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A NOTE ON THE LEBESGUE–DARST

DECOMPOSITION THEOREM

N. BOUZAR

Abstract. The purpose of this note is to show that the Lebesgue-Darst decompo-
sition for finitely additive measures on algebras can be derived from its well-known

counterpart for countably additive measures on σ-algebras and the Stone represen-
tation theorem for algebras.

The Lebesgue decomposition theorem (cf. [Ro1968] for example) is a classical
result in measure theory. It states that if µ and λ are real-valued, countably addi-
tive measures on a σ-algebra F of subsets of a set Ω, then µ can be decomposed
uniquely as µ = µ0 + µ1, where µ0 and µ1 are countably additive measures on F
such that µ0 is absolutely continuous w.r.t. λ and µ1 is singular w.r.t. λ. The theo-
rem is essentially a consequence of the Radon-Nikodym theorem. Darst [Da1962]
extended the decomposition to bounded, finitely additive set functions defined on
an algebra. Darst’s proof is self-contained but rather intricate. It is based on
an approximate Hahn decomposition theorem and a weak convergence argument.
Schmidt [GS1983] provided a different proof using a Banach lattice argument (cf.
his Theorem 2.1.4, p. 64). The purpose of this note is to show that Darst’s result
can in fact be derived from the countably additive version of the decomposition
(recalled above) via the Stone representation theorem for algebras.

In the sequel, A will always denote an algebra of subsets of a set Ω. By a charge
(resp. a measure) we will mean a real-valued, finitely additive (resp. countably
additive) set function defined on A. If ν is a bounded charge, then |ν| is its total
variation. Let µ and λ be two bounded charges on A. We recall that µ and λ are
said to be mutually singular, or µ⊥λ, (resp. µ is said to be absolutely continuous
w.r.t. λ, or µ � λ) if for any ε > 0, there exists A ∈ A such that |µ|(A) < ε and
|λ|(Ac) < ε (resp. for any ε > 0, there exists δ > 0 such that if |λ|(A) < δ, then
|µ|(A) < ε).

We first need a lemma.

Lemma 1. Let µ and λ be bounded measures on A. Then there exist uniquely
measures µ0 and µ1 on A such that µ = µ0 + µ1, µ0 � λ and µ1⊥λ.
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Proof. Let µ and λ be respectively the countably additive extensions of µ and
λ to σ(A), the σ-field generated by A. The countably additive version of the
Lebesgue decomposition theorem (cf. Royden [Ro1968]) applied to µ and λ gives
µ = µ0 +µ1, where µ0 and µ1 are measures on σ(A) such that µ0 � λ and µ1⊥λ.
Denote by R the operator that restricts a set function from σ(A) to A. If ν is a
measure on σ(A), then |Rν| = R|ν|. It follows then easily that Rµ0 � Rλ. It
remains to prove the claim that Rµ1⊥Rλ. Let

F = {A ∈ σ(A) : ∀ ε > 0,∃B ∈ A, |µ1|(A4B) < ε and |λ|(A4B) < ε}.

Using the fact that |µ0| and |µ1| are finite, nonnegative measures on σ(A), it is
a simple exercise to show that F is a σ-field containing A, and hence F = σ(A).
Since µ1⊥λ as measures on a σ-field, there exists A ∈ σ(A) such that |µ1|(A) = 0
and |λ|(Ac) = 0. Therefore, for ε > 0, there is B ∈ A such that |Rµ1|(B) =
|µ1|(A4B) < ε and |Rλ|(Bc) = |λ|(A4B) < ε, which in turn implies the claim.
The proof of the uniqueness of the decomposition is omitted. �

Next we use the Stone representation of an algebra to extend Lemma 1 to
charges.

Proposition 2. Let µ and λ be bounded charges on A. Then there exist
uniquely charges µ0 and µ1 on A such that µ = µ0 + µ1, µ0 � λ and µ1⊥λ.

Proof. By Stone representation theorem (cf. for example Sikorski [Si1969]),
there exists a compact, Hausdorff, totally disconnected topological space Ω̂ and a
Boolean isomorphism τ : A → Â where Â is the algebra of clopen subsets of Ω̂. If
ν is a charge on A, then the set function ν̂ defined on Â by

(1) ν̂(Â) = ν(A), Â = τ(A), A ∈ A,

is also a charge. Moreover, if ν is bounded, so is ν̂ and

(2) |ν̂|(τ(A)) = |ν|(A), A ∈ A.

By compactness and clopenness, if (Ân, n ∈ N) is a sequence of pairwise, disjoint
elements of Â, then Ân = φ for all but finitely many Ân’s, which implies that ν̂
is necessarily countably additive on Â. Therefore, by applying Lemma 1 to the
bounded measures µ̂ and λ̂ on Â (corresponding through (1) to the given µ and λ
respectively), we have µ̂ = µ̂0 + µ̂1 with µ̂0 � λ̂ and µ̂1⊥ λ̂. Define for A ∈ A,

µ0(A) = µ̂0(τ(A)) and µ1(A) = µ̂1(τ(A)).

Clearly, µ0 and µ1 are charges on A and µ = µ0+µ1. Since µ̂0, µ̂1 and λ̂ satisfy (2),
the assertion that µ0 � λ and µ1⊥λ is a straightforward consequence of µ̂0 � λ̂

and µ̂1⊥ λ̂. Again, we omit the proof of the uniqueness of the decomposition. �
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