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ON TOPOLOGICAL SEQUENCE ENTROPY AND

CHAOTIC MAPS ON INVERSE LIMIT SPACES

J. S. CANOVAS

Abstract. The aim of this paper is to prove the following results: a continuous

map f : [0, 1]→ [0, 1] is chaotic iff the shift map σf : lim
←

([0, 1], f)→ lim
←

([0, 1], f) is

chaotic. However, this result fails, in general, for arbitrary compact metric spaces.

σf : lim
←

([0, 1], f) → lim
←

([0, 1], f) is chaotic iff there exists an increasing sequence

of positive integers A such that the topological sequence entropy hA(σf ) > 0. Fi-

nally, for any A there exists a chaotic continuous map fA : [0, 1] → [0, 1] such that
hA(σfA ) = 0.

1. Introduction

Let (X, d) and f : X → X be a compact metric space and a continuous map
respectively. Consider the space of sequences

lim
←

(X, f) = {x = (x0, x1, . . . , xn, . . . ) : xi ∈ X, f(xi) = xi−1, for i = 1, 2, . . . }.

This set is called the inverse limit space associated to X and f . Define a new
metric d̃ on lim

←
(X, f) as

d̃(x, y) =
∞∑
i=0

d(xi, yi)
2i

,

where x = (x0, x1, . . . , xn, . . . ) and y = (y0, y1, . . . , yn, . . . ). Then (lim
←

(X, f), d̃)

is a compact metric space. Consider the natural projection π : lim
←

(X, f) → X

defined by π(x0, x1, . . . , xn, . . . ) = x0. Note that d̃(x, y) ≥ d(π(x), π(y)) for all
x, y ∈ lim

←
(X, f). The shift map is a homeomorphism σf : lim

←
(X, f)→ lim

←
(X, f)

defined by

σf (x) = σf (x0, x1, . . . , xn, . . . ) = (f(x0), x0, x1, . . . , xn, . . . ).

It is clear that π ◦ σf = f ◦ π.
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Inverse limit spaces have been studied in the setting of dynamical systems in a
large number of papers. In [6], Shihai Li proved that some dynamical properties
hold at the same time for f and σf . In particular, he showed that f is chaotic
in Devaney’s sense iff σf is also like that. He also proved a similar result for a
suitable definition of w-chaos. In this paper, a similar result is studied in case of
the Li-Yorke’s chaos. Recall briefly this definition of chaos.

A point p ∈ X is periodic if there exists a positive integer n such that
fn(p) = p. The smallest positive integer satisfying this condition is called the
period of p. Denote by Per(f) the set of periodic points of f . A point
x ∈ X is said to be asymptotically periodic if there exists a p ∈ Per(f) such
that lim supn→∞ d(fn(x), fn(p)) = 0. A map f : X → X is said to be chaotic
in the sense of Li-Yorkeor simply chaotic if there exists an uncountable set
D ⊂ X \ Per(f) such that

lim sup
n→∞

d(fn(x), fn(y)) > 0,

lim inf
n→∞

d(fn(x), fn(y)) = 0,

hold for all x, y ∈ D, x 6= y. D is called a scrambled set of f .
The Li-Yorke’s chaos on inverse limit spaces has been studied by Gu Rongbao

in [3]. In that paper the author attempts to prove that a continuous map f is
chaotic iff the shift map σf is chaotic. However, in the proof he uses implicitly
that f is surjective. As we will see later, this hypothesis on f cannot be removed
in the following theorem essentially proved in [3].

Theorem 1.1. Suppose f that is surjective. Then it is chaotic in the sense of
Li-Yorke if and only if the map σf is chaotic in the sense of Li-Yorke.

