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APOLLONIUS’ CONTACT PROBLEM IN n–SPACE

IN VIEW OF ENUMERATIVE GEOMETRY

K. DRECHSLER and U. STERZ

1. Introduction

Let Σn−1
i , i = 1, . . . , n + 1, be (as a quadric) non-degenerated hyperspheres

of Rn, n ≥ 2, in “general position”. Apollonius’ contact problem asks to the

hyperspheres of Rn which contact each of the hyperspheres Σn−1
i . There are

finitely many ones. The number is 2n+1 as one can read, for instance, from [9].

In our present paper we want to establish them (and those related to the cus-

tomary variants of the Apollonius problem) — quasi as a footnote to the theory

— with help of Schubert’s calculus of the enumerative geometry – in the sense of

a solution of Hilbert’s 15th problem [8]. For this purpose we have to consider the

spheres over an algebraically closed field (C) and to parameterize and to compact-

ify their set. We shall do this, in a first step, via the equations by the complex

projective space Pn+1 of the coefficients.

The set of hyperspheres contacting a hypersphere Σn−1
i then corresponds to a

hypersurface Bi of order 2 in Pn+1. The set of hyperspheres contacting all of the

given spheres Σn−1
i corresponds to the intersection of n+1 such quadrics. In “gen-

eral position” written as an intersection product this yields Bn+1 := B1 . . .Bn+1 =

2n+1 points (spheres) because of Bézout’s theorem. At first, in Chapter 3 we shall

prove that this argument is correct.

The set of hyperspheres contacting a hyperplane Tn−1
i ⊂ Cn also corresponds

to a hyperquadric Li ⊂ Pn+1. The set of hyperspheres which contain a given point

corresponds to a hyperplane Pi ⊂ Pn+1. Using Bézout’s theorem we would get

BrLqPn+1−r−q = 2r+q. This is correct if 0 ≤ q < n+1 and 0 ≤ r ≤ n+1−q. The

case q = n+ 1 is that in which we consider the number of hyperspheres contacting

n + 1 hyperplanes. But this number has to be 2n regarding Schoute’s result [9].

Therefore, Bézout’s theorem can not be applied to this case.

We compactified the set of hyperspheres by “degenerations”: hyperplanes and

cones — which are at least yet hypersurfaces of Cn — , but also by the point π ∈
Pn+1 which corresponds to the hyperplane at infinity of Cn. We see that π /∈ Bi
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and π /∈ Pi, but π ∈ Li. Of course, Schoute did not count the hyperplane at

infinity under the solutions. But π is not an exceptional point of Pn+1. If we use

Bézout’s theorem to count the solutions it may be counted with an — ad hoc —

unknown multiplicity.

We ask for an other compactification of the open set of regular spheres so that

we know by which formula we have to replace the Bézout formula. Blowing-ups

seem to be adequate. We start with a blowing-up in π.

The point π is an exceptional one in the sense that it is invariant (stable) under

the group G of the complex similarities. This is a canonical group in context with

spheres. By the way, we use G to define correctly what we mean by the word

“general”.

After we shall have done a second blowing-up the image of Li under it does not

contain any G-invariant subset. It makes sense to ask for a correct formula on this

compactification. We represent it in the cohomology ring.

It is an comfortable fact that all this remains true if we replace for some i

the hyperspheres Σn−1
i or the hyperspaces Tn−1

i which have to be contacted by

d-spheres Σdi resp. d-spaces T di of smaller dimension d < n − 1. In the case of

hypersurfaces of order 2 this is not true. There one needs for each d a particular

blowing-up [7], [10].

Projectively spoken (n−1)-spheres are (n−1)-quadrics which contain the (n−2)-

quadric Ω : x2
1 + · · · + x2

n = 0 in the plane at infinity of Cn. The Apollonius

problem could be a special case of a problem about “complete quadrics” [10], [2].

But under the solutions of the problem about quadrics are those which fulfill the

contact conditions partially or at all in Ω. They are not solutions of the original

problem. One had to determine them and there multiplicities. In the case n = 2

it is done in [5], [6].

An other generalization of the classical Apollonius problem to plane curves one

can found in [4].

2. The Pn+1 as a Variety of (n − 1)-spheres

The set of all hyperspheres (of a real euklidian space Rn, n ≥ 2) is embedded

by the equations

(1) p0x
>x+ 2c>x+ pn+1 = 0, x ∈ Cn, c ∈ Cn,

in a complex projective space Pn+1 with coordinates

(2) p> = (p0, p1, . . . , pn, pn+1) = (p0, c
>, pn+1).

