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ON THE LONG TIME BEHAVIOUR OF SOLUTIONS OF A
CLASS OF AUTONOMOUS REACTION-DIFFUSION SYSTEMS

M. BUGER

1. Introduction

Let A1, A2 be positive real numbers, A; & A,, and set

N ot
—— 1
A= 0 A

We examine the reaction-di [udion system

1 | - ma LT
d u d2 u u A u —Y;
=A +g v

g AT ] )=
@ dt v dx2 v + , t>0, x [2:=(0,1)

L2 \ u

with Dirichlet boundary conditions u, v|sg = 0O|ag, Where g: [0, o) — R is contin-
uously di Lerentiable and satisfies the following conditions

(i) g is decreasing, i.e. g(y1) = g(y2) forall 0 = y; <ys,
(i) 9(0) =0,
(i) g7 :=inf{g(y) 1y = 0} [(F-o0,0],
(iv) yg'y) is bounded where g“denotes the derivative of g.
We are interested in the long-time behaviour of solutions of (1).
There are results [1] for the reaction-di [udion system
1 11 51 II:I 1
d u d? U L1 —
2 — =A— + 1— u2+v? , t>0, x [(X:=(0,1)
dt v dx2 v v u

which show that

« the trivial solution is the only stationary solution of (2),
« system (2) has periodic solutions if A is su [ciehtly small,
= there are no periodic solutions if A is su Lciehtly large,
. the solutions of (2) form a (global) semiflow on the Sobolev space
H((0,1)) x H((0,1)), and all solutions tend either to the trivial solution
or to a periodic solution if t tends to +co.
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If we had A; = A, we could proceed as in [1], and we would get similar results
for system (1).

If we deal with the case A; & A, the situation becomes more complicated. In
particular, the methods used in [1] do not work. The reason is, loosely speaking,
that there is some interaction between the rotation term

L1 1
-V

u

and the di Cerknt di [udion rates. It is our aim to understand this interaction.

The nonlinearity has the same influence on u and v. It is chosen in a way
that a full description of the long-time behaviour of all solutions is possible. Of
course, one can study more general nonlinearities or look at nonlinearities which
depend only on local terms (i.e. they depend on the values of u and v, but not
on the functions u(t, -), v(t,-)). But if we do so, the influence of the nonlinearity
makes it (much) more complicated to understand the dynamics and, of course, the
interaction between rotation and di [erknt di [udion rates.

The paper is structured as follows.

In the first section we show that there is a (global) semiflow of solutions of (1)
on the (large) space L2((0, 1)) = L2((0,1)) =: L2 x L2,

In other applications where the nonlinearity does only depend on local terms,
it is only possible to construct a semiflow on a subspace of L? x L? such as
for example the Sobolev space H3((0, 1)) x H2((0, 1)) (see for example [3], [4]).
Here, we get solutions (u,Vv): [0,00) — L2 x L2 of (1) for every initial value in
L2xL2. Furthermore, (u,Vv)(t), t > 0, has a smooth representative (u(t, -), v(t,-)) [
C=([0,1]) x C=(]0,1]). A similar situation has been examined in [2].

The proof of the existence of the semiflow of solutions of (1) on L? x L2 is done
by reducing the given PDE to an ODE. This reduction, which is motivated by
the reduction made in [2], turns out to be useful for all questions concerning the
long-time behaviour of the solutions of (1). Th(i—id‘,ition works as follows: We

introduce a positive number p = p(Ag, Az) == ﬁ and denote the smallest

integer which is larger than p by p*, the largest integer which is smaller than
p by p~. If p = p(A1,A2) is an integer, then we call (A1, A;) critical, otherwise
non-critical. Thus, we get p* —p~ = 2 in the critical and p* —p~ = 1 in the
non-critical case. For all positive integers n, we set

:Illzl

An = —An?n? + 0
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The matrix A, has complex conjugated eigenvalues with real part —An2m?2 for
n < p~, and real eigenvalues

TN
U-S]l) = —annz + 1= }\2 m™@n4—1
2 2
|—2—'
I"ll(’]2) = _annz IT' -n-4n4 — 1
2 2
for all n = p™. In the critical case, A, has the eigenvalue pp := —(A\y + A2)T2p?/2
with multiplicity 2. We construct vectors en ® R n [N, J = 1,2, such that

( @

and epn” are linear independent for all n,

-Aneﬁj) = p%’)e%’) foralln=p, j=1,2,

clle®|=1foralln=p*, j=1,2,

« An(oel? + Beﬁz)) = E—'annz %é )+ Be? I:I+ %‘m BeS — aef )D:fuor
aln=p7, a,p [

-Ap(ae(l) + Be(z)) = (2B + ppa)ep) + ppBe(Z) in the critical case (i.e. if p is an
integer).

We write the initial data (ug, vo) in the form

VAR .
(Uo, Vo) = 2 bPed sin(nm-)
n[NJj=1,2

with real coe [ciehts bg), which we call the coe [ciehts corresponding to (ug, Vo).
Then we set

i!L) b(l) + th(z)
Cluovo) (D) =

1

exp(ppt) + e(z)b(z)

exp(upt) if p is an integer,
otherwise,
and
 — =
Ruowe) R CY) B y?  exp(—2Ak?m%t) el? b cos(pkt) — b sin(pit)

k=1 |JjT—|

]
+ eﬁz) bS) sin(pkt) + bl(f) cos(pkt)

2 T;?Bb<l)
k

k=p*
+ ychuO,VO) ()

Py
+y exp(Lt) + Db exp(pPt)
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and define the basic solution b, v,y CC'(R,R) as the solution of the IVP
1 1

d
ab(uo,vo) =g R(, b(uo,VO)) b(Uo,VO) ; b(UO,Vo)(O) =1,

where we define p, for n < p™ by

n2m2 .

Using the basic solution, we define the coe Lcieht functions a® 'R . R

Cdy 1 L — %@)
at ) _ — cos(pnt) sin(pnt) n

(t) = b (t) exp(—An??t)
agz) (Uo,Vo) sin(pnt)  cos(pnt) bﬁz) '

forn=p~,
buoo) (1) eXp(UP P for n=p*, j =1,2,
1 o1
i () == buovey (D eXP(Upt) b + 200 EH
g‘n the critical case.

a®)

2l (1) := beuo,vo) (1) eXP (DT
We show that the functions u(:, ), v(:,-): (0,) % [0,1] - R,

u(t X) V_ - -
! = 2 a(l) t e(l) + a(2) t e(2)
V(t, X) n ( ) n n ( ) n

n N1

are well defined, they satisfy u(t, -), v(t,) CC®([0, 1]), u(:, X), v(-, xX) CC*((0, o))
and they solve the PDE (1) in the classical sense. Furthermore, we show that this
solution is uniquely determined.

In the next section we examine all stationary solutions of (1). We introduce
the set 1 by I := {p*,p*" +1,...} x{1,2} in the non-critical case and by I :=
{p*,p* +1,...} x{1,2} (Lp, 1)} in the critical case. )

Let (uo, Vo) be a stationary solution with coe Lciehts b®), (n,j) CNx {1,2}.
We show that we have b3’ = 0 for all (n, j) MMand that there are at most three
(n, j) COsuch that b¥’ £ 0.

If we take (n,j) [Hsuch that —pd’ < g(0) (with p? =y, in the critical

case), then - y

+ g 1(—u$)ed " Zsin(nm)
are stationary solutions of (1). These stationary solutions have exactly one coef-
ficient which is non-zero. If there is a real number p such that —p < g(0) and

uf{% = u for k, pairs (nj oy 1] then
1 1+ | SE |
®3) g7 ced? 2sin(nem), ¢t 1,

=1 =1
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are also stationary solutions of (1). We show that every stationary solution can
be written in the form (3) with k [{D,1,2,3}. If there is a stationary solution
with k = 2, then there is an infinite number of stationary solutions. Furthermore,
the set of all stationary solutions of (1) is a finite union of compact and connected
subsets of L2 x L2.

We will actually construct all stationary solutions.

In the following section we examine periodic solutions of (1). We show that
periodic solutions may occur. We show that for each periodic solution there is
exactly one integer n [{1,...,p~ } with the property that the coe [cieht functions
ad ,j = 1, 2, do not vanish identically. We call this integer the period index. Every
periodic solution with period index n has period 2n/pn. This implies that p~ is
the maximal number of di[erknt periods.

We set A := (A1 +A,)/2. We show that there are periodic solutions with period
index n if and only if

(4) n?< ==,

If we have p¥) 8 —An2n? for all (m,j) [T then there is exactly one periodic
solution with period index n. If n satisfies condition (4) and the set

(- _ I =
En:= (m.j) O pu{ = —Ann?

is not empty, then we get an infinite number of periodic orbits with period index n.
For each of these periodic solutions, the quotient

@
@) = == (t)

u‘” O+ O

turns out to be independent of t for all (m, j) [H,. On the other hand, if we take
real numbers [, jy, (M, j) CEL, we show that there is exactly one periodic orbit
defined by periodic solutions with period index n which satisfy

a)
= (t) 7 lehpy  forall t CRY (m,j) CEh.
“)(t) L

We show that every periodic orbit can be described by its period index n, the set
En and the values [, jy CR, (m,j) CH,. Furthermore, we show that the set En,
is either empty or it has one, two or three elements (where the number of elements
of En, depends on n and the di [udion constants Aq, Az). If |En| denotes the number
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of elements of En, then the periodic solutions with period index n form a smooth
manifold of dimension |En| + 1 (i.e. the dimension is 1, 2, 3 or 4).

In Section 5 we determine the long-time behaviour of every solution by looking
at the coe [ights b corresponding to the initial value (uo, Vo) CILF = L2,

First, we introduce the dominant multiplier (with ug) '= Wp in the critical case)

ai ; 1
M(uo.voy ©= max ) :n=p, b 20

X Tl 0] G1 T
D_)\n2n2 n< p—, br(11) + bgz) g 0

We say that we have critical dominant behaviour if (A1, A2) is critical,
Huove) = Hp and b,(f) g 0; otherwise, we have non-critical dominant be-
haviour. If we have non-critical dominant behaviour, we set

. ] L1 161
oy = (WD (12 in<p B B S 0, AT = o,

An2n? < g(0)
N(Suo,vo) = Igij) n= pij =12, br(il) B0, I"lg) = p(uo,vo)r _I"l%l) < g(O)

N?uo,vo) = (n,j) n= pij =12, br(il) B0, I"lg) = p(uo,vo)r _I"l%l) = g(O)
1 [ P I o Y P B
CAn,1),(n,2):n<p, b + b® B50,-An’T? = Ug o)
1

An?n2 = g(0)

— NP 0
N(Uo,VO) s N(uo,vo) l:E"&suoyvo) ENI(UONO)
and call Ny, .vo) the set of dominant indices. Let (u,v): [0,00) - L? < L? be a
solution of (1) with initial value (up, vo). Then we get the following result:
= We have either Ny, vo) = N&,o voyr Neto.vo) = Niugvoy O Newovo) = NGy vey E

p
(uo,vo)*

- If N(UO,VO) = N(OuO,w)’

* If Neuo,vo) = N(SUO,VO), then (u,v) tends to a stationary solution which is not
the trivial one. Furthermore, the limit can be described using the coe [ciehts
P (n,§) O, 3

* I Neuovo) = No ey Mo vey @N NFUO,VO) 8 L then (u, V) tends to a periodic

solution, which can be described using only the coe Lciehts b3 for (n,j) 1
N> NP

(uo,vo) (uo,Vvo)*

This means that we only have to consider the dominant indices in order to

determine the long-time behaviour of the solution (u, v). This result can be looked

then (u, V) tends to the zero-solution.
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at as the main result of the paper. If we have critical dominant behaviour, we get
the same result if we set N(SUO’VO) ={(p,1)} and N?UO,VO) = NFUO’VO) =[]

Using this result, we can determine all stationary and periodic solutions which
are stable and all stationary and periodic solutions which are attractive. This is
done in Section 6.

Since we get similar results for the critical and the non-critical case, but the
critical case becomes more technical, we restrict ourself to the non-critical case in
Section 6. We note that nearly all (A1, A2) (0, o0) x (0, o) are non-critical.

We show that — in the non-critical case — a stationary solution (ug, vo) & (0, 0)
is stable if and only if the dominant multiplier p, v,) coincides with the maximal
multiplier 1

:I - —
pi=max {uP :n=p*} CEFAT}

Furthermore, a periodic orbit is stable if and only if the corresponding period
index is 1 and pu = —An?.

We show that stationary solutions as well as periodic orbits may occur which
are stable but not attractive. On the other hand there are no stationary solutions
and no periodic orbits which are attractive but not stable.

We show that a stationary solution is attractive if and only if B = Hug.vo),
—AT2 < Heyo.vo) @N uﬁ’) = H(uo,vo) fOr exactly one pair (n,j) CIp*,p*+1,...}x
{1,2}. A periodic orbit is attractive if and only if the period index is 1 and
nd < —xn2 for all (n,j) CIp+,p* +1,...3 < {1,2}.

In the last section we determine the stable manifolds associated with stationary
solutions or periodic orbits, provided that (A1, A2) is non-critical. We recall that
the stable manifold of a stationary solution (ug, Vo) consists of all (u5vY [CIF x
L2 such that the solution of (1) which has initial value (u5vY tends to (uo, Vo).
We show that for every stationary solution (ug, vo) & (0,0) the stable manifold
WS (ug, Vo) is given by

WSI'_(_QIO,VO) =
(UG P % L2 2 vty = Heugiveys DS (095 = (09905 for

all (n.). (. K) T, p™ + 1, 1> {12} with 1 = W = Boor:
0P =0 for all (n,j) TLL,...,p~3}x{L,2} such that —An2n2 = e vo)

where b should be the coe [cights corresponding to (uo, Vo) and (b%j) the coef-
ficients corresponding to (u5vY.

Let (uP,vP): [0,00) — L2?x L2 be a periodic solution of (1) with period index n.
The corresponding periodic orbit is given by I := {(uP, vP)(t) : t = 0}. The stable
manifold associated with this periodic orbit is defined by the initial values of all
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solutions of (1) which tend to I'. We show that the stable manifold W3(I") is given
by

1
WS(M) == (Uo, Vo) CIF % L2 Py ) = —AN?TEZ,
biY Y (a%)(%
- 1
b+ b @)P O + @)

_ 1
for all (m, j) CIp+,p* +1,...3 x {1, 2} with p§ = —An2n2

where (ap)Q denote the coe Lcieht functions corresponding to the periodic solution
(uP,vP).