When continuous maps f : [0, 1] → [0, 1] are concerned, the Li-Yorke’s chaos
is connected with the notion of topological sequence entropy. Let us recall the
definition (see [2]). Let A = {ai}∞i=1 be an increasing sequence of positive inte-
gers. Given ε > 0, we say that E ⊂ X is an (A, ε, n, f)-separated set if for any
x, y ∈ E with x 6= y there exists 1 ≤ k ≤ n such that d(fak(x), fak(y)) > ε. De-
note by sn(A, ε, f) the cardinality of any maximal (A, ε, n, f)-separated set. The
topological sequence entropy of f is given by

hA(f) = lim
ε→0

lim sup
n→∞

1
n

log sn(A, ε, f).

In general,

(1) hA(f) ≥ hA(σf )

for every A. When f is surjective we obtain the equality (see [2])

(2) hA(f) = hA(σf ).

The connection between the Li-Yorke’s chaos and the topological sequence entropy
is established in the following result (see [1] and [5]).
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Theorem 1.2. Let c, d ∈ R and let f : [c, d]→ [c, d] be continuous. Then

(a) f is chaotic iff there exists an increasing sequence of positive integers A
such that hA(f) > 0.

(b) For any increasing sequence A there exists a chaotic map fA : [c, d]→ [c, d]
such that hA(fA) = 0.

Theorem 1.2(a) does not hold in general for continuous maps on arbitrary com-
pact metric spaces as it can be seen in [8]. In that paper, on [0, 1]× [0, 1] a chaotic
map f with supA hA(f) = 0 and a non-chaotic map g with supA hA(g) > 0 are
constructed.

The aim of this paper is to prove the following results: f : [0, 1]→ [0, 1] is chaotic
iff σf is chaotic. Theorem 1.2 holds for maps σf : lim

←
([0, 1], f) → lim

←
([0, 1], f).

Moreover, an example of a chaotic map f for which σf is not chaotic is given.

2. Positive Results for One-Dimensional Maps

Let f : [0, 1] → [0, 1] be continuous. Consider [a, b] =
⋂
n≥0 f

n[0, 1]. Then
f |[a,b] : [a, b]→ [a, b] is obviously surjective.

Proposition 2.1. Under the above conditions f is chaotic iff f |[a,b] is chaotic.

Proof. It is clear that if f |[a,b] is chaotic then f is chaotic. Suppose that f
is chaotic and let D be a scrambled of f . It is easy to see that fn(D) is also a
scrambled set of f . Let Dn = fn(D) ∩ [a, b]. If {fn(x) : n ≥ 0} ∩ [a, b] = ∅, then
x is asymptotically periodic and then x /∈ Dn for all n ∈ N. So, it must exist a
positive integer n0 such that Dn0 is uncountable. Then, f |[a,b] is chaotic. �

Theorem 2.2. Let f : [0, 1]→ [0, 1] be continuous. Then:

(a) f is chaotic if and only if σf is chaotic.
(b) σf : lim

←
([0, 1], f) → lim

←
([0, 1], f) is chaotic if and only if there exists an

increasing sequence of positive integers A such that hA(σf ) > 0.
(c) For any increasing sequence of positive integers A there exists a chaotic

map fA : [0, 1]→ [0, 1] such that hA(σfA) = 0.

Proof. It is clear that

lim
←

([0, 1], f) = {(x0, x1, . . . , xn, . . . ) : xi ∈ [a, b], f(xi) = xi−1} = lim
←

([a, b], f).

First of all we prove (a). Assume that f is chaotic. By Proposition 2.1, f |[a,b]
is also chaotic. Applying Theorem 1.1 it follows that σf is chaotic. Conversely,
suppose that σf is chaotic. Applying Theorem 1.1 it follows that f |[a,b] is chaotic.
Proposition 2.1 proves that f is chaotic.

