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AN OMEGA THEOREM ON
DIFFERENCES OF TWO SQUARES, 11

M. KUHLEITNER

Abstract. Let p(n) denote the number of pairs (u,v) [N x Z with u2 —v2 =n.
Due to a formula of Sierpinski, p(n) is closely related to the classical divisor func-
tion d(n). We establish a lower bound for the remainder term in the asymptotic
expansion for the Dirichlet summatory function of p(n).

1. Introduction

As in part | of this paper [8], let p(n) denote the number of pairs (u,v) CNIx Z
with u? —v2 = n. For the more general case where the square is replaced by a
“k”-th power k = 2 see Krdtzel [6], [7] and the recent paper of Nowak [9]. Due
to an elementary formula of Sierpinski, our function p(n) is closely related to the
classical divisor function d(n) by

@ p(n)=d(n)—ZdII%H:—Ii-ZdI]%I,:I

where d(:) = 0 for non-integers, due to Sierpinski.
For a large real variable x, we consider the remainder term 8(x) in the asymp-
totic formula

[ N
TeO = p(n) = Jlogx +(2y — 13 +8(x),

n=

where y denotes throughout this paper the Euler-Mascheroni constant.
Upper bounds for 8(x) can be readily established as a trivial generalization of
the corresponding results for the Dirichlet divisor problem. It is known that

D(X) = xlogx + (2y — 1)x + A(X)

with
A(X) IjZ-_ii/73(|0g X)461/146 )
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(See Huxley [5] for this upper bound and the textbook of Kratzel [6] for an en-
lightening survey of the theory of Dirichlet’s divisor problem and the definition of
the O- and the Q- symbols.)
Concerning lower estimates, the author proved in [8], on the basis of [1] and
Hafner’s method [3], that
1 1 1
8(x) = Q4 (xlogx)*(log log x)©G+2199274 exp (—A logloglogx ) .

The aim of the present article is an Q_- result for 6(x), corresponding to that
of Corradi and Katai [1] for the divisor problem.

Theorem. N <
T(X) = > logx + (2y — 1)E +0(%),

with | .
8(x) = Q- xM*exp c(loglogx)**(logloglogx)~3/4

where ¢ is a positive absolute constant.

2. Notations and Lemmas

For large real x we define Py as the set of all primes less than or equal to X,
and Qx the set of all square-free integers composed only of primes from Py. We
write |Px| for the cardinality of Px and M = 2IPxl for the cardinality of Qx. We

then have O x O
[Px| 30X and M [exp 01@ ,
for some positive constant ¢;. The largest integer in Qy is bounded by €%, since
for g [CQx, we have  E—
logg < logp < 2x.
p=x

Let Sx be the set of numbers defined by
1 1
Sx= U= rq q whererq C{D,+1} and at least two rq £0 .
q [Qk

Finally let ]

n(x) = inf l@ﬁ + ZpELNith n [N, and p CS)
and
q(x) = —log (n(x)).

By a slight modification of the method used for the corresponding result in
Gangadharan [2], one readily shows the following lemma.
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Lemma 1. For X — oo we have
| " ]
x [CqX) Cexp c

2 log x
for some positive constant c;.

Lemma 2. There exists a positive constant c3 such that

% I:IX1/4 1

q3/4 i C3Iogx '

q [Qk

Proof. By the definition of Qx, we have

dta)

—1 Cp—
—5= (@1+2 p~3/%) = exp log (1 +2p~3/%)
q [Qk q p=Xx p=x
I | - Cyass [
= exp p34+0(1) [Cexp c3

p=x

logx *

As in Gangadharan [2] define for real z,

iz 4 e—iz
V(2) =2(cos(Z)2 =1+ ¢ °
2 2
and
9l 50
Tx(u) = V u q-— 7
q [Qk
Lemma 3. We have
(1) 0<Tx(u) <2M, for all u,
(2) THu) CMeM eX, for all u,
(3) Tx(u) =To+ Tyix+ Tox+ T3x Where,
To=1,
eomiza LM/
Tix = e 't
2
—
T3 X — hue UH'
H ISy

T, is the complex conjugate of Ty x and |h,| < 174.