We show that there are di[udion constants A, A, [{0, o) such that a periodic
orbit and a stationary solution are both stable. But we can also show that these
cases are exceptional in the following sense:

We show that there are open and disjoint subsets Pg, Ps, Py of (0, 00) < (0, 00) \
{(A,A) : A = 0} such that the union Pq [P} [P} is dense in (0, o) x (0, o) and

= Po [PL [P}, consists only of non-critical di [udion constants (A1, A2),

e (A1,A2) [P} implies that all solutions of (1) tend to the zero-solution,

e (A1,A\2) [CPL implies that there is (n,J) I (A1, A2),p (A1, A2) +1,...} x

{1, 2} such that

Vo [ I W | s IV L]
ws g7 i(—wed 2sin(nm) WS — g=i(—p)ed 2sin(nm.)

is open and dense in L2 x L?,

* (A1,A2) B, implies that there is one periodic solution with period index 1
and the stable manifold W$(I";) of the corresponding periodic orbit I'; is open
and dense in L? x L2,

This means that in the case (A1,A2) [CHs all solutions of (1) which start in
some open and dense subset of L2 x L2 tend to one of the two (stable) stationary
solutions; in the case (A1,A2) [CHp all solutions of (1) which start in an open
and dense subset of L? x L2 tend to the periodic orbit I';. Loosely speaking, this
means that periodic motion dominates for (A1, A2) [P, while convergence to a
stationary solution dominates for (A1, A2) [PL and, of course, for (A, A2) [CPb.

If we actually draw a picture of Po, Ps, Py, then we will see that Py is located
next to the subset {(A1, A2) (0, 00)x (0, o0) : A; = A2} where both di [udion rates
coincide, and Pg contains points (A1, A2) where the di [erence between A; and A, is
large. Loosely speaking, this means that the dilerknt di [udion rates compensate

the rotation forced by the rotation term

101
-V

u
if the di [dion rates di [ed too much.
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2. Existence of Solutions

Definition 1. (i) We set L? := L2((0,1)), H} := H3((0,1)) and H? :=
H?2((0, 1)), where H¥((0,1)) should be the Sobolev space of all functions of L?
which have distributional derivatives up to order k which are all quadratic inte-
grable, and H¥((0, 1)) should be the closure of CX((0, 1)) in the norm of HK.

A function (u,Vv): [0, ) - L2xL?is called a solution of the Dirichlet problem
(1) with initial value (uo,vo) [P < L? if
(u,v) CQ[0, 90), L? x L?) n C1((0, 00), L? x L),

(u, v)(t) CHE n H?) x (H} nH?) for all t >0,
equation (1) is satisfied for all t > 0,
(u,v)(0) = (uo, Vo).

(i) A function (u(:, ), v(:,-)) CC((0, o) x [0, 1]) is called a classical solution
of the Dirichlet problem (1) with initial value (uo, vo) [CLP x L? if
(u(t, ), v(t,)) CTP([0,1]) for all t >0,

(u(:,x),v(:,x)) CC((0, o0)) for all x [0, 1],

equation (1) is satisfied (in the classical sense) for all (t, x) [0, o0)x[0, 1],
(u(t, 0), v(t,0)) = (u(t,1),v(t,1)) = (0,0) for all t >0,

[I(u(t, ), v(t,)) = (Uo,Vo)llLz - 0 (t Q)

(i) A solution (u,v): [0,00) - L2 x L? is called stationary if (u,v)(t) =
(u,Vv)(0) for all t = 0.

If (u, V) is a stationary solution, we call (u,v)(0) CL? x L? a fixed point of (1).

(iv) A solution (u, v): [0, 00) — L?xL? is called periodic if it is not stationary
and there is T > 0 such that (u,v)(t+T) = (u,v)(t) forallt=0. If T > 0 is
minimal with this property, which means that for every TY[(0, T) there is some
t > 0 such that (u,v)(t+TY & (u, v)(t), then we call T the period of (u, V).

Remark. (i) If there is a solution of (1) for every initial value (Uo, Vo) CIPxL?,
then the solutions of (1) form a global semiflow on L? x L2.

(i) If (u,v): [0,00) — L2 x L? is a periodic solution of (1) with period T, then
(G,9): R - L? x L? defined by

(@, 9)(t) := (u,v)(t+KT) for all t C(FHKT, —(k — 1)T], k [N,

is a solution of (1) which coincides with (u, V) if we restrict (T, V) to [0, o). This
means that we can define periodic solutions on the whole space R. In order to
have a short notation, we will just write (u, v) instead of (T, V).

(ii) It is not trivial that each periodic solution (u, v) has a period. Since the set
{tT=0:(UV)({t+T)=(uVv)(t) forallt=0}isanon-empty and closed subset
of R (which follows from the fact that (u, v) is continuous), the period is simply
given by

- [
T:=min T>0:(uVv){t+1)=(,Vv){) forallt=0 .
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Definition 2. (i) Let n be a positive integer. We set

1] 1
_)\1 n2m? -1

An = 1 —)\2n2n2

(i) We set A := (A1 + A\2)/2. For every positive integer n we define A\, =
(A1 — A)n?m?/2.

(iii) For all Ay, A, (0, ), A1 B Ay, we introduce

—1
2

1
=pA, ) ==— ———
P=pA1A2) T a=h]

[0, o).

In general, p will not be an integer. If p = p(A1, A2) is an integer, then we call the
di [udion constants (Ag, A2) critical (or we just say that we deal with the critical
case), otherwise non-critical. Furthermore, let p* = p*(A1,A2) be the smallest
integer larger than p and p~ = p~ (A1, A2) the largest integer smaller than p. This
means that p* —p~ =1 in the non-critical and p* —p~ = 2 in the critical case.

Remark. We note that A; 8 A\, implies that p (0, oo) is well defined. It is
clear that we would get p* = p~ = oo if we had Ay = A,. This is one reason why
we exclude the case that both di [udion constants coincide.

. . 1
Definition 3. (i) For every n [C{1,2,...,p~} we define p, := 1— AN and

1 1 1 [
e® = ! , e® = 0
—AAn —Pn

(ii) For every integer n = p* we introduce real numbers
W= —An’n?+ AN —1,
U@ = —An?n? —  AN2 —1.

Furthermore, we set

E"jl (. :l_@z'o
&® .= o f MM+ AN-T
~ E'E'l [ :l_@z'o
8@ = 0t —MAy— AN —1 L

I:1II:|

T
e® ;:,,Li N i ;:a% o
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Lemma 1. (i) For every (n,j) CIp",p* +1,...} < {1,2} we get Aned) =

(ONO]
l.ln en .
(ii) For every n [{1,2,...,p" } and o, [CRIwe get
1 I 1 I I
A, e +pe?® = —an’n? oe® +pe@ +pn pe — el

(iii) If p is an integer, then we get for all a, 3
1 1
Ap ae) +BeP = (2B + ppa)elt + ppBel? .

Proof. The proof follows from an elementary computation. 1

Lemma 2. (i) We take n = p™*. Then the scalar product (eﬁl), e®

1 2 1
1) oy = = N - .
(en 1en ) IA}\nI I)\l _ }\2| T[2n2 0 (n OO)

) satisfies

(ii) We take real numbers b{ for all (n,j) CM x !&,2}. Then there_js

C > 0 (independent of the choice of the bﬁ)’s) such that bPef’ +pPe® =
L1 ] ]

c P+ @ for all n [CNI. In particular, if bPelP + bPel®

1
.1 oD =

G
n=p+ + b converges.

Proof. (i) The lJ'a_sh?ertion of (i) caEﬁe ver"ﬁ_ﬂfi %e%fo%ta%
(i) We have bPel® +p@Pe® = < 2 pP ) 2 p®@ >§for

n < p* and, for n=p™*,

n=p*

< oo, then

(- [ I e

oDeD +0Pe® = BD T+ b+ 26D, e
1 1]

VO OE
n n AL — Ao| 22

W= o e -
= P + p®@ 1- !

2
= TS W
o M

=:Cnh

bgl) ng)
1

Since Ch - 1 (N - o0) by (i), CH:=inf{C, : n = p*} is a positive real number.
Thus, we may take C := min({C3 2|[e@|| : n < p*,j = 1,2}), and the
assertion follows. 1

Definition 4. For w [P and n [Nl we define
V_ .
cW:= "2  wsin(nm).
0
We call ¢, n [Nl the coe [ciehts of w.

The following proposition is a well known result from Fourier analysis.
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Proposition 1. We take w [IP. Then we can write w in the form

e
w= 2 cWsin(nm).
n=1

L1

Furthermore, ' _ 1(C(W))2 converges and we get

g | P
llwl|f> = e
n=1

Definition 5. We take (up, Vo) CIP x L2. For all (n,j) CNIx {1, 2} we set
@) = p@ 1 i :Io') )

by’ = b’ (ug, vo) i= —— , €

n n ( 0 0) ”e(ﬁl)” Cl(’IVO) n

where (-,-) denotes the scalar product in R2. We call (b,q)) the coe Lciehts of
(uo, Vo).

Proposition 2. We take (ug, Vo) [IF = L2. Then we can write (uo, Vo) in the

form [ \/ .

" pDe® +b@e®  sin(nm.).

Furthermore, we get

i — L]
i I AN
Voo iz o

Remark. We note that
|:||:|\/ 1
2 BPe® +BPe@ sin(nm)

Vo n=1

with real BY implies that B’ = b? for all (n, j) CNIx {1, 2}, i.e. the coe [Cights
are uniquely determined.

Definition 6. We take (up,Vo) [L? x L2, We consider the function
C(Uo,Vo): R - R
1
exp(ppt) + e(z) @ exp(Upt) if p is an integer,

otherwise,

A) b(l) + th(z)
Cluo.vo) (1) 1=
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and
_ 1

 — N o ,
Reowoy i RZ CAY) By exp(—2Ak?m?t) e b cos(pit) — b sin(pit)

k=1 l%l

1

]
+ ef) bﬁl) sin(pkt) + b,(f) cos(pkt)

Py
2 (P_—-(E(Bbﬁl) exp(UPt) + ePbP exp(uit)

+Yy K

k=p+
+ yZC%uo,vo) (t) LRI
Then a solution b = b, v,y CCI(R,R) of the ODE
d

gt° = IRwovp (D), b(O) =1

is called a basic solution (associated with (ug, vo)).

Lemma 3. We take (ug,Vog) [CII? x L2. Then there is a exactly one basic
solution (associated with (ug, vo)).

Proof. We consider the map h: R? [(t,y) B g(R(t,y))y [CR. Since g is
continuously diCerkntiable and g(n) as well as ng(n) are bounded for n []Q, o0)
by assumption,

2 ht,y) = 9(R( Y) + ya R V) 2 (L)
oy ' ey
= g(R(t,)) + 29 (R(t, y)R(L,y)

is bounded uniformly for all (t,y) CRP. Thus, the existence and uniqueness of the
basic solution follows by standard arguments (Picard-Lindelof). 1

Definition 7. We take (Uo, Vo) CIPxL2. We introduce functionsad’ : R - R,
(n,j) NI {1, 2}, as follows:
() Foralln [11,2,...,p~ } we set

1
3 i b o (O exp(_ K2y O5PnD) —sin(nt) b
agz) . (Uo,Vo) Sin(pnt) COS(pnt) bgz) .

(i) Foralln=p*, j =1,2, we set

ad () := b vo) (1) exp(UP P .
iii) If p is an integer, then we set
(iii) If p g — —
Al (t) 1= beug voy () eXP(Hpt) S + 2th(@
al () 1= bugvoy (1) eXp(Lpt)bP .

We call these functions ad the coe [€ieht functions associated with (uo, vo).
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Theorem 1. We take (Ug,Vo) [P x L?, and define the coe [cieht functions
associated with (uo,%s in Definitiop 7.

(A) The sum | \yj5-12 aﬂ)(t)eﬂ) sin(nmx) converges (pointwise) for all
(t,x) (D, o0) x [0, 1] and uniformly on each set K x [0,1] where K [{0, o)
is compact.

(B) We introduce functions u(:, ), v(:,*) : (0,00) x[0,1] - R by

ut,?) _ \/5

v, a® (t)ed) sin(nmx) .

n Nl
i=1,2

Then (u(t, x), v(t, X)) is a classical solution of (1) with initial value (ug, vo). Fur-
thermore, we have u(t, -),v(t,-) ([0, 1]) for all t > 0.
(C) We introduce the function (u,v): [0,00) - L? x L? by

(u,v)(0) = (Uo, Vo),
(u(t, ), v(t, ) is a representative of (u,v)(t) for all t > 0.
Then (u, V) is a solution of (1) with initial value (up, Vo).
(D) The classical solution (u(:, ), v(:, -)) with initial value (uo, vo) as well as the
solution (u, v) with initial value (up, vo) are uniquely determined.

Proof. The assertion of Theorem 1 can be verified by a long but elementary
computation, following, for example, the lines of the proofs given in Section 2
of [2].

3. Stationary Solutions

Definition 1. We take (A1, A2) (0, o) % (0, 0), A1 & Az, and introduce

. L ot 41, 3= {1,2} OO, 1)} if (A1, Ap) is critical,
o {p*,p"+1,...} x{1,2} if (A1,A2) is non-critical.

Lemma 1. We take (ug, Vo) [P x L2. Then (uo, Vo) is a fixed point of (1) if
and only if the coe Lciehts associated with (up, vo) satisfy

(i) b =0 for all (n,j) IO
(i) b B 0 for some (n,j) CHimplies that b, vo)(t) = exp(—pd’t).

Proof. By Definition 2.1, the coe Lcieht-functions a® must be constant for
all n, j. Since aﬁj), n < p~, can only be constant if aP =a? = 0, i.e. b =0
for n < p™. In the critical case, (af;l), a‘()2)) can only be constant if bff) = 0. Thus,
(i) follows. ) )

If we have ad’ = ¢ E 0 for some (n,j) I then h(t) := beyg,ve) (1) exp(—uf{)t)

is constant. Since h(0) = 1, (ii) is valid. 1

As an easy consequence, we get
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Corollary 1. Let (up, Vo) [CIP x L?, (up, Vo) E (0,0), be a fixed point of (1).
Then there is e < 0 such that

() Dug vo) () = EXP(—Het), _
(i) p9 = e for all (n, j) COwith b = o.
We call pe = pe(uo, Vo) the characteristic eigenvalue of (ug, Vo).

Proof. Since (Uo, Vo) E (0,0), the set E := {(n,j) CNx{1,2}:b% 2 0} is
non-empty. We take some (m, D1[CH and set ¢ := uSnDj< 0. By Lemma 1(i), we
get (m, D1 Furthermore, Lemma 1(ii) implies that by, ve)(t) = exp(—uSnch) =
exp(—Wct). This proves (i).

In order to show (ii) we take (n,j) CH. Thus, Lemma 1(ii) gives exp(—Hct) =
beuo.ve) (V) = exp(—pSPt) which implies that pS’ = pc. This proves (ii). —1

Definition 2. A fixed pOiIIt (Uo,Vo) [IP x L2 of (1) is called a k-fixed pOint
if the set
E(UO,VO) . {(“,j) [Nl %< {1, 2} . bg‘l) = 0}

has exactly k elements, where b’ should be the coe [Cights associated with
(ug, Vo). The set of all k-fixed points is denoted by Fy, the set of all fixed points
by F.