The set of hyperspheres is invariant under the group G of the complex similarities

(3) g : x 7→ %Ux+ a,

x ∈ Cn, U an orthogonal matrix over C, 0 6= % ∈ C, a ∈ Cn.
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With respect to (1) it acts on Pn+1 by

(4) (g, (p0, c
>, pn+1)) 7→ (p0, %c

>U> − p0a
>, %2pn+1 − 2%c>U>a+ p0a

>a).

Definition 2.1. We say that Pn+1 together with the action (4) of G is the

variety of (n− 1)-spheres.

This variety contains degenerated (n − 1)-spheres and that in the following

G-invariant algebraic subsets: the (non-degenerated) n-quadric Q with the ideal

q = (c>c − p0pn+1), the tangent hyperplane H to Q with h = (p0), the (n − 1)-

cone Φ with the ideal q + h, and the contact point π of H and Q with the ideal

(p0, . . . , pn). The G-orbits in Pn+1 are: Pn+1 \ (Q ∪ H) (the non-degenerated

complex spheres of Cn), Q \ Φ (the cones containing the non-degenerated hyper-

quadric Ω with the equation x>x = 0 in the hyperplane at infinity of Cn), H \ Φ

(the hyperplanes of Cn, which do not contact Ω), Φ \ π (the hyperplanes, which

contact Ω), and π (the hyperplane at infinity).

3. Apollonius Conditions

Let Σ̇d, d = 0, . . . , n− 1, be the complex d-sphere with the ideal

(x2
1 + · · ·+ x2

d+1 + 1, xd+2, . . . , xn).

The minimal subvariety of Pn+1 which contains all (n−1)-spheres of Cn contacting

Σ̇d is the quadric Ḃd with the ideal

(5) ḃd = (4(p2
1 + · · ·+ p2

d+1) + (p0 − pn+1)2).

Further, let Ṫ d, d = 1, . . . , n− 1, be the linear d-space with the ideal

(xd+1, . . . , xn).

The minimal subvariety of Pn+1 which contains all (n−1)-spheres of Cn contacting

Ṫ d is the quadric L̇d with the ideal

(6) l̇d = (p2
1 + · · ·+ p2

d − p0pn+1).

Finally, let Ṗ the linear space in Pn+1 of all (n− 1)-spheres containing the origin

of Cn.

Definition 3.1. Let g ∈ G. B = gḂd is the contact condition to the d-sphere

Σd = gΣ̇d. L = gL̇d is the contact condition to the linear d-space T d = gṪ d.

P = gṖ is the condition to contain x = g0. These conditions are the Apollonius

conditions.
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Lemma 3.2. There exist g1, . . . , gr+s+q, r + s + q ≤ n + 1, in G so that the

intersection

g1Ḃd1 ∩ · · · ∩ grḂdr ∩ gr+1Ṗ ∩ · · · ∩ gr+sṖ ∩ gr+s+1L̇dr+s+1 ∩ · · · ∩ gr+s+qL̇dr+s+q

is (n− r − s− q + 1)-dimensional.

Proof. Obviously, the only G-invariant subset contained in a Apollonius con-

dition A is the point π. Therefore, for each algebraic subset U of Pn+1 with

dimC U > 0 an element g ∈ G exist so that dimC(U ∩ gA) = dimC U − 1. Namely,

if U ∈ gA for all g ∈ G then a G-invariant subset S exists with U ⊆ S ⊆ A [3]. An

iterative argument completes the proof. �
In the case r + s+ q = n+ 1 we get the

Theorem 3.3. Let r and s in N with r + s > 0. Then there exist g1, . . . , gn+1

in G so that the intersection

g1Ḃd1 ∩ · · · ∩ grḂdr ∩ gr+1Ṗ ∩ · · · ∩ gr+sṖ ∩ gr+s+1L̇dr+s+1 ∩ · · · ∩ gn+1L̇dn+1

consists of a finite number of points of the G-orbit Pn+1 \ (Q ∪ H). Including

multiplicities this number is 2n+1−s.

Proof. Obviously, neither the conditions Ḃd nor the condition Ṗ contain the

point π and therefore a G-invariant subset at all. Therefore, for each algebraic

subset U of Pn+1 an element g ∈ G exists so that

U * gḂd resp. U * gṖ .