29

Proof. The proof of Lemma 3 is straightforward by the definition of V (z) and

Tx(u).
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3. Proof of the Theorem

We start with the well known Voronoi identity for

= 30 Ty 1V O
Di(x) & 0 A(t)(1t=§+23f/§_]T2 o7 sin 4 m—g + O(1).
n=1

Inserting this in
(| |
8(x) = AKX) — 2AE§(J + ZAL_%(J ,

o V_
and substituting T =41 X, we get

-
E«T) € E@tdt
0

T3/2 _aéllé

ns74
n=1

—1
sin (T n—n/4)—25%sin(T n/2—mn/4)

1 L1
+2%2sin(T n/4—n/4) ,

with v_ [ 1
E(t) =2n 2n 0(t?/16n%) — 1/4 .
Define 1 1
P(X)=exp a— X
log x
such that

gx)=P(xx) and M? < P (x),
and let
ox = exp (—2P (X)).
Next define for fixed X,

v__
—2m 2mn8(u?/16m?)

Yx = Sup UL/2+17P ()

u=0

We may assume that yyx < oo, otherwise more than Theorem 1 would be true.
Thus

(2) yxul/2+l/P(X) + A+ E(U) >0,
v__
for all u, where A =2n 2n/4.
Let
5/2 QOD 1/2+1/P Ll
Iy =02 YU ) + A+ E(u) uexp (—0xu)Tx(u)du.

0

The next lemma provides an asymptotic expansion for J.
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Lemma 4. For X - oo,

E“:l _1 @Dlj(&,
q [Qk

Proof. Do deal with the first two terms of Jx, we observe that, for r = 1 or
r=3+sw

(R
u" exp (—oxu) Tx(u) du = (1 + r) o @0
0
+ u" exp (—oxu) Ti x(u) du
i=1,2,3 0

wherelsr<32 5+ P(X)
The part of Tl x contributes exactly,

g5mi/4 1 1
r(1+r) —vz— 1 g 4072
qrgy @x+i00)
i i— -
1 1 CMILC_P(x) =o(og>?).
q QX

The contribution of T, x = Ty x is obviously no more than this. Finally Ts
contributes
1 h,

1+r

Cexp (M In3+ (1+ r)(—logn(x)) [exp (3P (x)) = o(c;>?).

3Mn(x)~¢+"

Next we deal with the contribution of E(u) to Jx. Our first step is to integrate
by parts to introduce E1(u) in the integral. Thus,

def _ _ L, dd (|
1 = E(u)uexp (—oxu) Tx(u)du = — El(u)ﬁ exp (—oxu) Tx(u) du,
0 0

since E;(u) 142 for large u and E1(0) = 0. Inserting the series representation
for E1(u) and integrating term by term, noting that the series converges absolutely
for every u and uniformly on compact sets, we get

* gy m=N8 L]
| = — W Im (e_ni/4|n) +0 o % I%)I(p (_OXU)TX(U) I:Eju

n=1

5 1

+0 U1/2 EXp (_Cxu)lTx(u)l du )
0
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since
- - -
l_’I3/21 exp (_O-Xu) Tx(u) = 1%/2 exp (—O'XU) Tx(u)
du du
- gul/z exp (—oxu) Tx(u),
and
de;l’.\/, NV Vg Ul =
I, e (el N _ 95/4giu n/2 4 53/2 4iu n/4)a u3/2exp(—o'xu)TX(u) du.

0

Estimating the contributions of the error terms, we see that

CLH [N
; exp (—oxu) Tx(u) Hlu< [Tx(U)™= 0x Ty (U)| exp (—oxu) du
0 0

< 4Mg 1 + oM
1[0 | e/
Cexp ¢ P(X) 1+exp(2P(X)) =o(o>"9),

and

=l =l
ul’Zexp (—oxu) [Tx(u)|du 2™ ul’2 exp (—oxu) du
0 — °

[2Mo %2 Cexp I%' P(x)+3 P(x)I:zl o(a ).