Remark. We note that E(,,,) [ITby Lemma 1.
Theorem 1. We get F = F¢ [F1 [F} [F}.

Proof. 1. Itis clear that Fx [Elfor all k. Thus, we only have to show that F 1
Fo [F1 [F3 [F3. Let (ug, Vo) [CIF L2 be a fixed point of (1). If (uo, Vo) = (0,0),
then we have (ug, vo) [CEb. In the case (ug, Vo) & (0, 0) we proceed as follows. By
Corollary 1, there exists a characteristic eigenvalue e = pc(ug, Vo). It is su Lcieht
to show that

E%uo,vo) = {(nrj) EE(UQ,VQ) j = l}

has at most two and

E(Zuo,vo) = {(nrj) EE(UQ,VQ) j = 2}

has at most one element.
2. We examine the function

- ]
fo: [p, 00) [XID —AM?X% — A)\fx“—lgz [RL.

Since [p, o0) [XIB x? [Rlis increasing, the function f, is (strictly) decreasing.

If (n,2) is an element of E(ZUO’VO), then n satisfies f,(n) = u,(12) = Mc. Since we

have f,(x) = Y. for at most one x ], o), E(ZUO,VO) contains at most one element.
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3. We examine the function

s

- 1
f1: [p, 00) [XIB —A®Xx% + ANIX* — [RI.

An elementary computation shows that f{{x) = 0 if and only if

<2
4_ A

T AN AN

Thus, there is x = p such that f; is strictly increasing on [p, x] and strictly de-
creasing in [X,o0). In particular, ffl(uc) and, thus, E(luO,VO) has at most two
elements. —1

It is clear that Fo = {(0,0)}. Now we want to describe the sets Fy fork =1, 2, 3.

Theorem 2. Let (up, Vo) 1P x L2 be a fixed point of (1).
(i) If (uo,vo) CEL, then there is (n,j) [CIsuch that

I:I__ V.
(Uo.vo) =% g 2(—pP) e® " Zsin(nm).

(ii) If (uo,vo) [CEb, then there are (n, ), (m, D1Mand ¢ [0, 2m) such that
pd = pP’'=: ke and
— O] _
(Uo, Vo) = g 2(—pe) eP cosdsin(nm:) +ePsindsin(mm) 2.

—1 L1 _
Furthermore  g=1(—L) e® cos ¢ sin(nm:) + eﬁnmsind)sin(mn-) 2isa
fixed point of (1) for all ¢ []Q, 2m).
(iii) If (uo,vo) [Hs, then there are (n,j),(m, DJ(k,q) CHand ¢ []0,2m),
8 [J3Fn/2,n/2] such that pr(,’) = uﬁ?j: pS) =: U and

| I W
(Uo,Vo) = g 1(—pc) e¥ coshcosdsin(nm:)

+e(Dcos B sin g sin(mm.) + eP sin@sin(km) 2.

Furthermore,
1
9 (—pe) e® coshcosdsin(nm:) + e{Dcos b sin ¢ sin(mm-)
LA
@ singsin(km) 2

+ek

is a fixed point of (1) for all ¢ []Q,2n), 8 [[Fn/2,n/2].
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Proof. Let (ug, Vo) [P x L2 and denote the corresponding coe [Ciehts by bd,
(n,J) CNI={1,2}. )

(i) If (Uo, Vo) CEL, then there is (n, j) CNIx {1, 2} such that b3’ & 0. Further-
more, we have bﬁnmz_o for all (m, DJE (n,j). By Lemma 1, we get (n,j) [Tland
brug.vey (V) = exp(—pt). Thus, we have Ry .vey (L ) = y2(09)2 exp(2ud’t), and
we get 1 G
R(UO,VO)(t’ b(Uo,Vo)(t)) = bg) .

Using the definition of the basic solution b, v,), we get
@ d = &
_I"ln b(uO,Vo)(t) = d_b(Uo,Vo)(t) = g R(UO,Vo)(t1 b(uO,Vo)(t)) b(uO,Vo)(t)
Teh

= g bg) b(Uo,Vo) (t) .

] ] .
Thus, we get b ~ = g=2(—u$?), and (i) follows.

(ii) If (Uo, Vo) D, then there are (n, j), (m, DJCNIx {1,2} such that b’ & 0,
b{?'2 0 and bS = 0 for all v,K) E (n,j), (m, Ol Using Lemma 1 and Corollary 1,
we get (n,j),(m, DI e := pﬁj) = u,(nm and by, vo) (1) = exp(—Hct). We note
that uﬁj) = uﬁnm (n,j) & (m, OJimplies that n 8 m. Thus, we have Ry, vo) (L, y) =
y2[(b9)2 + (b§7)2] exp(2uct), which gives

O] G 1 5]
R(Uo,Vo)(tl b(UO,Vo)(t)) = b%l) + bl('l’]III -

Using the definition of the basic solution b, v,), we get

d L] 1
_p’Cb(Uo,Vo)(t) = d_b(Uo,Vo)(t) = g R(UO,Vo)(t1 b(uO,Vo)(t)) b(Uo,Vo)(t)
| 1 O
= g b(ﬁl) + bl(’nIII b(uO,Vo)(t) .

Thus, we get 1 1 O

_ L1
b+ b =g (k).

This means that there is ¢ []Q, 2m) such that (bg), b,(n[% = (cos &, sin P)g ™1 (—He),
i.e.
— O] 3
(Uo, Vo) = g 3(—pe) eP cosdsin(nm:) +ePsindsin(mm) 2.

In particular, this means that g~*(—) exists. On the other hand, an easy calcu-

lation shows that
1

C—1 ! _
0~ (—pe) e cosdsin(nm) +ePsinpsin(mm) 2

is a fixed point of (1) for all ¢ []Q,2m). This proves (ii).
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(iii) The proof of (iii) proceeds analogously to the proof of (ii). 1

Theorem 2 implies that fixed points are either isolated (then they are contained
in Fo or F1) or there exists a fixed point orbit, i.e. a connected subset of L2 x L2
(a smooth manifold of dimension 2 or 3) which contains only fixed points of (1).
Furthermore, all fixed points which belong to the same fixed point orbit have the
same characteristic eigenvalue. This motivates

Definition 3. We define the set of all characteristic eigenvalues by
M = {uc(ug, Vo) : (Ug, Vo) is a fixed point of (1)} .
For each p. M we set
FHe := {(uo, Vo) : (Ug, Vo) is a fixed point of (1) with pc(ug, Vo) = Hc}.
If we have FHe ITE} [CF1, then we call FHe the fixed point orbit associated with
the characteristic eigenvalue ..

It is clear that FHe might have infinitely many elements (this will be the case
when FHe [ITE] [E4). Thus, the number of fixed points will not be finite, in general.
But we can show that the number of isolated fixed points and the number of fixed
point orbits are finite.

Theorem 3. The set M has only finitely many elements.
Proof. For every u. M there is a fixed point (up, Vo) £ (0, 0) of (1) such that

He = He(Uo, Vo). By Lemma 1, there is a pair (n,j) [CHsuch that pd’ = y. and
Buo.vey (£) = exp(—Hct). Hence, we get

0= c;j_t(b(uo,vo)(t) exp(Hct)) = (He + G(R(L, beug vo) (D))D(uo,vo) (1) EXP(Hct) .

Thus, we have
—He = g(R(L, beue,vo) (1))

(note that R(t, by,,ve) (1) = (n.j) rren br is independent of t). Since g is
bounded from above by g(0), we get pc > —g(0). Hence, the proof is complete if
we can show that uf{) - —oo (N - +oo) forj=1,2.

It is clear that for n = p™

Liho

_ (|
U@ = -2 — AN2—1 7" L o0 (N - o).
Furthermore, we get for n = p*
Gl ANnfmt—OaN2 +1

- L]
U = —An’m? + AN —1 —— 7
AN2T2 + (ANZ — 1)

M +1

- —oo (N - ©0).

A+ L%Q—Az el 1/(n*1%)

This proves the theorem. 1
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In the proof of Theorem 3 we examine urq) for large n. This result will be useful
in the following sections. Hence we state it in

Corollary 2. There is ¢ > 0 such that for all n = p*
e < uf < —cn?
where the constant ¢ depends only on A; and A,.

4. Periodic Solutions

In this section we want to determine all periodic solutions.

Theorem 1. Let (u,v): R - L2 x L2 be a periodic solution with period T.
Then there is exactly one n [{Il,2,...,p~} such that the coe [cieht functions

afql), a®? do not vanish identically. We call n the period index.

Proof. 1. First we want to show that there is at leastonen [{1,2,...,p~ }such
that the coe [cight functions ad”, Jj = 1,2 do not vanish identically. We assume
that ad’ =0 for all n < p~,J =12 If we had a¥’ =0 for all (n,j) CNIx {1, 2},
then (u,v) = (0,0) would be the zero-solution, which is a fixed point of (1), i.e. it
is not periodic. Thus, there is at least one (n,j) [N x {1, 2} such that a¥ =o0.
By assumption we have n > p~.

Case 1. (A1,Ay) is non-critical.
Thus, n > p~ implies that n = p* and

08 ag)(t) = bg) exp(ug)t)b(u,v)(O)(t) .

In particular, we have bd) 2 0. We set M= ug). If there is (m, DJ NI x {1, 2}
such that al’& 0, then it follows that m = pt, b$P'E 0 and

(Dit (o
am (t) _ bm (
T = exp((u—pHt) forallt CR
a®w) bd "
(Note that by )0y (t) B 0 for all t [RL) Since ad’ (t+T) = ad’ (1) and afY{t+T) =
aﬁnm(t), we get

bs%” aPt+1) _ aPiy) by

E(”;) exp(( — KDYt +T)) = Dy Do oD P &I

which leads to uﬁnm = Hence, aPe Oﬁplies that m = p*, b$?' 2 0 and
u'= . We set ¢ = m=p*,[=1,2 eWbS?Y’ . Then we get

Ruovoy (1, ¥) = yZ exp(2ut)c.
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We introduce h(t) := b vy (t) exp(ut). Since ap )(t +T)=an )(t) forall t >0,
we get h(t +T) = h(t), too. Furthermore, h satisfies the ODE

%h = (u+g(h%c))h, h()=1.

If we had h(ty) = 0 for some tg, then we would get h = 0 which contradicts
h(0) = 1. Thus, we have h(t) > 0 for all t. If —u > g(0), then dh/dt < 0 for all t,
i.e. h would be strictly decreasing which contradicts Fhi—fﬁct that h(t+T) = h(t)
for all t. Hence, we get —p < g(0). Thus, hg := g~ 1(—p)/c [0, o0) is well
defined. If we have h(tp) = hg for some tg, then it follows that h = hg. This
means that h B hg implies that either h < hg or h > hg for all t. In the first case,
h is strictly increasing, in the second case h is strictly decreasing. Since we have
h(t+T) = h(t) for all t, non of these two cases may occur, i.e. h = hg is constant.
This means that a,(nDj(t) = bﬁ%(t) is constant, too. Hence, all coe Ccieht functions
are constant, i.e. (u,v) is a fixed point. This contradicts the fact that (u,v) is a
periodic solution.

Case 2. (A1,A2) is critical.
We assume that b(z) 8 0. Then a(z)(t) = bE,z)b(UO,VO)(t) exp(Upt) is periodic.
Furthermore, a and thus, the quotient a(l)/asz) is periodic, too. Since

1 1
P _ b
2 2
P01

we see that the right side is not periodic, which is a contradiction.
Thus, we have bé,z) =0,i.e. b3 = 0 for all (n, j) 11 Therefore, we can proceed
as in Case 1.

2. We assume that there are n,m [{L,2,...,p~}, m 8 n, such that neither
lrmiilh a® nﬁi(*?) both, a® and a(z) vanish identically. Therefore, we have

aPw) + a®@@) >o0forallt CRand

]
am (t) i an (t)

q(t) =
“’ ® + af? (t)

is well defined. Since (u, V) is periodic with period T, we get q(t+ T) = q(t) for
all t. An elementary computation shows that $q = 2An?(n? — m2)q for all t.
Thus, we have q(t) = q(0) exp(2An2(n2 — m2)t), in particular q(T) £ q(0). This is
a contradiction. —1



ON THE LONG TIME BEHAVIOUR OF SOLUTIONS 297

Theorem 2. We take n [{1,2,...,p~} such that g(0) > An?m2. We set
1 . _ 1
En:= (kj) OO pd = —xn?n?
Then Ej, is a finite set which is either empty or contains one, two or three elements.
We take real constants
e j) for all (k,j) CEh.

(a) There is a periodic solution (u,v): R - L2x L2 of (1) such that the associated
coe [cieht functions satisfy

(i) a'=0 for all (m, DIICE, LN, 1), (n, 2)}),
(i) )
L 00

— o1 ]
al’@®  + a®

ST i for all t [R,

Gii) a”(0) >0, a?(0) = 0.
(b) We denote the periodic solution which we have constructed in (a) by (uP,vP).
If (u,v): R — L2 x L2 is a periodic solution of (1) such that conditions (i) and
(ii) of (a) are satisfied, then there is T [CRIsuch that

U, V() = WP, vP)(t+1) forallt (R
Since the periodic solution (uP,vP) is uniquely determined by n and [4l;jy for
(k,j) CEL, we will denote (uP, vP) by
(U, V)n; t gy 2k, TER -
Before we prove Theorem 2, we show

Lemma 1. Let (u,v) be a periodic solution of (1) with period index n [
{1,2,...,p~ }. Furthermore, we define E, as in Theorem 2. Then

o 2 (t)
O R I3 Dl =1 Ez
ar('n)(t) + ar(1)(t)

Z1LK

is well defined and constant for all (k,j) CH,.
Iﬁrooflﬁy I:Iﬂeoregjl, we have (a,(11)(0)', aﬁz)(O)) g (0,0). Thus, we have
alP@®) + aP(t) >o0forallt, ie g is well defined for all (k,j) [CHp.
An elementary computation shows that
;—tqﬁ” = ZI%I—XnZnZ + 9(Ru.v)©) (L buvy0))))
— (=A% + g(Reu vy o) (., b(u,v)(O))))D: 0.

Thus, the assertion follows. 1
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Proof of Theorem 2. First, we note that the fact that E, has at most three
elements follows analogously to Theorem 3.1. Furthermore, we note that (k,j) [
En implies that (k, 2 — j) ITEL, because us) 8 ul(f) for all k = p™.

1. We consider the function

] L]
P:R IB e cos(pnt) +ePsin(pat) [0, o).

