezing the values of existing points

and bringing new ones into the narrow band structure. The key is in the selection

of which grid point in the narrow band to update.

The algorithm is as follows: First, we tag points in the initial conditions as

Alive. We then tag as Close all points one grid point away. Finally, we tag as

Far all other grid points. Then the loop is:

1. Begin Loop: Let Trial be the point in Close with the smallest value for u.

2. Add the point Trial to Alive; remove it from Close

3. Tag as Close all neighbors of Trial that are not Alive. If the neighbor is in

Far remove it from that list and add it to the set Close.

4. Recompute the values of u at all neighbors according to Eqn. (3) by solving

the quadratic equation, only using values for points that are Alive.

5. Return to top of Loop;

This algorithm works because the process of recomputing the u values at upwind

neighboring points cannot yield a value smaller than any of the accepted points.

Thus, we can march the solution outward, always selecting the narrow band grid

point with minimum trial value for u, and readjusting neighbors, (see Figure 4.2).

UPWIND SIDE

ACCEPTED VALUES

DOWNWIND

"FAR AWAY VALUES"

NARROW BAND OF TRIAL VALUES

Figure 4.2.

Another way to look at this is that each minimum trial value begins an appli-

cation of Huyghen’s principle, and the expanding wave front touches and updates

all others. The speed of the algorithm comes from a heapsort technique to effi-

ciently locate the smallest element in the set Close. Suppose that there are M
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points in the computational domain. Then each point is visited once; the heap

requires logM operations to keep its structure. The resulting algorithm is thus

O(M logM), which is, to our knowledge, the fastest of all possible algorithms. For

more details, see [12], [13].

4.3 Summary of the Two Techniques

The linking between these two techniques is summarized in Figure 4.3.

Viscosity Solutions
of

Hamilton-Jacobi
Equations
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Theory of Curve and
Surface Evolution
Corners, Shocks,
Singularities and

Entropy Conditions
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Upwind Numerical
Schemes

for Hyperbolic
Conservation

Laws

ssgggggggggggggggggggggg

��
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Level Set Perspective
φt + F |∇φ| = 0

Time-Dep.
Initial Value Problem

��

Stationary Perspective
|∇T |F = 1

Boundary Value Problem

��
adaptivity
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adaptivity

��

Narrow Band
Level Set Methods
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Fast Marching Methods
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APPLICATIONS

Figure 4.3.
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5. Examples

We end with few examples to demonstrate the techniques. The first is the

calculation of seismic travel times, see [7]. Here, the Fast Marching Method is

used to construct the first arrival times of seismic disturbance. The contours

indicate the equi-arrival lines, see Figure 5.1. The slowness function F is supplied

as data, and the result computes the three-dimensional arrival surface.

Figure 5.1. Calculation of First Arrivals.

The second application shows the reconstruction of the cortical surface of the

brain from a scan (see Figure 5.2). Here, the image gradient is used to synthesize

a speed function, which is the given to a propagating seed. As the interface nears

the edge of the desired shape, the interface slows in response to the large image

gradient, segmenting the image. The algorithm is a hybrid of Fast Marching

Methods to quickly reach the edge of the desired shape, coupled to Narrow Band

Level Set techniques to produce the fine structure. For details, see [5].

Finally, we end with an example from semiconductor manufacturing, in which

the goal is to simulate etching and deposition processes during microchip fabrica-

tion. We show the evolution of a saddle surface during ion-milling, which is an

etching process in which the optimal etching angle occurs not with a direct beam

from the normal, but in fact from a glancing blow from the side. The angle θ

is the angle between the normal to the surface and the vertical. The resulting

Hamilton-Jacobi equation contains a non-convex flux function, which gives rises

to faceting and sharp edges in the resulting solution. In Figure 5.3, we show the

time motion of such a surface, demonstrating these faceting effects on the evolving

shape. For details, see [2].
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Figure 5.2. Reconstructing Cortical Structure from Scan.

Acknowledgments. All calculations were performed at the University of Cal-

ifornia at Berkeley and the Lawrence Berkeley Laboratory.
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F = [1 + 4 sin2(θ)] cos(θ) T = 4 Rotated

Figure 5.3. Sputter Etching of Concave/Convex Saddle Surface.
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