See [3]1.

We start an iteration of intersections with U = Q ∪H and end it with a giḂdi
or a gjṖ obtaining the empty set. So the points are not in Q ∪H. Therefore, we

can compute their number in the cohomology ring H∗Pn+1. It is generated by

the class of hyperplanes represented by any P . Because each B and each L is of

order two we have B ∼ 2P and L ∼ 2P in H∗Pn+1. It follows

(7) BrLqP s ∼ 2r+qPn+1 for r + s+ q = n+ 1

in H∗Pn+1. This proves the last part of the Theorem. �
Let Y be a hyperplane of Pn+1, Y 6= H, π ∈ Y . Then Y ∼ H ∼ P in H∗Pn+1.

Each contact condition L contains the G-invariant point π. The hyperplane of

infinity of Cn suffices each L. If we would determine the number of elements in

the intersection of n + 1 such conditions via H∗Pn+1 this hyperplane of infinity

will be counted with an certain multiplicity. The number 2n+1 is not the number

of the proper solutions of this Apollonius problem2. Therefore, we shall blow up

Pn+1 in the point π to the variety M̄n+1.

1Pn+1 is G-complete with respect to Bd and P [3].
2The point p G-properly satisfies L if p ∈ L but a g ∈ G exists so that gp /∈ L [1].
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4. The First Blowing-Up

Definition 4.1. Let M̄n+1 be the closure of the graph of the map which at-

taches to each non-degenerated (n− 1)-sphere its midpoint − 1
p0
c.

Lemma 4.2. The projection χ̄ : M̄n+1 → Pn+1 is a blowing-up with the cen-

ter π.

Proof. Let Yn a projective n-space with coordinates y = (y0, y1, . . . , yn)> =

(y0, z
>)>. We embed M̄n+1 in Pn+1×Yn. Then M̄n+1 is described by the ideal

(8) m̄ = (yipj − yjpi)(i,j)∈{0,1,...,n}2

in the doubly graded ring C[p; y]. �

We denote the inverse image χ̄−1D of an algebraic set D in Pn+1 by D̄. Then

q̄ = q + m̄+ (z>c − y0pn+1) is the ideal of Q̄, h̄ = m̄ + (p0, y0) is the ideal of H̄,

and
¯̇
ld = l̇d + m̄+ (y1p1 + · · ·+ ydpd − y0pn+1) is the ideal of ¯̇

Ld.

We denote the complete inverse image of π by Ē. The ideal of it is ē =

(p0, p1, . . . , pn). If one wants to interprete a point (π, y) of Ē as a (degenerated)

sphere then it is the hyperplane at infinity of Cn with any point of the projective

closure of Cn as midpoint.

The action of the group G is lifted to Yn and M̄n+1. G acts on Yn resp. Ē

because of (8) and (4) by

(9) (g, (y0, z)) 7→ (y0, %Uz − y0a).

Lemma 4.3. The closures of G-orbits of M̄n+1 are Ē, Q̄, H̄, Φ̄, Ξ̄ = H̄ ∩ Ē =

Q̄ ∩ Ē and Ψ̄ = Φ̄ ∩ Ē = Φ̄ ∩ Ξ̄.

Proof. The subsets Ē, Q̄, H̄, and Φ̄ are G-invariant because they are inverse

images of G-invariant subsets. The rest of the closures of G-orbits on M̄n+1 must

be in Ē. We see by (9) that Ē \ Ξ̄ is a G-orbit.

For the points of Ξ̄ holds y0 = 0. (That means that the midpoint lies in the

hyperplane at infinity of Cn.) G acts on Ξ̄ by

(10) (g, z) 7→ %Uz.

The subset Ψ̄ is described by z>z = 0. It is an exercise to show that the orbits

under the action

(11) O(C, n)× Cn \ {0} → Cn \ {0}

of the orthogonal group correspond to the values of z>z. Therefore Ξ̄ \ Ψ̄ and Ψ̄

are the G-orbits of Ξ̄. So we know the closures of the orbits on M̄n+1. �
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Remark 4.4. Each of it contains at least one point of Ξ̄.