Then P is periodic with period T = 2n/pn. We examine solutions of the ODE
1 111 o
d

1
5) ﬁh = [=\n?m12 + g LIg 4 @,j) LRZLLHI h() =ho>0.
(k.J) (EH

We show that there is exactly one initial value hg > 0 such that h(t + T) = h(t)
forall t CRL
If we had h(tg) = 0 for some tg [R], then we would get h = 0 which contradicts
h(0) > 0. Thus, h(t) is positive for all t [CR. Since g(0) > An°n®> > 0 by
assumption, there is h— > 0 such that
111 C 11

—an?n? +g LIAd) + ) LR L=b forallt (R
4) -
(k.j) CER

(note that P is bounded because it is periodic). Since g~ < 0 and —An?m? < 0,
there is h4, > h_ such that

LCTT1 C 11
—an?n? +g LLAd) + Gy LR L<b forall t [R
g 5 Tha Rl
(k.j) CEAR

We show that h(0) [JA—, h.] implies that h(t) CJA—, h.] for all t = 0. We assume
that this is not true. Then to := inf{t = 0 : h(t) I[A—, h4]} C]Q, o0)} exists, and
we get h(to) Ch_, h4}. If h(to) = h4, then it follows that

1 111 I I

d _ - 1
d_th(to)_IZXnn +g LTA@) + G ) DR LLHL <o.

(k.j) CEh

Thus, there is T > 0 such that h(t) < h. for all t [Jih, to + 1). This contradicts
the definition of tg. Analogously, we get dh/dt(tg) > 0 in the case h(tg) = h_,
which leads to a contradiction, too.

We introduce the period map

M: (0,00) Chy B h(T) {0, )
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where h is the solution of (5) which is uniquely determined by the initial value
h(0) = hg. Thus, M is continuous and maps the compact interval [h—, h,] into
itself. Hence, there is at least one h, [CIH—, h4] such that M(hp) = hp.

We show that N has no fixed point besides hy. We assume that there is hg [
(0,00), hg 8 hp, such that M(hg) = he. We denote the solution of (5) which
has initial value h, by h®, the solution of (5) with initial value hy by h©®. If
h©(ty) = h®(ty) for some ty (R, then we get h©® = h®. Thus, hy & hy, implies
that either h@(t) < h®(t) or h©(t) > h(®)(t) for all t CRL
Case 1. h©O(t) < h®)(t) for all t CRL Then we get

L jho
0 = log h@(T) — log h®(0) = % at
— 0 1 111
Ll — R [ P
= Do LhAd + ey —HO®
i
— (k.J) CEh 1 11
L1 —1 [ G
> Ludg CTAg + dp AP TR
% (k.§) TEA
®
= I/ G 1ogh®(T) — log ¥ (0) = 0.
s h®

This is a contradiction.

Case 2. h©O(t) > h(®)(t) for all t CRL
Then we get a contradiction analogously to Case 1.
Hence, we have proved that I has exactly one fixed point hy.

2. In this step we construct a periodic solution of (1) which has properties (i),
(i), (iii). In order to do so, we introduce

2 )} B

a cos(pnt)
n

t) := h®(t n
@ ® ®

sin(pnt)
ad(t) := [@jh® (1) for all (k,j) CEh,
a®ty:=0 forall (k,j) I(E, A, 1), (n,2)}).

Obviously, (iii) is satisfied. An elementary computation shows that (u,v): R -
L2 x L2 defined by
[ =, Y
\L: ® = a®P®)e® +a@1)e?®  2sin(nm) + akag(t)eg) 2sin(km-)
(k.J) CEh

is a periodic solution of (1). Thus, (i), (ii) are valid and (a) follows.
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3. In order to prove (b), we take an arbitrary periodic solution (u,v): R -
L2 x L2 of (1) which has period index n and satisfies (i), (ii).

Since (u, V) as period index n, it follows that (bﬁl), bﬁz)) g (0,0). Thus, there is
exactly one T []Q, 2m) such that

L T b mi L
n’ o _ NORRSNC) cos(—T)

b® sin(—1)
Then we get aﬁz)(r) =0, aﬁl)(r) = bY + ¥  >0and
=

@ (0 =Dyt =1 exp(-An’r*(t — 1))
n
i -
5 IFS:l) Lz—'+ IF%'Z) cos(pn(t — 1))
sin(pn(t—1))
B L+
We set h(t) 1= b, vy () exp(—An2m2t)  bSY  + bS . Then h satisfies

d O, , [ , o
&h(t)= —An“m+g [|(u,v)(t+T)[lL2  h(t).
L1
We take (k,j) CEh. By (i), ad’(t) has the form
0 d = o R s A s I
al) =0, a®P@u + a®@@ =1;h®? forallt CR.

Since [|(u, v)(t + T)||22 is given by

lI(u, V)t + D)7

1 1 L _
= aPt+1) e+ aPt+1) e + ad(t+1)
(k.j) (EA
L] L] 1
=h?(t) e’ cos(pnt) + P sin(pnt)  + h?(t) (&0

(k.J) (EA
= h?(Y)P (t) + h*(1) &y
(k.J) (EA

h is a solution of ODE (5).
Since (u, v) is periodic by assumption, a®, a? are periodic, too. Since aﬁz)(t) =
0 if and only if t = 2kn/pn + T where Kk is an integer, the period must be an integer
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multiple of 2n/p, = T. We assume that the period of (u, V) is given by T "= Tp"}
pY[CNL Thus, it follows that h is T “periodic, too.

By Step 1, we know that h(0) < hp implies that h(kT) > h((k — 1)T) for all
positive integers k. Thus, we would have h(T Y > h(0), which gives a contradiction.
Analogously, we would get h(TY < h(0) if we had h(0) > h,. Hence, it follows
that h(0) = hp. Since the solution of (5) is uniquely determined by h(0) = hy, we
get h=h® and

(u,v)(1) = (UP,vP)(t—1).

This completes the proof. 1

Corollary 1. We define the set P of all periodic solutions by

C1
P := (uo,vo) [IF x L2 : there is a periodic solution (u,v) : R - L2 %Z
of (1) with initial value (u,Vv)(0) = (ug, Vo) .

Then it follows that

1 —
P= UV, «hE®: t R Nn<p~,n<n™t g(0)/A
1

@J) [Rifor (k,j) CEL

Proof. 1. By Theorem 2(a), (U, V)n;rq ;:(k.j) c=a 1S @ periodic solution of (1) for

all n < p~ with n?2 < g(O)A ‘m—2 and all [ jy CRIfor (k,j) CEh. Itonly remains
to show that every periodic solution of (1) is of the form (U, V)n:rgq ;,:(k.jy Ea ¢ +T)
We take (ug,vo) [CB, i.e. there is a periodic solution (u,v) of (1) such that
(u,v)(0) = (uo, Vo). We denote its period index by n. )
We assume that there is (k,j) ITH, [{{n,1),(n,2)} such that ag) g 0. By
Theorem 1, we get k > p~.
Case 1. (A1,Ay) is non-critical.
Thus, we get

ad (1) = b exp (LI )by vo) (1) -

Since ag) g 0, we have bg) 8 0. Furthermore, an easy calculation shows that

g e 0

d 2 (O G) 4 Y22 3 (0

5 B 5 2(4 " + An“ 1) H=—FH1+1
aP(t)  + aP() aP(t)  + aP()

If W9 & —An2n2, then this quotient is either (strictly) increasing or decreasing,
but it cannot be periodic, which gives a contradiction since all coe [cieht functions
associated with (u,v) have to be periodic. Since p9’ = —An?n2, k > p, implies
that (k, ) CHEhL, we get a contradiction.
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Case 2. (A1, Ay) is critical.
We assume that b,(f) g 0. Then a’()2)(t) = béz)b(uo,vo)(t) exp(Hpt) is periodic.
Furthermore, aél) and, thus, the quotient a§,1>/a§,2> is periodic, too. Since
a5 (1) _ b

=P _+2t
2 2 !
a”(® by

we see that the right side is not periodic, which is a contradiction.
Thus, we have béz) =0, i.e. b4 = 0 for all (n, j) 11 Therefore, we can proceed
as in Case 1.

2. We have proved that ag) =0 for all (k,j) E, [X{n,1),(n,2)}. We set
al (0)

Lol jy = for all (k,j) [CEh.

— | I -

al’(0) + af(0)

Thus, it follows from Lemma 1 that
L4 V)

an’® + a’@®

5T i) forall t CR.

Hence, (u, v) satisfies conditions (i) and (ii) mentioned in Theorem 2 (a). There-
fore, Theorem 2 (b) shows that there is T [Rlsuch that

UV® = U Vnig ks (t+1) forallt [R

Thus, we have (Uo, Vo) = (U, V)(0) = (U, V)n; g5, (0:k.j) rEa (1) CH.

This completes the proof. 1

5. Limiting Behaviour of Solutions

In this section we determine w-limit-set for each (ug, Vo) I > L2, which means
that we determine the limiting behaviour of the solutions of (1) for every initial
value (ug, Vo) [P x L2,

We will see that each solution (u, v) tends either to a fixed point of the system
or to a periodic solution, i.e. the w-limit-set of each element of L? < L2 is contained
in F [P

Definition 1. (i) For all (up, Vo) CIF x L2, (uo, Vo) & (0,0) we set

(I O
Moo = max P :n=p* bd &0
S L] 1 O] L1 [

C AP :n<p, b + p® 50
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We note that this maximum does actually exist since ug) tends to —oo forn - oo
(see Corollary 3.2). Furthermore, we set
td if (M, o) s critical, b > pg, o and (6§, b%) & (0,0),

Huo,vo) = O -
Heuov,) Otherwise.

We call Py,,vo) the dominant multiplier.

(i) We take (uo, Vo) [P x L2, (ug, Vo) E (0,0).

(a) If (A1, ) is critical and Wy, .ve) = Hp and b & 0, then we call system (1)
a system with critical dominant behaviour. Furthermore, we set Ny, vo) =
Nowo) = {0 D} Nggupy = Niguey = EIf —Hp < 9(0), and Ny =
Neowoy = L0 D} Ny 6 = Neugvey = CIF ~Hp = 9(0).

(b) If (A1, A2) is non-critical or if, in the critical case, Hq.vo) = Hp OF bé,z) =0,
then we call system (1) a system with non-critical dominant behaviour. In
this case, we define

1 1 L1 [ ]

(‘LO,VO) = (n1),(n2):n=<p, b + bP  80,—-An’T% = P, o),
B 1
An?n? < g(0)
Noowoy = (M) n=p*j =120 80,ud =t —HT < g(0)
Nlowey = (D) 1n=p"j =1,2,69 80, 1P = U vy, —HP 2 9(0)
1 [ 1 [ ] B
n,1),(n,2):n<p, b + b@ 80,-An?12 = Pyve),
B 1
An?m? = g(0)
— 0
N(UO,VO) = N(puo,vo) I:IS"(SUO,VO) I:N](UO,VO)'

(iii) For (uo, o) = (0,0) we set N(o.0) = N& o) = N oy = N ) := [

We call Ny, v, the set of dominant indices.

Lemma 1. We take (ug,Vvo) [CIP x L?. Let (u,v): [0,00) - L? x L? be the
solution of (1) which has initial value (u,v)(0) = (ug,Vp). Then the coe Lcieht
functions a’: R — R are bounded on [0, 00) for all (n,J) [N,,v,) and we have

A —
V() — 2 aPVeWDsin(nm)HH - 0 (t - ).
(n.j) I:Equo-vo) L2

Proof. The assertion is trivial if (ug, vo) = (0,0). Thus, we only deal with the
case (U, Vo) £ (0,0). Hence, we have N, vo) 8 [
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1. We take (n,j) [Ny, vo)- We have

1] 1]
2 @)@ @ (1)|€__I a) IZ_I_ 2 1) (@
||(U,V)|||_2 = ap ek +an ek = an ?_-ﬂ uﬁﬂe_nb

=:cn=>0

We set
1 .
T (—Hwowo)) 1 9(0) > —Huo o)
0 otherwise.

If we have cn, aﬁj)(t) >, the we get

i s R e R

] NN ]
g AP0 =2 a2l Hwowe +9UIWVOIEF2)

E(ID L |
<2 a’(t)  Huovo) ¥9(n) =0.

Hence, aﬁj)(t) decreases whenever it is larger than n/c, which means that
a®(t) ~ is bounded on [0, oo).

2. Case 1. We have critical dominantbghaviour. [
since a$”(t) = buwey () exp(pt) bSY +2th§> is bounded on [0,0) by
Step 1, we obtain that b, ve)(t) exp(Hpt) - 0 (t - o0). Thus, we get

V_
(6) % v)(t) —  2a{PelV sin(pm-) %

1 1 2 2 LZ__I I:I2
= aP e’ +aP (e + aP (1)
n=p— |_2__|
+ ai“(t)e,&” +aP (e .
n=p+
1 [ | G
since al’() +aP® = b +b¥ bqu,VO)(t) exp(2upt) - 0 (t - oo) for
all n < p~, the first sum of (6) tends to 0. Furthermore, we get (using Lemma 2.2)

al? (el +aP ()el?

n=p+

= bZuo voy (1) EXP(2Hpt)

< bReR exp((RY — Hp)D) + bYe exp((HR — Hp)t)

n=p+
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< 2C by vo) (D EXP(2HpY)

-0 (t-o0)
- PN - | P
x L b expu§? — pp)t) + b exp(uSY — up)t)
n=p~* n=p+
[TLl 1]
bounded for t - oo
Thus, the last sum of (6) tends to 0, too. Since a,gl)(t) is bounded for t — oo, we

get
@ o) bf?
ey AP

-0 (t->o0)

Thus, the assertion is proved.
3. Case 2. We have non-critical dominant behaviour.

We take (n,j) [Ny, vo)- Since agn jy is bounded on [0, o) by Step 1, it follows
that by, ve) EXP(H(uo,vo)t) is bounded on [0, o0), too.

By Corollary 3.2, we have ug) - —oo (N - o). Hence, there is Ap > 0 such
that

D < pgovey — AR forall (n,j) T, p* +1,...3 < {1, 23\ Nuovo)
with b =0,

—AN?T? < Pgovey — AR forall (n,j) CFL,2,...,p7F % {1, 23\ N(yovo)-

If (A1, A2) is non-critical, then we get

VAR s B
(M M) — 2 a®ed sin(nm-)
(n.j) MN{ug vo) L2
_ 1
=H{2 a®ed sin(nm.)
(n’j)muo-Vo) L2

= b%uo,vo)(t) eXp(ZH(uo,vo)t) %i(_ﬁﬁitb

-0 (t—o0)
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1

1 1 1
el? b cos(pnt) — b sin(pnt) + e b sin(pnt) + b cos(pnt)
N(n.j)d’:! I:I:D
Coor bounded
a
+ Db exp((HE” — Heuo,vo) = AMY)
n.j)r—

Neug.vo)-
n=p*

+e@b@ exp((UP — Heuowo) — AWL)

The boundedness of the last sum follows as in Step 2 using Lemma 2.2. Thus, the
assertion follows if (A1, A2) is non-critical.
If (A1, A2) is critical, we proceed as follows: If we have Py = Hu,,vo), then we

set bf;z) = 0 (because we have non-critical dominant behaviour). Therefore, (7) is
valid, and the assertion follows.
If we have Up < Huo,vo), then we only have to add the term

[ 1
c'(t) := b3y, voy (D eXxPUpt) bV +2tbP eV + bPel?

on the right side of (7). Since b? (1) exp(2H(uo,vo)t) is bounded for t — oo, we

(uo,vo) V™
get c{t) —~ 0 (t — o0), and the proof is complete. 1
The following result shows that the knowledge of b9 for all (n,J) ENGuo.vo) 1S
su [cieht in order to determine the limiting behaviour of the solution of (1) with
initial value (uo, Vo). This is the reason why we call N, ) the set of dominant
indices.