Part (b). If σf is chaotic, then it follows by (a) that f is chaotic. Hence,
by Proposition 2.1, f |[a,b] is chaotic. Applying Theorem 1.2 (a), there exists an



208 J. S. CANOVAS

increasing sequence of positive integers such that hA(f |[a,b]) > 0. Since f |[a,b]
is surjective, by (2), hA(σf ) = hA(f |[a,b]) > 0. Now suppose that σf is non-
chaotic. Assertion (a) states that f is non-chaotic. Applying Theorem 1.2 and
(1), we conclude that hA(σf ) ≤ hA(f) = 0 for any increasing sequence of positive
integers A.

Part (c). Let A be an arbitrary sequence of positive integers. By Theo-
rem 1.2(b), there exists a chaotic map fA : [0, 1] → [0, 1] such that hA(fA) = 0.
Since fA is chaotic, by (a), σfA is also chaotic. By (2), hA(σfA) ≤ hA(fA) = 0,
and the proof ends. �

3. A Counterexample

As usual, Z will stand for the set of integers, while if Z ⊂ Z then Zn (resp.
Z∞) will denote the set of finite sequences of length n (resp. infinite sequences)
of elements from Z. If θ ∈ Zn or α ∈ Z∞ then we will often describe them
through their components as (θ1, θ2, . . . , θn) or (αi)∞i=1, respectively. The shift
map σ : Z∞ → Z

∞ is defined by σ((αi)∞i=1) = (αi+1)∞i=1. If θ ∈ Zn and ϑ ∈ Zm
(with m ≤ ∞) then θ∗ϑ ∈ Zn+m (where n+∞ means∞) will denote the sequence
λ defined by λi = θi if 1 ≤ i ≤ n and λi = ϑi−n if i > n. In what follows we
will denote 0 = (0, 0, . . . , 0, . . . ) and 1 = (1, 1, . . . , 1, . . . ), while if α ∈ Z∞, then
α|n ∈ Zn is defined by α|n = (α1, α2, . . . , αn).

This section is devoted to construct a chaotic map f on a compact metric space
for which σf is non-chaotic. In order to do this we will need some information
concerning so-called weakly unimodal maps of type 2∞. Recall briefly the
definition. We say that a continuous map f : [0, 1] → [0, 1] is weakly unimodal
if f(0) = f(1) = 0, it is non-constant and there is c ∈ (0, 1) such that f |(0,c) and
f |(c,1) are monotone. The map f is said to be of type 2∞ if it has periodic points
of period 2n for any n ≥ 0 but no other periods.

Weakly unimodal maps of type 2∞ (briefly, w-maps) were studied in [4]. In
that paper it was proved that for any w-map f it is possible to construct a family
{Kα(f)}α∈Z∞ (or simply {Kα}α∈Z∞ if there is no ambiguity on f) of pairwise
disjoint (possibly degenerate) compact subintervals of [0, 1] satisfying the following
key properties (P1)–(P4):

(P1) The interval K0 contains all absolute maxima of f .
(P2) Define in Z∞ the following total ordering: if α, β ∈ Z∞, α 6= β and k is

the first integer such that αk 6= βk, then α < β if either Card {1 ≤ i <

k : αi ≤ 0} is even and αk < βk or Card {1 ≤ i < k : αi ≤ 0} is odd
and βk < αk. Then α < β if and only if Kα < Kβ (that is, x < y for all
x ∈ Kα, y ∈ Kβ).

(P3) Let α ∈ Z∞, α 6= 0, and let k be the first integer such that αk 6= 0. Define
β ∈ Z∞ by βi = 1 for 1 ≤ i ≤ k − 1, βk = 1− |αk| and βi = αi for i > k
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Then f(Kα) = Kβ and f(K0) ⊂ K1.

For any n and α ∈ Z∞, let Kα|n(f) (or just Kα|n) be the least interval including
all intervals Kβ , β ∈ Z∞, such that α|n = β|n. Then

(P4) For any α ∈ Z∞, Kα =
⋂∞
n=1Kα|n .