This can be seen in the following manner. Because π ∈ Φ ⊂ H we have

Ξ̄ ∩ Φ̄ ∩ Ē = Φ̄ ∩ Ē 6= ∅ and therefore Ξ̄ ∩ Φ̄ 6= ∅.
The G-invariant subset Ξ̄ is contained in all contact conditions L̄. The inter-

section of n + 1 such conditions is not zero-dimensional. Therefore, in the next

chapter we shall blow up M̄n+1 along Ξ̄ to a variety M̃n+1.

Nevertheless, we shall compute the cohomology ring H∗M̄n+1 for we need it in

the next chapter.

Lemma 4.5. The cohomology ring can be generated by two elements repre-

sented by P̄ and Ē with the relations

(12) P̄ Ē ∼ 0

and

(13) Ēn+1 ∼ (−1)nP̄n+1.

Furthermore, it holds

(14) Ȳ ∼ H̄ ∼ P̄ − Ē and L̄ ∼ 2P̄ − Ē.

Proof. We have

(15) χ̄∗P = P̄ , χ̄∗H = H̄ + Ē, χ̄∗Y = Ȳ + Ē and χ̄∗L = L̄+ Ē

because π /∈ P resp. because π lies simply on Y , H and L.

Therefore, (14) is true. (12) follows also from the fact that π /∈ P .

If π : M̄n+1 → Yn is the projection and Y ′ is a linear divisor in Yn then

π∗Y ′ ∼ Ȳ . Because of Y ′
n+1 ∼ 0 in H∗Yn we get

(16) Ȳ n+1 ∼ 0

in H∗M̄n+1. From this with help of (12) we get (13).

Thus the relations (12) and (13) reduce the (n + 1)-th graduation to a one-

dimensional module. Using general arguments this suffices to complete the proof

of the Lemma 4.5. To be quite sure one can check the other graduations. Because

of the exact cohomology sequences it has to be dimHiM̄n+1 = 2 if 0 < i < n+1.�

5. The Second Blowing-Up

Definition 5.1. Let χ̃ : M̃n+1 → M̄n+1 the blowing-up of M̄n+1 along Ξ̄.
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We describe Ξ̄ by the forms

(17) s0,n+1 = y0pn+1, sij = yipj , (i, j) ∈ {0, . . . , n}2.

Then we obtain M̃n+1 in a product space Pn+1 ×Yn ×S(n+1)2 , where S(n+1)2

is a projective space with coordinates s = (s0,n+1, sij), (i, j) ∈ {0, . . . , n}2. Let m̃

be its ideal in the multiply graded ring C[p, y, s] and let S the symmetric matrix

zc> = (sij)(i,j)∈{1,...,n}2 .

We denote the inverse image χ̃−1D of an algebraic set D̄ in M̄n+1 by D̃. Then

q̃ = q̄ + m̃ + ( traceS − s0,n+1) is the ideal of Q̃, h̃ = m̃ + (p0, y0, s0j)j∈{0,...,n+1}

is the ideal of H̃, ẽ = m̃ + (pk, sij)k∈{0,...,n},(i,j)∈{0,...,n}2 is the ideal of Ẽ, and
˜̇
ld = ¯̇

ld + m̃+ (
∑d
j=1 sjj − s0,n+1) is the ideal of ˜̇

Ld.

We denote the complete inverse image of Ξ̄ by X̃ and its ideal by x̃. The

coordinates s00, s01, . . . , s0n vanish on X̃.

The action of the group G is lifted to M̃n+1. Because of (17), (4) and (9) the

action on X̃ is given by

(18) (g, (s0,n+1, S)) 7→ (s0,n+1, USU
>).

Lemma 5.2. No contact condition L̃ contains any G-invariant subset

of M̃n+1.3

Proof. We shall determine the minimal G-invariant subsets and shall show that

they are not in ˜̇
Ld for all d.

Because of Remark 4.4 the closure of each G-orbit of M̃n+1 contains a point of

the complete inverse image X̃ of Ξ̄. Therefore all minimal G-invariant subsets of

M̃n+1 are in X̃.

The subsets Ṽ (λ, µ), λ ∈ C, µ ∈ C, (λ, µ) 6= (0, 0), with the ideals

(19) ṽ(λ, µ) = x̃+ (λs0,n+1 − µ traceS)

are G-invariant because of (18). Ṽ (λ, µ) are varieties for λ 6= 0. By the way,

Ṽ (1, 1) = Q̃ ∩ X̃ and Ṽ (1, 0) = H̃ ∩ X̃. Ṽ (0, 1) is the union of the G-invariant

varieties Ẽ ∩ X̃ and W̃ where W̃ is the bundle over Ψ̄ with the ideal

(20) x̃+ (z>z, traceS).