Theorem 1. We take (ug, Vo) [P x L?. Let (u,v): [0,00) - L? x L? be the
solution of (1) with initial value (uo, Vo).

@) If N?UO’VO) = NG,y = L-then we get (in the L>-sense)
(i) If NFUO’VO) = [and N§, ., E L then we get (for t — oo)
1 1
—1(— C—1
(uv)® - 5 J I ¢ Ll(uo’v'g’l._.zf ia__llé b@e® sin(nm-) e,
: b ")
(D) NE vy D oo
(i) 1f NG, v,y S Lthen there is n < p~ such that N, .~ = {(n,1), (n,2)},
and we get

%,V)(t) _(Uav)n:@,j):(k,j)ﬂ:_,l,(t"'T)@Ez -0 (t- o0),
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where the real constants [gl j) are given by

b :
[l jy == K for all (k,j) CEh,
D 2, @
bn’  + by

and T CRfulfills tan(pnt) = —b® /6.

Proof. (i) If N(u Vo) = = [_khen we have (ug,Vvo) = (0,0), and the assertion is

trivial. Thus, we assume that Ng,  , 8 [

Using Lemma 1, we only have to show that arq)(t) - 0 (t - oo) for all
n,j) EISI(UO vo): Ve take (n,J) EISI(UO vo)" If (n,J) 8 (p, 1) (which is always the
case when we have non-critical dominant behaviour), then we get

1 1

d .. ) .
729 = 1P + gl oI ad.

If we had an)(to) = 0 for some ty, then we would get a¥) = 0 which contradicts
our assumption. Thus, a® is either positive or negative, w.l.0.g. we assume that
aﬂ)(t) > 0 for all t. Then we get

g .. 4O ]
G < 1P+ aP =0
which implies that an )(t) [col (t » oo) converges to some ¢g = 0. If we had

Co > 0, then there would be some constant ¢; > 0 (depending on e® and e(z))
such that

iimsup Sa® < (P + g(ed)eo <0
| PENYCS)
which contradicts ad’ - Co. Thus, we have ¢cp =0, i.e., a® _ 0 (t - o)
If (n,J) = (p,1) (which means, in particular, that we have dominant critical
behaviour), then a,(f)(t) - 0 (t - oo) follows as above. Thus, we have

d

(I
O 2 = iy + 9l IOIR) 2P + 22

-0

and we obtain a(l)(t) - 0 (t - oo0) with considerations similar to those above.
This proves (i).
(i) Since we have N(u o) B Lt follows that g(0) > —H(ug,ve)- Since N(uO vo) =
L his implies that Ny, vo) = N¢, Thus, g7 (—H(ue.ve)) EXists.

(uo,vo)*
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Case 1. We have non-critical dominant behaviour.

We set b'(t) := buo,vo) (D) EXP(H(uo,voyt)- In particular, we have bt) > 0 for all
t = 0. Furthermore, we get ar(,j)(t) = b,q)th) for all (n,j) [CNove) =N
We want to show that b'(t) converges to

s
(uo,vo)*

—1(—
b¢‘>:‘o = g ( u(uo,vP_)_u)_l EI

= )
D Ny vey "

This will show that a®(t) - bIp®  (t - oo) if we have (n, j) m@o,w). Using
Lemma 1, (ii) follows. Therefore, we only have to show that b't) - bY (t - o0).
Using Lemma 1, we get

| — iy P
[I(u, VDI > — (b)) b
(D) INE, o
1 ]
= [|(u, v)®IIZ2 — ad (1) -0  (t- o).
(D) INE, )

We take & > 0. Then there are K5ty > 0 such that for all t = ty the inequality
b(t) < bZ) — & implies that

Heuowe) + 9L, V)(®)]IF2) = K™> 0.

Thus, we have $b'(t) = kBt) if b't) < b5} — 5. This gives liminf;_ o b't) =
b5l — & for all 3 > 0 which implies that liminfy_ o, b"t) = b5). Analogously, we get
limsup,_ o, b'(t) < b, Hence, we have lim_ - b'¢t) = b5}, and (ii) is proved.

Case 2. We have critical dominant behaviour. In this case, we have N¢, | v =

{(p,1)}. Using Lemma 1, we only have to show that afjl)(t) tends to
07 (—Muowoy)- Similar to Case 1, we get ||(u, v)(®)[[2.— a$P(t) - 0 (t - oo).
We take 8 > 0. As in Case 1, we can find k5t > 0 such that Igfjll)(t) <
0™ (—Hcuovey) — 8 implies that ey, o) + 9(1I(U, VI®)II2) = K> 0. We get

d 1 ]

G i O
4 alP’(® =2 alPM)  Huewe) T 9UIU VD) +4aP(®)aP (1) .

We note that a,(gz)(t)/aél)(t) - 0 (t - oo). Thus, there is ty'= to such that

1 1 ol
d K
it aPy = > afl(v)
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]
for t = t’if a(l)(t) < 9" (—H(uo.vo)) — 8. Thus, we can proceed as in Case 1,

and we get lim¢_ o ap O = 97 (—Huovo))-

This proves (ii).

(iii) Since N(u Vo) 8 L[ we have non-critical dominant behaviour. We take
n,j) Ijlfil(uO vo)* By deflnltlon of N(u Vo) We have n < p~ and —Hove) =
An2m2 < g(0). Furthermore, a’ € 0, n < p~, implies that a§”,a® & 0, i.e.
(n,1),(n,2) IZISI(u voy- We note that (m, j) NP ) gives AM2T2 = —U(yove) =
An2m2 which leads to m = n. Thus, we have

NE e = (0.1, (0, 2)}

(Uovoy — L-but it may be that NG, ) is
has at most three elements, in particular, it

(uo,vo

Since —Huo,vo) < 9(0), it follows that N?
not empty. By Theorem 3.3, N2
is a finite set.

As in the previous step, we set b{t) := Buo,vo) EXP(M(uo,vo)t).- Thus, we get

ad’ (t) = bt for all (k,j) [Ng, ., and
al? (1) = b"et) (b cos(pnt) — b sin(pnt))

(uo,vo)

a@(t) = b'¢t) (0§ sin(pnt) + b cos(pnt)) .

We introduce
L1 1

v(R) = (0(1)° el b cos(pnt) — b sin(pat)
] | — P
+e@ b®sin(pnt) +b@ cos(pat)  + (b{t))> b®
(D) IR, vy
Then Lemma 1 gives
(8 IuV®IF2 —v(®) -0 (t - ).
We set T := 21t/pn and take T []Q, T) such that a® )(T) =0and a(l)(r) >0. We
note that an )(T) = 0 implies that tan(pnT) = —b@ /oD, Furthermore, we set
b
g = —=— forall (k,j) CNZ
Lk i) aﬁl)(r)

(uo,vo)*

We define P (t) := (e(l) cos(pnt) + e,(f)sin(pnt))2 as in the proof of Theorem 3.3.
Then we get

11 1 | — Y |
@ v+ =0+1)? a®@) P+ b
KD) TN 1y
1 LT 1
= a®@blit+1) PR+ By

KD INE5 00>
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If we define h by h(t) := aﬁ,”(r)b?t + 1), then h is positive for all t, di Lerkntiable
and satisfies

d - , ]
3i"® = Howo) +9IUV(E+DIIL2) h(D).

Given n and [yl jy for all (k,j) EISII(SUO’VO) (we note that N(SUO’VO) = Epn in the
notation of Theorem 4.2), we introduce h, [{(0, o) and the T-periodic function
h® as in the proof of Theorem 4.2. The proof of (iii) is complete if we can show

that h(t) — h®(t) - 0 for t — oo which means that

h(t)
h(®)(t)

q: [0,00) 113 [0, o)

tends to 1 for t - oo.

For every & > 0 there is "= §(5) > 0 such that h(t) < h®(t) — s“implies that
g(t) = 1 — 3 (note that h® is periodic and, thus, bounded away from 0 and o).
We set

L1 1 L] [ — R
Ht) := h® (@) P2(t)+ G forallt R
1) TN, v

Using (8) and (9), there are to = to(8) > 0 and kK = K(8) > 0 such that
[(u,V)E+ 1|72 <H®) —k forall t = to.

We note that € := ming gyry 9(H (t) — K) —g(H (1)) is positive because g is strictly
decreasing. Thus, it follows that, if we have q(t) <1 — 93 and t = tg, then

d [ , O O
0O = g lluWVE+DIlL. —gH®) q(t) = £q(D).

This implies that liminf;_ . q(t) = 1 — 3. Since this result holds for all 3 > 0, we
get liminfi_ . q(t) = 1. Analogously, it follows that limsup; _ ., q(t) < 1 which
leads to lim¢_, - q(t) = 1. This proves (iii). 1

Theorem 1 shows that every solution (u,v): [0,00) — L2 x L2, (u,v)(0) =
(uo, Vo), of (1) tends either to a fixed point (i.e. a stationary solution) or to a
periodic solution. In order to determine the limit set, it is su [cieht to know
the set Ny,,v,) Of dominant indices and the (dominant) coe [ciehts bq for all
(n,J) N vy -

Using this result, we get information about the stability and attractivity of all
fixed points and periodic solutions.
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6. Stability and Attractivity in the Non-critical Case

In this section we ask whether the fixed points and the periodic solutions, which
we have constructed in Sections 3 and 4 and which all together attract all solutions
as a result of Section 5, are stable and attractive.

In the whole section we assume that (A1, A;) is non-critical. In the critical
case we can prove similar results but the proofs become (much) more technical
although they use the same ideas. Furthermore, we note that nearly all (A1, A2) [
(0, 00) % (0, o0) are non-critical.

Definition 1. (a) A fixed point (ug, vo) [CElis said to be stable if and only if for
every € > 0 there is d = 8(€) > 0 such that every solution (u,v): [0,00) - L?xL?
of (1) which satisfies |[(u, v)(0) — (uo, Vo)||L2 < 3 fulfills

[[(u,V)(E) — (uo, vo)|lLz <€ forallt=0.

(b) A periodic solution (uP,vP): R - L? x L2 with period T > 0 is said to
be stable if and only if for every € > 0 there is 8 = 3d(¢) > 0 such that every
solution (u,Vv): [0,00) — L2 x L2 of (1) which satisfies dist, 2{(u, v)(0),'} < 8,
where I" ;= {(uP,vP)(t) : 0 =<t < T} is the periodic orbit associated with (uP, vP),
fulfills

dist 2{(u,v)(t), '} <e forallt=0.

Definition 2. (a) A fixed point (ug, Vo) [Flis said to be attractive if and only
if there is 8 > 0 such that every solution (u, V) : [0,00) — L2 x L? of (1) which
satisfies ||(u, v)(0) — (Uo, Vo)||Lz < d fulfills

1, V)(®) — (Uo, Vo)llLz -~ 0 (t — o0).

(b) A periodic solution (uP,vP) : R - L2 x L? with period T > 0 is said to be
attractive if and only if there is & > 0 such that every solution (u,Vv) : [0, o) -
L2 x L2 of (1) which satisfies dist, 2{(u, v)(0), '} < 3, where I is defined as in
Definition 1, fulfils

dist, 2{(u,V)(0),T} = 0 (t — o0).

Definition 3. We define

- ~ -
p:=max {ud :n=p*} C{FAn?: provided that p~ = 1}

and call it the maximal multiplier.

Remark. The maximal multiplier is well defined, since p,(11) - —oo (N - o0),
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Theorem 1. Let p be the maximal multiplier. The trivial fixed point (0, 0) is
stable and attractive if —u = g(0). On the other hand, (0, 0) is neither stable nor
attractive if —p < g(0).

Proof. 1. We assume that —p = g(0). Let (u,Vv): [0,00) — L?xL2 be a solution
of (1) and denote the corresponding coe [cieht functions by ad.

If there is n = p™ such that an)(O) 8 0. Then we have an)(t) g0forallt=0.
It follows that ||(u, v)(t)||,_z >0 for all t=0. Thus, we have

g II(u VO[22 <9(0)< —u forallt=0.
Thus, it follows that

1 1 1 ] 1 1
d — - i 1 . |
G & =2l WP +g U aP <2 a  (uHe) <0

fIQ_I’_Ia” t = 0. Hence, it follows that for all n = p* the function [0,c0) 110

ag)(t) is either identical to zero or it is strictly decreasing.

] I I |

Analogously, it follows that the function [0, c0) [T13 a(l)(t) + aﬁl)(t)
R, n<p™, is either zero or strictly decreasing.

2. We assume that —p = g(O) We take (Ug,Vo) [’ x L? and denote the
corresponding coe Lciehts by b, Furthermore, let (u,v) be the solution of (1)
with initial value (ug, Vo) and denote the coe [cieht functions by a®. We set
8 := [|(uo, vo)||> and

1
L mma=a I Pw i () PTS RE  N P ﬁ
e:= bQ) b  + b®  max e , @ H.

n=>p n=p

L1 L1 L] L] L
Using Step 1, we get a%')(t) < b  forallnz= p*, t =0, and alP o+
] G1 [ G

2 1 I:IZ I?_I
a® = b+ @  foralln < p~, t = 0. Therefore, we have

[[(u,V)([®)]|L2 <€ forall t=0. = 1 -

We define C asin Lemma2.2, andsetms :=max e :n< p,j=1,2 /2

Thus, we obtain

Ceh oo L —m o0
g2<2max e¥ :n<p,j=12 b®
n[N§J=1,2
1 I—Z_—l m m
=m. b < = ll(uo, vo)IF 2 = <5787

n[N§J=1,2
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This means that, given gy > 0, there is
—1
_C
0= 5(80) = — €0

such that [[(uo, Vo)||L2 < & implies that ||(u,V)(Y)]|L2 <& forall t =0, i.e., (0,0)
is stable.

3. If —u = g(0), then N, ~ = N¢, - = Cor all (Uo,vo) [”x L? by

Definition 5.1. Thus, Theorem 5.1(i) shows that the solution starting at (uop, Vo)
tends to the zero-solution for all (up, vo) [P % L?, i.e. (0,0) is attractive.