We integrate 1, by parts once more and expand T (u) as in (3) of Lemma 3, to
get

In = _i ﬁe
k=0,...,3 0

C 1y L1, [
= l;I A _ 05/4 Deiu N2 4 9372 Deiu n/a
2 4
x U32 exp (—oxu) Ti x(u) du
= lo(n) + 11(n) + 12(n) + 13(n),
for short. We shall show that the main term of I, comes from I1(n). In fact, the
contribution of Ip(n) is

Vo V_
[ dlox—i n|~%? Cn#?

that of 1,(n) is

v. L1
a3 ox—i( n+\/®|_5/2 [CMh—3/4,
qLQk
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The contribution of 13(n) is bounded by

v. 1 e
I3(n) A lox —i( n— )

E3Y (10))™2, if n<2max{|u| : p [Sk}

else.

This max{|u| : p Sk} is bounded by Me® for some positive constant c. Hence
the total contribution to I is bounded by

1 1
5—5/2 n3Mexp 5IogM +0 3Mg 54 _@2)
n=2Mecx n>2Megcx
1
m0;5/4 n—3/4+ El_'_ O(3M 0-;5/4)
n=2Mecx
mC;S/A(M eCX)1/4+ (|
_0(0.—5/2).
Therefore
1 L1,
__1 ‘%‘ =A0A A=Y _ 54 N iu( =Yg
| = 5 7 Im| ne 2° e
n=1 qrQk ©
|:| v__ 1
+23/2 Iu( n/4—"7) U exp( UXU)dU +O(0 5/2)
_ 1 '@H) _ 574 d(2q) 40372 d(4q) Vo 30 _ q
) 574 20)5/4 40)5/4 qu™= exp (—0xu) du
qray 9 (20) (40) 0
(—
C¥ gy C Py v v L1
+0 H T neC @ u3/2exp(—oxu)Eju :
=1 arox 0

nEq

For this last error term we get a bound exactly as above for Iz(n) with M
replacing the factor 3'\" since

\/_
|:(:h+ q) D Cexp (—P (X)),
forn<2max{q:q CQy} 26 and n E q.

We get,
1 B0 1, H _
I =—30 5 0™ (d(g) —d(20) + 5d(49) g~ +o(0>?)
q [QX
1 mo,, b1 -
=—37 5 0™ d@g~ +o(a*?),

q [Qk
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since 1 1
d(a) — d(2q) + 5d(49) = 5d(@).

This completes the proof of Lemma 4. 1

Since agx > 0 and Jx > 0 by (2), we have
wa L1 s
log L1 d(a)g Ly
q Q%
by Lemma 2 and the last assertion by Lemma 4.
Thus by the definition of yyx there is a sequence ux which tends to infinity with x,
such that

exp ¢

174 [
—6(u2) mﬁzexp%”X e

P (x) log x
since 6(u) is bounded for bounded u, which follows for small u from
u u
=——] —(2v — 1=
B(u) > logu (2y )2,
and is obvious for the other values of u.
Consider first the values of uyx for which

174
log ux ¢ X .
P (x) log x
Taking logarithms on both sides, we have

log log ux %.
Since y¥*(logy)™%4 is an increasing function of y for su [Ciehtly large y, we
have from (3)
(|0g Iog u)()1/4 174
(log log log ux)3/4 I:Ixo_'jg x'
from which the desired estimate follows.
Consider now those values of x for which

©)

174
X logu
< g X

“) “Yogx = PX)
We may assume that
(log log u,)'/* | Ux
(log log log uy)3/4 (X) ’

otherwise the estimate holds obviously. Taking logarithms on both sides gives

log log ux I%; ,

from which the estimate follows as above. This proves the theorem. 1
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