The intersection of any two sets Ṽ (λ, µ) is the G-invariant (n− 2)-dimensional set

Ψ̃0 with the ideal

(21) x̃+ (z>z, s0,n+1, traceS).

Each point of X̃ \ Ψ̃0 lies in one and only one Ṽ (λ, µ).

3M̃n+1 is G-complete with respect to L̃ [3].
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The varieties Ṽ (λ, µ) for λ 6= 0 and Ẽ ∩ X̃ are sections in the bundle X̃. That

means that to each point of Ξ̄ and to each point λ : µ of P1 exact one point exists

in Ṽ (λ, µ). Because of the action (11) Ψ̃0 and Ṽ (λ, µ) \ Ψ̃0 for λ 6= 0 are G-orbits.

Just so Ψ̃∞ = Ẽ ∩ W̃ and Ẽ \ Ψ̃∞ are G-orbits.

Because of the action (11), too, each matrix S 6= O with traceS = 0 can be

transformed by O(C, n) in any matrix S′ 6= O with traceS′ = 0. Therefore,

W̃ \ (Ψ̃∞ ∪ Ψ̃0) is a G-orbit, too.

Thus the minimal G-invariant subvarieties of M̃n+1 are Ψ̃∞ with the ideal

(22) x̃+ (z>z, pk, sij)k∈{0,...,n},(i,j)∈{0,...,n}2 ,

and Ψ̃0 with the ideal

(23) x̃+ (z>z, s0,n+1, traceS).

Both do not lie in ˜̇Ld for all d. �

Lemma 5.3. There exist g1, . . . , gn+1 in G so that the intersection

n+1⋂
i=1

gi
˜̇Ldi

is a zero-dimensional set in the G-orbit M̃n+1 \ (Q̃ ∪ H̃ ∪ Ẽ ∪ X̃).

Proof. Because of Lemma 5.2 we can use the same arguments as in the proofs

of Lemma 3.2 and Theorem 3.3. �

Theorem 5.4. There exist g1, . . . , gn+1 in G so that the number of the non-

degenerated (n − 1)-spheres4 satisfying the contact conditions giL̇di, i = 1, . . . ,

n+ 1, is 2n.

Proof. The projection χ̄χ̃ isomorphically maps the G-orbit M̃n+1 \ (Q̃ ∪ H̃ ∪
Ẽ ∪ X̃) onto the G-orbit Pn+1 \ (Q∪H). Therefore, because of Lemma 5.3 we can

compute the number in question using the cohomology of M̃n+1.

Lemma 5.5. The cohomology ring H∗M̃n+1 can be generated by three elements

represented by P̃ , Ẽ and X̃ with the relations

P̃ Ẽ ∼ 0,(24)

P̃ X̃ ∼ 0,(25)

Ẽ2 + 2ẼX̃ ∼ 0,(26)

(Ẽ + X̃)nX̃ ∼ 0,(27)

P̃n+1 ∼ (−1)n(Ẽ + X̃)n+1.(28)

4These spheres are the proper solutions of this Apollonius problem.
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Proof. We have

(29) χ̃∗P̄ = P̃ and χ̃∗Ȳ = Ỹ

because Ξ̄ is neither in P̄ nor in Ȳ , and

(30) χ̃∗Ē = Ẽ + X̃ and χ̃∗H̄ = H̃ + X̃

because Ξ̄ simply lies on Ē and on H̄.

With (14) and (12) it follows

(31) Ỹ ∼ P̃ − Ẽ − X̃, H̃ ∼ P̃ − Ẽ − 2X̃

and

(32) P̃ (Ẽ + X̃) ∼ 0.

(13) leads to (28).

We get (25) because P̄|Ξ̄ ∼ 0 in H∗Ξ̄ (or because P̃ ∩ X̃ = ∅), and from this

and (32) we have (24).

Moreover,

(33) ẼH̃ ∼ 0

because Ē and H̄ transversally intersect in Ξ̄.

From (33), (31) and (24) it follows (26).

It is

(34) Ỹ nX̃ ∼ 0

because Ȳ n
|Ξ̄
∼ 0 in H∗Ξ̄. Therefore, with (31), (25) and (24) we get (27).