4. We assume that —pu < g(0). Then there is n [Nlsuch that
A2 ifn< P,

uﬁl) ifn=p™*.

M=

V_ - .
We consider (us,Vvs) := d Zsin(nn-)er(f)/lleﬁ')ll for all 8 > 0. Thus, we have
Nfuwé) IZISI(SU&VB) 8 [Jand the solution of (1) with initial value (us,Vvs) tends
either to a fixed point or to a periodic orbit for t — oo by Theorem 5.1.

Hence, (uo, Vo) is neither stable nor attractive. 1

Now we are going to determine stability and atractiveness of all other fixed
points and all periodic orbits.

Lemma 1. Let (ug, Vo) [CH, (up,Vvo) B (0,0), be a fixed point of (1), and let
K be the maximal multiplier. If p,ve) < H, then (uo, Vo) is neither stable nor
attractive.

Proof. By definition of the maximal multiplier, there is n [N such that p =
—An2m2 inthe case n < p~ or p = p{? in the case n = p*. We note that
—u < ¢(0) since otherwise no fixed point besides the trivial fixed point (0, 0)
exists by Theorem 1. v ) )

Thus, the solution of (1) with initial value (us,vs) := & 2sin(nm-)ed7[e?]|,

0 > 0, tends either to a fixed point (G,V) & (ug, Vo) or to a periodic orbit by
Theorem 5.1. Since we can take & arbitrary small, (ug, Vo) is neither stable nor
attractive. —1

Lemma 2. Let (U,V) = (U, V)n:rq ;:(k.j) =4 DE @ periodic solution of (1) with
period T, and denote the maximal multiplier by p. If —An2n2 < p, then (u,Vv) is
neither stable nor attractive.

Proof. The proof proceeds analogously to the proof of Lemma 1. 1

Remark. By Definition 3, we get g = —An?. Thus, we get —An?m? < p for all
n > 1, which means that (U, V)n:rg ;,:(x.j) cEs IS Neither stable nor attractive for
alln>1
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Up to this point we know that fixed points and periodic solutions can only
be stable or attractive if the corresponding dominant multiplier coincides with
the maximal multiplier. The following results show that it is su LCcieht for stability
that the corresponding dominant multiplier coincides with the maximal multiplier,
but it is not su [cieht for attractivity.

Lemma 3. Let (up,Vvo) [H, (up,vo) & (0,0), be a fixed point of (1), and
denote the maximal multiplier by p. If we have p,v,) = H, then (uog, Vo) is
stable.

Proof. 1. Let ba) be the coe Lciehts associated with (ug,Vg). Thus, we have
bd) £ 0 if and only if (n,j) IZISI(uOv) Furthermore, (n, j) IZN(UO vo) implies

that (n,2 —j) [IIISI (Uo.o)" Thus, ed sm(nn) e sm(kn-) are orthogonal for all
(n,J), (k, ICNE, oy0 (0,3) E (k, DI Thus, we have

a) 2
lI(Uo, Vo)l = b .
(D) INE, o
Since (ug, Vo) is a fixed point, we have g(||(uo,vo)||2,_2) = —W. We define C as in
Lemma 2.2 and set
\/E
M:=1+-— max [ed]].
n=p,j=1,2

—1 .
2. Weset D ;= g 1(—p)/M. For every 6 [(D, D) we define the compact
interval 15 by

1

1
1
VALY | 00).
- o™

=10+

Let (u,v): [0,00) - L? x L? be a solution of (1) which satisfies
[1(u, v)(0) — (uo, Vo)||L2 < &. Furthermore, we introduce the function b™ R 13
beuvy(oy (1) exp(ut) (0, 00). We note that b'(0) = 1, i.e. b'(0) [I3. We want to
show that b't) I3 for all t=0.

Since b'(0) [, it is su [cieht to show that b'¢t) < 6_ for some t > 0 implies
that Sb'(t) > 0, and b't) > 5. implies that &bt) < 0. Then it follows that b't)
cannot leave Is, i.e. b'(t) I3 for all t = 0.
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We assume that b'{t) < d_ for some t > 0. Then we get

UV (@]

= t) 2 a(’)(0)‘3XIO((L1 —u)t)eg)Sin(nﬂ')%
L

(n.j) IN*{1,2}

V_ 1
%t) 2 a® (0)ed sin(nm- )%
(n,j) ON*{1,2}

|_2
1 1
t) 2 a0>(0) 1—exp((U — i) eP sin(nm)HH .
(n,j) ON*{1,2}

L2

2

IA

The first expression satisfies

V_ 1 )
t) 2 a® (0)ed sin(nm-)
() ({12} 0,

—1
= bO)II(u, V)(O)lL2 < bYD)II(Uo, vo)llLz +DbHD)d = b(t) g~(—w) +b(1)3

and the second satisfies

N 1 . 1
t) 2 a®(0) 1—exp((uP — ) ePsin(nm)
n,j) Nk {1,2} L2
_ 1 ]
< bty HH2 a® (0)ed sin(nm-)
(n.j) {1,2},uP <p L2
1 0l
| — R S R P I
<b'r) [2] a®©) [le®)2
(n.j) {12}, uP <p
Lzl

Vs ; [ — ) S [ P
= 2b't) <m_ax12||e§11)|| 1 ad® ) [
n=pj=1, )
(n.j) {1,231 <p

| — R S R P
= (M — 1)cb'(t) L a®©) [

(n.j) I{1,23,nP <p

Lazol

| — - ]
< (M —1)cb'¢r) L a®@©)—b® [
(n,j) N*{1,2}
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%@j [ R 1 @@
< (M — 1)cbt) c 2 ma®P0) —b® ed + a@(0) —bd @

n [N

= (M = DbD)]I(u, v)(0) — (Uo, Vo)llLz < (M — 1)3b(t).

Thus, b(t) < &_ implies that
Li— L1 g N e
UVl <bt) g7 +M3 <d- g i (- +M3 = gi(-p).
Hence, we get - -
d %
&b% = pu+g [I(uVI®IF. bt)>0.

Analogously, b'{t) > 8. implies that &b't) < 0. Thus, we have proved that
bt) I3 for all t =0.

3. We assume that (u, V) is a solution of (1) with |[|(u, v)(0) — (uo, Vo)||L2 <9,
0 > 0. Then we get

S g
[1(u, v)(t) = (o, Vo)l < %2 ad(® — b e sin(nm:)
() INE,
o Moo ama) Li

=:S1(t)

1
a® (t)ed sin(nm-)
= (”J)“I'S'?uo vo)

=82 (t)

LT

Thus, we get (note that (n, j) IZISI(u o) implies that ||e,q)|| =1)

sim =2 aP® —bd =2 a® (0)b'(t) — b
(I% EIS[z;UO-VO) (n J) EE[&JD vo)
| — e
<4 ad(0) —bP  + (1 — b't))? a0>(t) %
D DS[F“O"’O) (n.j) EE[Z;UOyVO)
| — N R PN
< 482/c? + (1 — b'(r))? ad (1)
(D NG, o)

L1 ]

1 i

Since M) NG, o) ar(f)(t) is bounded (because of 8 < D) and 1—b'(t) = O(%)
(because of b'{t) I3 for all t = 0 by Step 2), there is some constant ¢; > 0 such
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that S?(t) < ¢282 for all t = 0. Using the results of Step 1 and 2, we get

2 @2 —
S;()=2 max |leq”|| aR’ (t)
n=p~j=1

MDINE, o)
bt))2 @2 — ) @)
=2000)* _max lledl® al(©0) exp((uf = W)

(DN, vo) =1
<255 _max |led|]? ad(0)
n=p—,j=1 .
MDINE, o)

.Y
<22 max |[eD|P=
+nSp_J:1’2|l bl o

Thus, it follows that there is some constant c, > 0 such that S3(t) < c242 for all
t = 0. If we put these two results together, we get
[[(u, v)(t) — (ug, Vo)||Lz < (c1 +c2)0 forall t=0.

Thus, for every given € > 0 there is & = 3(¢) [0, D) such that (c; +¢2)d < €.
Hence, (uo, Vo) is stable.

Lemma 4. Let (up,Vvo) [CH, (up,vo) & (0,0), be a fixed point of (1), and
denote the maximal multiplier by p. If we have p,.v,) = M and the set

{(n.Jj) TR, ...,p7} < {1,2} : —An’n?® = p}
CLn,§) O™, p" + 1. 3= {12} pd =}

has only one element, then (uo, vo) is attractive.

Proof. Since U, vo) = M, thereis (n,j) CIp™,p* +1,...} x {1, 2} such that

ud =y, b 5 0. Thus, there is & > 0 such that ||(u,v)(0) — (Uo, Vo)llL> < 3
implies that ag)(O) 8 0. Using the assumption, we obtain that N vy = {(n,j)}-
Thus, Theorem 5.1(ii) shows that (u, v)(t) tends to (ug, Vo) for t — oo, i.e. (Ug, Vo)
is attractive. 1

Lemma 5. Let (up,Vvo) [H, (up,vo) & (0,0), be a fixed point of (1), and
denote the maximal multiplier by p. If p,.v,) = M and the set
{(n.Jj) TR, ...,p 3 < {1,2} : -An’n?® = p}
CLn,§) O™, p" + 1. 3= {12} pd =}
has at least two elements, then (ug, Vo) is not attractive.
Proof. Case 1. There are (ng,j1), (N2, j2) [CMN? such that (n1,j1) B

(uo,vo)

(n2,J2). We note that this implies that n; & n,. Then, for every & > 0, there is
¢ [(0,m/2) such that
LEh

[ Ny
2(1—cos¢) bUY + plad <2,
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We set L CoG2) o . .
cos$ —bn; sing  for (n,j) = (N, j1)
cd) = %Psinqamﬁj)cosq) for (n,j) = (N2, j2) .
n) otherwise
AN - o
Then (URVE) = 2 (nj)nk(L2) cPed sin(nm) is a also fixed point of (1).
Since
o , | — _
”(Uo,Vo[) - (UO!VO)“LZ = Cg) - bg)
(1) NG, w0
o~ N S T ;
= bd(1 —cos¢) +bdIsing  + —bUD sing + bJ2)(1 — cos ¢)
=y vu e P P

=2(1—cosd) bd» + pda) <3,

there is a fixed point of (1) in every d-neighbourhood of (ug, Vo), i.e. (Ug, Vo) is not

attractive.
S
Case 2. The set Ng, ., has only one element.

Then there is n [1,...,p~} such that P, .vo) = —AN?T2. Since Mo vy = M
by assumption and p = —Am?, it follows that n = 1. For every d > 0 we set

@ v
U5 v := (uo, vo) + o & 2sin(m) CLP =< L2,
o 2 1S
1

By Theorem 5.1(iii), the solution (u,v) of (1) with initial value (u§lv5) tends
to a periodic solution and, thus, does not tend to (up, Vo). Since [|(u§vE) —
(uo, Vo)|lLz = 8/2 <3, the assertion follows. 1

Now we deal with periodic solutions.

Lemma 6. If we have p = —Am?, then each periodic solution of the form
(UP,VP) 1= (U, V) 1;1q 5, (k.j) rE3 1S Stable.

Proof. 1. Let I ;= {(uP,vP) : 0 =< t < T} be the periodic orbit. Further-
more, we note that (uP,vP) has period T = 2n/p;. We denote the coe [cieht
functions associated with (uP, vP) by (ap)ﬂ‘) : R = R. By definition of (uP,vP) :=
(U, V)1: 05 :(k.jy E3 IN Section 4, we get (ap)ﬂ‘) =0foralln [{2,...,p"} and for
all (n,k) b+, p* +1,...3 < {1,23 \ E;. Furthermore, we have (a®){" (0) > 0,
(ap)§2> (0) = 0. We consider the function

hP: R XD (@) (0) exp(ut)bue veyoy(t) CRI.
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As shown in the proof of Theorem 4.2, hP is positive and periodic with period T.
Thus, we get hf. := max{hP(t) : t [0, T]}, h? := min{hP(t) : t []0, T]} [0, o0).
2. We take 8 [(D,1). Let (u,v):[0,00) — L2 x L? be a solution of (1)
such that dist, = {(u,v)(0),'} < 6. This means that there is T []d, T) such that
[[(u,v)(0) — (UP,VvP)(T)||Lz < 6. Let an D pe the coe [Tight functions associated
with (u,Vv). We set
I—._I —

51
h: [0,c0) CED a‘1><0> + a<2’(0) exp(Ub oy (D [0, ),

. h(t)
q: [0, 00) (I3 PEs T [0, o).

It is easy to see that
——]

R 1 1 1 1
hrROB  @P @ + @)P @) exput)bue vy ()

is also a periodic solution of the ODE (5) (see proof of Theorem 4.2) which de-
fines hP. Furthermore, we have ﬁ(O) = hP(1). Since the solution of (5) is unique,
we get ﬁ(t) = h(t+ 1) for all t CRL Thus, we get
“’(0) + a2
q(t) = =3 bt
@O - @O

beu,vy(oy (1)
B2 oy oy (D)

If we have E; 8 [ then we define [a,j) for all (n,j) CEL by

ad(0
= F—e

51
EERE

Then we get
cie |
v @©

%D(t)em +a? )e!? QE sin(m) + \/5 anag(t)eﬁj) sin(nn-)@

] 0 (n,j)Ed L

1. ]
% a® (t)ed sin(nm-)
=

ME4,n>1
MDEE L

=:S3
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Since (n, J) [CEhL implies that (n,2 — j) [EL, we get

]
s2= %1) (t)e(l) + a(z) (t)e(z) E%_,_ (k) ®
[

S%l HaprE o -

2
SlZ

Given r > 0, O(0") is said to be an expression which does only depend on 3
such that O(d")/3" is bounded for & [01 Using the fact that ||(u,Vv)(0) —
(uP, vP)(1)]|L2 < 0, we obtain

(10) %ap)r&” (T@r 0(%) < %awo@s %ap)ﬁ’ (r)@ 0(3) for all (n, j),

(of course, we get di [erent expressions O(d) for dilerknt (n, j)). Hence, we get

%” ®ef” +a (el D%

2
S11

hz(tL a{" (0) cos(pst) — a? (0) sin(pt))ef”
(1) (0) + a(2) (0)

+ @O sin(pst) +a? (0) cos(pat))e?

[ L1 L]
@)P@ "+ (ap)<2’<r)
= ?(O)(hP(t+ 1)) — =
a(l) (0) + a(2)(0)
« O 0 costout) - 4P @ sinpae?

+ @O sin(pst) + 8P (0) cos(pat))e?

< (O (hP(t + T))%(L + O(3))
x E@](ap)?)m cos(pst) — (@) (1) sin(p.t))es?

+ (@) (1) sin(pat) + (@) (1) cos(pst))el? E%+ 0(@3)
= 2(t) @j(ap)i” (t+ 1) cos(pat) — (@)D (t + 1) sin(pst))es”

+ (@)t + 1) sin(pat) + (@) (t + 1) cos(pi1))el? E%+ a2()O(3) .
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Using the fact that E; is a finite set and that

E Do NO) E
%,j) - [a,j)éz .—l ( ) — = (a ) (T) .

=1 -
F a‘1><0> + a<2’(0) @) (1) T (ap)‘z’ (r)%@

=0(9)

by (10), we obtain that
| I ] R P 1
sf, = al) =n@ (Ea,,-))2
(nj)E n.j) (€3

O
< g?()(h°(t + 1)) (Leh.j»)? + O()

(n.j) Ed

[ 1 L]
=g°(t) @)P+1) +9*1)OO).
(n.,j) (E1

Let C be defined as in Lemma 2.2. Furthermore, we get

it L] Ol L L
Tole® + Be(z)@s a’+p% 2 max |[e9)]| for all o, [R
i 4} n M n 1
o= 5 |

Thus, we get

_ 1. )
S22 = %2 a®d (t)ed sin(nn-)%

(nj)IEd,n>1 >
| —
=m ad(t)
o | I— N R P
2
=m0 a®(0)
a(l)(O) + a(z)(O) (nJ)IEZ,n>1
1 1
h2(t}_| 1
= m &1 Lad)(0) — (aP) L1
a0 + a2(0)  pELne E‘-mﬁ-b

2 | -
=mEg i 2D () - @P(0)
(1)(0) + a(z) (0) (b k{123
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2
< M 5O — (PR
aP’© + a(0)

- d 1 P
< SEMOPE+T)) @O+ @Po
¢ L0+ 0

= (PO +0E)3?
= A()0(?).

It we put these three results together, we get
[1u, V)OllLz < a@®II(uP, vP)(t + T)]|L2 + a(t)O(d) .

Analogously, we get [[(u, vV)(®)]|Lz = q(b)||(uP,vP)(t + T)||_2 — q(t)O(d). Further-
more, we have 1 — O(0) < q(0) = 1+ O(3). We set m_ := min{||(uP, vP)(1)||_= :
0=t=<T}>0. Then it follows that there are y, d; > 0 such that for all 6 (0, éq)

O<7SQ(O)S7<°°,
1+ L8 1— 5%

and forallt=0
—y3q(t)+q@®]|(uP, vP)(t+1)|[Lz < [|(u, V)(D]lLz < g(®)]|(uP, vP)(t+T)|[2 +Ydq(t) .

3. We introduce the compact interval

1 1

I .= ! ! m, 00)

1+X08"1—- 193

By Step 2, we have q(0) [I3. We want to show that q(t) [IJ for all t = 0.
If we have

qt) < ey 1
m—
for some t > 0, then an elementary computation shows that

q(t) - m-

1—qt) oy

By definition of m—, we get (1 — q(t))||(uP, vP)(V)||L= = dyq(t). Using Step 2, it
follows that

1, VI®llLe < a@®IIUP, vP)(t + 1)Lz + yda(t) < [I(uP, vP)(t +T)l|L= -
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Analogously,
1
W=t

implies that [[(u, v)(®)]]2 > |](uP, vP)(t + T)||_2. Since we get

[ 1 O] o
Sa0 =00 8 MWVOIR: =g IPP)E+ DI

the function q is increasing whenever it is smaller than 1/(1+ -Y-3) and decreasing
whenever it is larger than 1/(1 — -Y-3). Since we have q(0) [13, it follows that
q(t) I3 for all t = 0.

4. By definition of I3, there is n > 0 such that I 11— n3j, 1 + nd] for all
0 [(0,06p). Thus, Step 3 gives1—nd <q(t) =1+nd for all 6 [(D,dp).

We set m. := max{||(uP,vP)(®)||L2 : 0=t =<T3} > 0. Then Step 2 implies that
forallt=0

[1(u, V)(®) = WP VPt + D)l < %(u,V)(t)lle = 1P, vP)(t + T)IILE
= [I(uP, vP)(t + DIz |1 = a(t)] + ydq(t)
= ndm4 +yd3(1 +nd)

< (am+ + vt yNdo)d.

=:Co
Since Cy does neither depend on & nor on the solution (u, v), we can set
0(g) := min{dp,e/Co} for any given € > 0.

Then, ||(u, v)(0) — (UP, vP)(T)]|2 < d(g) implies that ||(u, v)(t) — (UP, vP)(t +T)|| 2
< g for all t = 0. Since dist 2 {(u,v)(0),I'} < 6(¢) implies that there is T [
[0, T) such that ||(u, v)(0) — (uP, vP)(T)||L2 < 6(€) holds (by Step 2), the assertion
follows. 1

Lemma 7. If we have p = —An? and urq) Buforall (n,j) CIpH,pr+1,...}x

{1,2}, then each periodic solution of the form (uP,vP) 1= (U,V)1.g ;) :kjyEa 1S
attractive.

Proof. We denote the period of (uP,vP) by T and set I' := {(uP,vP)(t) : 0 =<

t < T}. Furthermore, we denote the coe [cieht functions associated with (uP, vP)

@), (n.j) CR-x {1,2}. Since the period index of (uP,vP) is 1, we get
@) (), @)P ) 2 (0,0) for all t CRL Thus, we have

1
d ;= min E@ap)gl)(t)egl) + (ap)f)(t)ef) t JO0,T] >0.
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Let (u,v): [0,00) - L?%xL?bea solgtign of (1) whigh-satisfies dist 2 {(u, v)(0), '}

< J. By definition of 3, we have agl)(O),af)(O) 8 (0,0). Therefore we get

Nwwo = {(1,1),(1,2)}. By Theorem 5.1(iii), it follows that dist, > {(u, v)(t), '}

- 0 (t - o0), which completes the proof. 1
Lemma 8. Let (uP,vP) := (U, V)1;rg ;,:(k.j) =3, be @ periodic solution of (1),

and denote the maximal multiplier by p. If p = —An? and u,ﬁmz p for at least

one (n, ONCp*,p* +1,...} x{1,2}, then (UP,VvP) is not attractive.

Proof. By assumption, there is (n, )d Cyp™,p* + 1,...} x {1, 2} such that

uﬁm: i = —An?. This means that (n, DJCEL. For every d > 0 we set

_
(us, vs) := (uP,vP)(0) + ge,(Pj 2sin(nm-) 1P < L2,
Let (G,V) be the solution of (1) with initial value (ug,Vvo). By Theorem 5.1(iii),
(u,v) tends to a periodic solution of the form (u,v)l;[aj);(k,jmﬂ(r + ) with

Gy = by for (k,j) CEL\{(n, D} and

(2P (0) +5/2

[al ;= E—] 51
ﬁp)?’w) i ﬁpﬁ”w)

0/2

= @,m+ | i_il

@) (0) i ﬁp)&” 0)

where (ap)S) should be the coe Lcieht functions associated with (uP, vP).

Since we have Ea’mE [a,m (G, V) does not tend to I := {(UP,VP)(1) : 0 <t =<
T3} where T is the period of (uP,vP). Since ||(u,Vv)(0) — (uP,vP)(0)||L2 =d/2 <6,
there is an element (ug, Vo) of L2 < L2 in every neighbourhood of (uP, vP)(0) such
that the solution of (1) with initial value (us, vs) does not tend to I'.

This shows that the periodic orbit I" is not attractive. 1

We can put all these results together and get the following

Conclusion. Let p be the maximal multiplier.

() A fixed point (uo, vo) [Elis stable if and only if pey,,ve) = K-

(b) A fixed point (uo,Vvo) [H is attractive if and only if p,v,) = K and
N(uo,vo) has only one element.

(c) A periodic solution (uP,vP): R - L2 x L2 is stable if and only if the period
index is 1 and p = —AmZ2.

(d) A periodic solution (uP,vP): R — L2 x L? is attractive if and only if the
period index is 1 and N¢e vey0y = {(1,1), (1, 2)} (which implies that p = —AT?).
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7. Stable Manifolds in the Non-Critical Case

In this section we use the results of the previous sections in order to determine
the stable manifolds for all fixed points and periodic solutions in the non-critical
case.

Definition 1. For (up, Vo) [CFElwe define the stable manifold by

W S(uo, Vo) := %ID,VS [CLF < L2 : solution (u,Vv): [0, ) — L2 x L2 of (1)
with (u, v)(0) = (u5vH -
fulfills (U, V)(t) - (Uo,Vo) (t — ©0)

Let (uP,vP): R — L2 x L2 be a periodic solution with period T > 0 and denote
the periodic orbit by I := {(uP,vP)(t) : 0 <t < T}. Then the stable manifold is
given by

Ws(r) = %ID,V@ ¥ x L2 : solution (u,Vv): [0,00) — L? x L2 of (1)
with (u, v)(0) = (u5vH -
fulfills dist,2{(u,V)(),T} - 0 (t - o0) .

Remark 1. We note that Definition 1 does not imply that WS is actually a
manifold although we call it the ‘stable manifold’. But we will soon see that W$
is a manifold so that the denotation is motivated.

Theorem 1. We take (uo,Vo) [CH and denote the corresponding coe [Ciehts
by bd). Furthermore, we set E := {(n,j) ", p"+1,...} x{1,2}: uﬂ) =
H(uo.vo)}- Then we get

1
WS(Uo, Vo) = (USVY CIF % L2t pucyty = Huo,vo)
sgn(bd?) = sgn((®JL) for all (n,j) CH,
b OYR = I for all (n, j), (m, k) CH,

Y9 =0 for all (n, j) E{1D P> {1,2}
such that —An?m? = ey, ve)

Proof. 1. We take (u5'v [P x L2 such that Hcyy = Heugvo): sgn(b?) =
sgn((bY9) for all (n,j) B, b@ X = 0P for all (n, j), (m, k) CH, and
0P =o0forall (n,j) CLL,...,p~} x {1, 2} such that —An?m2 = L, ). Then
Theorem 5.1(ii) shows that the solutions of (1) which have initial values (ug, Vo)
respectively (u5'vD tend to the same fixed point which is, thus, (ug,Vvg). Hence,
we get (USvY WS (ug, vo).
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2. We take (u5'v [CWS(uo, Vo). Let (u,v) be the solution of (1) with initial
value (U5vY. If we had vy B o .vo), then (u, v) does not tend to (uo, Vo) for
t — oo by Theorem 5.1. Thus, we get Ky = H(uo,vo)-

If we take (n, j), (m, k) CH, then the coe [cieht functions associated with (u, v)
satisfy

ag)(t) :(erq)b(uE,k/q(t) EXp(p(u:’\,gt)

If we had b (5% & (IPbSE, then we would get (03 & 0 or (VI & 0.
W.l.0.g. we assume that (03¢’ £ 0. Thus,

am (1) _ (0

W="9P0 - o

is constant (i.e. independent of t). Since (U5vY CWWS(ug, vo) implies that q(t) —
b /b (t = o0) and b /b 2 YR /(YL we get a contradiction. Thus, we
have b (YK = L6 for all (n, j), (m, k) CE. _

If there was (n,j) C{L,...,p"} x {1 2} such that (099’ & 0 and —An?n2 =
Hrvy, then we would get (n, j) EISI UV which |mpI|es that (u,v) tends to a
periodic solution by Theorem 5.1(iii). Thus, (u5v) [CWS(uo, Vo) implies that

6P =0 for all (n,j) CLL,...,p~} < {1, 2} with —An2n2 = L, ve)-
Using Theorem 5.1(ii), we see that sgn(b®’) & sgn((0Y) for some (n, j) CB
implies that (u5'v does not tend to (ug, Vo). Therefore, we have

1
WS(u, Vo) UiV CLF = L2t peucyty = Heuo o)

sgn(b) = sgn((©HL) for all (n,j) CH,

b (1FI = (bYLbE for all (n, j), (M, k) CH,

0P =0 for all (n,j) CL1,, oy P> L2}
such that —An?m2 = P ve)

and the proof is complete. 1

Remark 2. If (uo, Vo) CFHlis a fixed point such that —An?m2 & i, vy for all
n{,...,p }and uﬁ) = H(uo.vo) foronly one (n,j) CLH™, p™ +1,... 3 x<{1,2},
then we get

— 1
WS(Uo, Vo) = (USVY [P % L2 purvy = Keuo ey, SAN(MYY) = sgn((bHP)

As a consequence of Theorem 1, we get



ON THE LONG TIME BEHAVIOUR OF SOLUTIONS 327

Theorem 2. We take (up,Vvp) [CH. Then WS(ug, Vo) is open if and only |f
H(uo,vo) Coincides with the maximal multiplier p, we have u 8 —An? and p = u
for only one (n,j) CIp*,p* +1,...} < {1,2}.

Proof. 1. We assume that o vy = H, H B —An?n? and p = u® for only one

(n,j) P, pt+1,...3x<{1,2}. We take (n,j) CH*,pt +1,...3x{1,2} such
that un) = Wu. By Remark 2, we have
1 1

WS(Uo, Vo) = (USVY CIF % L2 : peucyy = Heuowvoyr SIN(MYY) = sgn((0HP)

We take (u5v W S(ug, Vo). Let (b@‘mbe the coe [ciehts associated with (u5'vD.
Then (uf v@ [CWS(uo, Vo) implies that sgn((0J9’) = sgn(®?’) 2 0. We set
5 := 05| > o. If we take (u”ﬂv[@ [P x L2 with [|(uTvT) — WSV < 8,
then we get sgn(bn ) = sgn((bm}(l ), which means that pmymy = H,ve) and,
thus, (U™vT WS (uo, Vo). Hence, WS(ug, Vo) is open.

2. We assume that W*(uo, Vo) is an open set. We take (n, j) [NIx {1,2} such
that u =pQ ifn=p* oru=—-An2n2if n<p—. If we had H(uo.vo) < M, then for
every (ub'vy [WS(ug, Vo) and & >0

o®
W=

would not be contained in W*(uo, vo) because of pmymy = H > Heuo,ve)- HeNce,
W (uo, Vo) would not be open. Thus, we have g .vo) = H.
We take (u5vY W S(ug, Vo). If we had —Am? = p, then

ROV
VY = Wy + %1)” 2sin(m)

would not be contained in WS(ug, vp) for any 8 > 0 since the solution of (1) with
initial value (u™v™ tends to a periodic orbit by Theorem 5.1(iii). Thus, we get a
contradiction as above.

We take (n,j) NG,y We assume that there is (m, k) CLp*, p™ +1,...} %

{1, 2} such that (n,}) & (m,k) and u( ) = = M. Given & > 0, we consider

= 5 e V- .
BV = vy + 2760 2sin(mm).