In the (n+ 1)-th graduation, at first, we have

(35) P̃ iẼn−i+1 ∼ 0, P̃ iX̃n−i+1 ∼ 0 and (−2)iẼn−i+1X̃i ∼ Ẽn+1

for i = 1, . . . , n because of (31), (24) and (26).

With (27) the third relation in (35) leads to

(36) 2nX̃n+1 ∼

(
n∑
i=1

(−1)i+12n−i
(

n

i− 1

))
Ẽn+1.

The coefficient of Ẽn+1 in (36) is 0 if n even and it is 1 if n is odd. Thus

(37) X̃n+1 ∼ 0 if n even and Ẽn+1 ∼ 2nX̃n+1 if n odd.
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The relation (28) under (35) translates to

(38) (−2)nP̃n+1 ∼

n+1∑
j=1

(−1)j+12n+1−j

(
n+ 1

j − 1

) Ẽn+1 + 2nX̃n+1.

The coefficient of Ẽn+1 in (38) is 1 if n is even and it is 0 if n is odd. So we have

(39) X̃n+1 ∼ −P̃n+1 if n odd

and with (37)

(40) Ẽn+1 ∼ (−2)nP̃n+1

for all n.

Thus the relations (24), (25), (26), (27) and (28) reduce the (n+1)-th graduation

to a one-dimensional module. Using general arguments this suffices to complete the

proof of the Lemma 5.5. To be quite sure one can check the other graduations. Ξ̄

is isomorphic to a projective (n−1)-space and, therefore, it has to be dimHiX̃ = 2

if 0 < i < n and dimHiM̃n+1 = 3 if 0 < i < n+ 1. �
Proof of Theorem 5.4 continued. We want to compute L̃n+1 in H∗M̃n+1. It is

χ̃∗L̄ = L̃+ X̃

because Ξ̄ simply lies on L̄.

Via (14), (29) and (30) we get

L̃ ∼ 2P̃ − Ẽ − 2X̃.

This together with (25), (24) and (35) leads to

L̃n+1 ∼ 2n+1P̃n+1 + (−1)n+1

(
n∑
i=0

(−1)i
(
n+ 1

i

))
Ẽn+1 + (−2)n+1X̃n+1.

The sum in parenthesis is (−1)n. Therefore, by (37), (40) and (39) we get the

result

L̃n+1 ∼ 2nP̃n+1. �

The blowing-up onto M̃n+1 can be interpreted — as in the case of complete

quadrics — in terms of the sets of the tangent d-spaces to the (n− 1)-spheres and

that for each dimension d. To describe complete quadrics one needs a separate

blowing-up for each d which can be given by the coefficients of the equation in the

Grassmann coordinates. In the case of spheres this coefficients are quadratic in pk
for all d and can be represented linear in sij .

Any point of the fiber over a point (π, y) of Ξ̄ can be interpreted to be the set

of d-spaces which contact an (n − 2)-quadric lying in the plane at infinity. The

one-dimensional fiber corresponds to the pencil of such (n− 2)-quadrics which is

generated by Ω and by the doubly counted polar at y to Ω. The sections of the

fiber by Ẽ, H̃ resp. Q̃ correspond in the pencil to the quadric Ω, to the polar at

y to Ω resp. to the tangent cone to Ω with the apex y. If (π, y) ∈ Ψ̄ so y ∈ Ω.
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Example. Let n = 3 and let di = 2, i = 1, . . . , 4. If the four planes T 2
i are in

general position (that means under enough action of G) then they are the support

planes of a tetrahedron. In general, the 8 solutions are non-degenerated 2-spheres:

– the inscribed sphere which contacts all faces of the tetrahedron inside,

– the 4 spheres each of which contacts one face outside and the other 3

planes inside and

– the 3 spheres each of which contacts two planes outside and the two others

inside whereby for each pairing the position of the planes decides which

of the pairs can be contact inside an which can be contact outside.

If the tetrahedron is not general some ore all of the last 3 solutions can be de-

generate into the plane at infinity. In the case of a regular tetrahedron all those

degenrate. The midpoints y of these degenerations lie in the plane at infinity.

They are given by the lines which join the midpoints of opposite edges of the

tetrahedron. The polars at the y to Ω : x2
1 + x2

2 + x2
3 = 0 are the diagonals in the

quadrilateral formed by the traces of the faces of the tetrahedron in the plane at

infinity.
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