We get a contradiction as above if we can show that (u™vT is not contained in

WS (ug, Vo) for every 6 > 0. We note that the corresponding coe [ciehts satisfy

b= Y for all (g, DIE (M, k) and (BTEK & Y. Thus, it follows that
L1 [ | — R P

6P B (ChI%s

(@, DTNE, iy, @.DING cy iz
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Hence, we have (0MY = 059 and

ey OO N Co
L1 - L1
() ()
@OING gz @OINg, 5 O

which shows that the solutions of (1) with initial values (u5'vY respectively (u™vT
tend to di[erknt elements of F by Theorem 5.1(ii). This completes the proof. [1

Theorem 3. Let (uP,vP): R - L2 x L? be a periodic solution of (1). We
denote the period by T, the periodic orbit by I and the period index by n. Fur-
thermore, we denote the corresponding coe Imht functions by (ap)m , and set
E:={(m,j) CIp*,p* +1,...3}x{1,2}: p& = —An?n2}. Then we get

1
WS(M) = (Uo,Vo) CIF < L2 : Ugyyve) = —ANT?,

b @) (0)

—1 —
'D@EI_zJ_II_I T 1 51
1

b + b @)P0) + @)P(0)

for all (m,j) CH .

Proof. 1. We take (Uo, Vo) [P x L2 such that U, .v,) = —An?n?, and

for all (m,j) CE.

O T b(z)@_ (ap)‘l)(o) - @0

Then Theorem 5.1 shows that the solutions of (1) with initial values (ug, vo) re-
spectively (u,v)(0) tend to the same periodic orbit which is, thus, I'. Hence, we
get (ug, vo) CWA3(I).

2. We take (Uo, Vo) [CIF x L? and denote the solution of (1) with initial value
(Uo, Vo) by (u,v). If we had py,.ve) B —AN?m?, then (u, v)(t) would not tend to I
for t — co by Theorem 5.1. Thus, we have [y, .v,) = —AN?T2.

We take (m, j) [CEL. Then the coe [cieht functions associated with (u, v) satisfy

a) a)
t b
b () 5 u'l;' —57 forall t=0.
WD+ a0 b’ "+ b

Since

@) ®

R I3
'GP)SP ® = ﬁp)&”(t)

[R




ON THE LONG TIME BEHAVIOUR OF SOLUTIONS 329

is a constant function, dist_2{(u,v)(t),'} - 0 (t - oo) implies that

ol ESS )\, (C) N—
—1 1 ] — [ -
b "+ b @)P©)  + @)
This completes the proof. 1

Theorem 4. Let (uP,vP): R - L2 x L? be a periodic solution of (1) with
period T and periodic orbit . Then W*3(I") is open if and only if the period
index is 1, the maximal multiplier p coincides with —Ar? and pu & u$’ for all
(n,j) C*,pr+1,...}x{1,2}.

Proof. 1. We assume that the maximal index is 1, the maximal multiplier p
coincides with —An2 and p £ p& for all (n, j) CIp, p* +1,...3 < {1,2}. Thus,
Theorem 3 gives

L] (-
WS() = (uo, Vo) CIF % L? : pyeve) = —AT? .

]
We take (ug, Vo) W S(IM). Then the corresponding coe [ciehts satisfy bgl), bf)

& (0,0). Thus, there is & > 0 such that ghq coe Iﬁﬁhqﬂ%j) of (uv [CIF x L?
with [J(uVY — (Uo, Vo)|lLz < & satisfy (052, (03® & (0,0). This means that
Hwovy = —AT? and, thus, (u5v WS (ug, Vo). Hence, there is a neighbourhood
of (ug, Vo) which is contained in Ws(I"), i.e. W3(I") is open.

2. We assume that W3(I) is an open set. If the period index was larger than
1, then for every & > 0 the solution (u, v) of (1) with initial value

5 @

e _
uSvY == (P, vP)(0) + Em 2sin(m)

would not tend to I by Theorem 5.1(iii). Thus, the period index must be 1.
If there was (n, j) CIp+, p* +1,...3 x {1, 2} such that p&’ > —An2, then the
solution (u, v) of (1) with initial value

-V
U Y = (uP, vP)(0) + ger({) 2sin(nm-)
would tend to a fixed point for every & > 0 by Theorem 5.1. Thus, there is no
such (n, j). )
If there was (n,J) X1, 2} such that u,&” = —An?, then the solution (u, V) of

(1) with initial value

VY = (uP, vP)(0) + geg)vi sin(nmt-)
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would tend to a periodic orbit which does not coincide with I by Theorem 5.1(iii)
for every 6 > 0.
This gives a contradiction as above and completes the proof. 1

Thus, we have determined all stable manifolds. Using Theorems 1 and 3, we see
that these stable manifolds are indeed manifolds. We also get the codimensions of
these manifolds just by looking at the formulas given in Theorems 1 and 3.

We want to construct an open and dense subset of L2x L2 in which the dynamics
can easily be described.

Theorem 5. Let p be the maximal multiplier and set

1. N
E:= (nj) CHp +1,...3x{1,2}:u® =p .
We introduce

f._ s
A U W (u01 VO) il
(up,vo) [E1

Hfuj \,?)=l‘l

[eh.jy [Rfor oy W S HU V) gy ()t ERY) if —AT? =,
(. otherwise.

AP =

Then A := AT AP is open and dense in L2 x L2. Furthermore, we get

A = {(uVY CIF =< L?: pray = M3

Proof. We set B := {(u5v) [CD? x L? : poyy = W} Itis clear that B is
open and dense in L? x L2, Thus, it only remains to show that A = B. Using
Theorems 1 and 3, it follows that A [Bl

In order to show that B [CA] we take (u5'vD) R and denote the solution of
(1) with initial value (u5vY by (u,v). By Theorem 5.1, (u, V) tends either to an
element (up, vo) of F or to a periodic orbit. In the first case, Theorem 5.1 ensures
that pg.ve) = Heurvy = K. Thus, we have

1
(' WS(ug, vo) = AT [CAL
(up,vo) [E1
Ho.vo)™+
In the second case, (u, v) tends to a periodic orbit {(U, V)m;rg, ;,:(n j) r=s, (D 1 t LR}
with m C{,...,p"}. Since Pcyy = M, we have m = 1 and p = —An?. Thus,
we have E, = E, and we get (uv CAP [CAl |

As an easy, but interesting consequence, we get
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Corollary 1. We assume that the maximal multiplier p satisfies —p < g(0).
(i) We assume that p & —An? and there is only one (n, j) CLp*, p*+1,...}x
{1, 2} such that uf{) = W. Then
Ld—/3 L1 v -
ws g i(—wed 2sin(nm) WS — g-i(—ped 2sin(nm:)

is open and dense in L2 x L2,

(i) We assume that p = —An? and there isno (n, j) CLp*, p*+1,...3x{1,2}
such that uﬂ) = W. Then E; defined as in Theorem 5.1(iii) is empty,
(u,Vv); is a periodic solution with corresponding periodic orbit ', and the
stable manifold WS (I"1) is open and dense in L2 x L2,

By Corollary 1, we have a good description of the dynamics in an open and
dense set provided that we are in the non-critical case (as always in this section)
and the assumptions of Corollary 1 are satisfied. Since these assumptions depend
only on the di[udion constants A1, A, (because the maximal multiplier does only
depend on Az, A2), we can examine the set of all non-critical di[udion constants
such that the assumptions of Corollary 1 are valid. We will show that this set is
open and dense in (0, o0) % (0, o0).

Lemma 1. There is a set C [(Q, o) x (0, o), which is open and dense in
(0, 00) % (0, 00), such that each (A1, A2) [Clis non-critical and for all (A1, A2) [T
the maximal multiplier g = (A1, A2) coincides only with one element of

Moy = {=AnPm? 1 0<n<p (A, A2)} Y :n=p" (A1, A2),j = 1,2}

(We note that A as well as ug) for n = p* (A, A2), depend (only) on (Ag, A2).)

Proof. 1. Let C” (0, o) x (0, o) be the set of all non-critical di[dion con-
stants. It is easy to verify that C5is open and dense. Thus, it is su [cieht to show
that C is an open and dense subset of C™ Given (A1, A») [CI5 we introduce

C—L —
- A 2
Four : [PT(AL, A2), 00) [XIB —Am2x2 + % méx4 —1 [RI.

An elementary computation shows that f(,, »,) has exactly one (absolute) maxi-
mum and f, a,)(X) - —o0 (X - o).

2. In order to show that C lies open in C5 we take (A1, A2) Q. We denote
the corresponding maximal multiplier by u = p(A1,A2). Furthermore, we set
P* =p" (A1, A2) and pT = pT (Ag, Az).

Case 1. Thereisn [{1,2,...,p } such that p = —An?n?.

Since p is the maximal multiplier, it follows that p = —An2. By definition

of C, this means that f, »,)(n) < p for all n {pb*,p* +1,...}. Since each



332 M. BUGER

Tau ) (N) depends continuously on (A1, A2) and iy, »,) is decreasing in some
interval (X, x,), ©), there is a neighbourhood Q of (A1,Az) in (0, e0) % (0, o)
such that gy (n) < —mM2(Af+A5)/2 foralln CHT(AL D), p* AL A +1,...3,
(ADAS) Q. Thus, we have Q n CHP Ll _
Case 2. Thereis (n,j) CIp™,p*" +1,...} < {1,2} such that uﬂ) =W
Since p is the maximal multiplier, we get j = 1. Furthermore, we have —AT? <
u (by definition of C). Using again the fact that f,, »,)(n) depends continuously
on (A1, A2), we get a neighbourhood Q of (A1, Az) in (0, o) % (0, o) such that for
all AL AY) [Q
() p*(A\DAD) =n,
(i) faoapn((n) > —T2(AD+ A5)/2,
(iii) ooy (m) < faoap(n) for all m CHTADAD, p" AR AD +1,...}.
Thus, we have Q n CH ]
Hence, C is an open subset of CY

2. We want to show that C lies dense in C&' We take (A1, A\2) CAQM\ C. For
all & > 0 we set (A3, A3) := (A1, A\2) + (5,8). Thus, we get A3 —A3 = A1 — A, and
(A8 +2A3)/2 = A+5. Therefore, we have (A3, A3) [CCIfor all > 0 and p(A3, A3) =
PALA2) =1 p, pTALAD) = pT (A1, A2) = p*, pT (AL AD) = pT (AL A2) =1 p.
Furthermore, we have

@D =pdD —n?n2  foralln CLH*,p* +1,...}

Case 1. There is at most one n [p*,p* +1,...} such that uﬁl) =

Since we have (A1,A2) MQ, it follows that u = —Am? and there is n = p*
with uﬁl) = M (because p coincides with at least two elements of M). We know
that f,, »,) has exactly one maximum; we take X, »,) b, o0) such that
f(7\1,7\2)(x(7\1,7\2)) is this maximum.

Since uﬁl) > u,(%) for all m 8 n, it follows that X, »,) C(h—1,n+1). We can
take 3o > 0 so small that X(s 53y [(h—1,n+1) forall & [(0,3do) because Foagy
depends continuously on (AT, A5). Thus, we know that

WD < maxf{)P :p* <k=n+1} forallm=n+2.

This means that the maximal multiplier pu® associated with (A3, A3) does not co-
incide with (u)$ for all m = n + 2.

Since the functions (0, dy) 413 (pf’),(Tl,) (R, m Cp+,pr+1,...,n+1}, are
continuous, there is d; < §p such that

WP < @) forall § [(0,8;), m CZp*,p™ +1,...,n+1}\{n}.
Furthermore, we have

N+, 2 2 2 @ 2 5\(1) 22 3\(1)
— =57 = AT —dM° = p—Om” = Wy’ —0m” = (W)’ +on (n“—1) = (1)~ .
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This gives p® = —@nz and 8 > () for all m = p*. This means that
A8, A8) Ca forall 3 [(0,5,).

Case 2. There are n,m CLp*,p* +1,...}, n B m, such that pﬁ,l) = p,(%) =MW

Since f, a,) has only one maximum at X, »,) (see Case 1), it follows that
XAy E@hing{n, m}, max{n, m}) and, thus, [n—m]| = 1. Hence, we may assume
that m = n+1 and X, »,) [, n+1). Analogously to Case 1, we get Xee gy
(n,n+1) for all 6 [{Q,0p), and, furthermore, there is 6; < dy such that

)P < @)D for all 3 [(0,8,), k [Lp*,p* +1,...3\{n,n+1}.
Thus, we have for all 8 [(Q,6;)
WP = pP —on’n? = i, —on’n > ped; —8(n+ 1P = (O,

ie. (PP > @)Y forall m CIp*,p* +1,...3, m E n. If we have —An2 =
then we get
N+A 32 2 2 @ 2 5\(1) 22 3\(1)
———5—"N" = —AN°=dN" = p—dn” = Yy’ —on” = (W)’ +on(n"—1) > (%),
and it follows that (A3,A3) [Q for all & [(D,d;). If we have —AT?® < y, then
there is 3, < 6, such that
N+AS,

—=o i < @)D forall 3 [(0,35,).

Thus, we get (A3, A3) [Q for all & [(0,5y).
Anyway, we have shown that in every neighbourhood of (A1, A2) CCI\C there
is at least one element of C, i.e. C is dense in C*
This completes the proof. 1
Theorem 6. There are open sets P, Ps, P, (0 o0) % (0, oo) such that
(i) Po P [P} is open and dense in (0, o) % (0, 00),
(ii) Po,Ps, Py are pairwise disjoint,
(iif) (A1,A2) CPh CPL [P} implies that (A1, A2) is non-critical,
(iv) (A1, A2) [P implies that all solutions of (1) tend to the zero solution,
(v) (A1,A2) [CPL implies that there is (n, J) CIH" (A, A2), pr (A1, A)+1,...}
x {1, 2} such that
— 1 VA I
WS (1) g7 (=1, A2))ed’  2sin(nm)
o1}

is open and dense in L2 x L2,
(vi) (Al’lﬁ) [P}, implies thﬁ (u,Vv); is a periodic solution of (1) and
WS {(u,v)1(t) : t CR} is open and dense in L2 x L2,
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Proof. 1. Let C be defined as in Lemma 6. Then we set

Po = {0, A2) LT —u(h, A2) 2 ()} -
Pei= O A2) [0 —u(h,A2) < 9(0), i, Ao) = —An”
Poi= (A, A2) LT —p(A, A2) < 9(0), KA, A2) B —AT

By Lemma 1, (i), (ii) and (iii) are valid.
2. We take (A1,A2) [Ph. Then we have Ny, .vo) = N(OUO’VO) for all (up,vo) [
L2 x L2, and (iv) follows by Theorem 5.1.

3. We take (A1,A2) [CPL. By definition of C, there is exactly one pair (n,j) 1
{0 (A, A2), P, A2) +1, ... 3 {1, 2} such that u = p&’. Thus, (v) follows from
Corollary 1(i).

4. We take (A1, A2) [P},. Then (vi) follows from Corollary 1(ii). 1

This means that we have an easy description of the dynamics of (1) on an open
and dense subset of L2 x L2 for di [gion constants which are contained in an open
and dense subset of the parameter space (0, oo) x (0, o).
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