Additionally, for any fixed n it can be easily checked that the intervals Kθ, θ ∈
Z
n, are open and pairwise disjoint and (after replacing ∞ by n, 0 by (0, 0, . . . ,

n
0)

and 1 by (1, 1, . . . ,
n
1)), they also satisfy (P1)–(P3). Observe that if θ ∈ {−1, 0, 1}n

and we put |θ| := (|θ1|, |θ2|, . . . , |θn|) then f2n(Kθ) ⊂ K|θ|; in particular,
f2n(Kθ) ⊂ Kθ if θ ∈ {0, 1}n.

In the rest of this section f̃ will denote a fixed w-map with the additional
property that α ∈ Z∞ implies Kα(f̃) is non-degenerate if and only if there is an
n ≥ 0 such that σn(α) = 0. An example of such a map is constructed in [4];
it is possible to show that the stunted tent map f̃(x) = min{1 − |2x − 1|, µ}
(µ ≈ 0.8249 . . . ) from [7] is also a w-map with this property.

Bd (Z), Cl (Z) and Int (Z) will respectively denote the boundary, the closure
and the interior of Z.

Now, we are ready to construct our counterexample. Consider

X =
⋃

α∈{−1,0,1}∞
Bd (Kα).

Let us emphasize that Bd (Kα) consists of both endpoints of Kα if it is non-
degenerate and of its only point if it is degenerate. Let f = f̃ |X : X → X be the
restriction of the above-mentioned w-map f̃ to the set X. The following lemma
shows that the above choices make sense.

Lemma 3.1. X is a compact set and f : X → X is a well-defined continuous
map.

Proof. Since

X =

 ∞⋂
n=1

⋃
θ∈{−1,0,1}n

Cl (Kθ)

 \ ⋃
α∈{−1,0,1}∞

Int (Kα),

by (P2) and (P4), X is compact.
Recall that if 0 6= α ∈ {−1, 0, 1}∞ then f̃ carries the interval Kα onto Kβ with β

defined as in (P3) (and hence belonging to {−1, 0, 1}∞). Moreover, f̃ is monotone
on Kα because of (P1). So it maps the endpoints of Kα onto the endpoints of Kβ .
Similarly, since K1 is degenerate both endpoints of K0 are mapped onto its only
point. The conclusion is that f(X) ⊂ X and the map f : X → X is well–defined
(and it is clearly continuous). �

Let X1 =
⋃
α∈{0,1}∞ Bd (Kα). Note that, by (P3),

⋂
n≥0 f

n(X) = X1. Let us
see that f is chaotic while f |X1 is non–chaotic.
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Theorem 3.2. f |X1 is non–chaotic and hence σf is non–chaotic.

Proof. Let x, y ∈ X1 with x ∈ Kα and y ∈ Kβ for some α 6= β, α, β ∈ {0, 1}∞.
We will see that there exists a positive real number M satisfying

lim inf
i→∞

|f i(x)− f i(y)| ≥M,

and hence x and y cannot belong to the same scrambled set D. This proves that
Card(D) ≤ 2 for each scrambled set D of f |X1 and so f |X1 is non–chaotic.

Let j be the first positive integer satisfying αj 6= βj . Suppose, for example,
that αj = 0 and βj = 1. For any θ ∈ {0, 1}j−1 consider the closed interval Aθ∗0
satisfying Kθ∗1 < Aθ∗0 < Kθ∗0 or Kθ∗0 < Aθ∗0 < Kθ∗1, and let M = min{|Aθ∗0| :
θ ∈ {0, 1}j−1} > 0. By (P3) and (P2), f i(x) ∈ Kθ∗1 and f i(y) ∈ Kθ∗0 or viceversa
for all i ∈ N and for all θ ∈ {0, 1}j−1. This shows that

|f i(x)− f i(y)| ≥M

which concludes the proof. �

For any α ∈ {−1, 0, 1}∞ let τ(α|n) =
∑n
i=1 |αi|2i−1 for all n ∈ N.

Theorem 3.3. f : X → X is chaotic.

Proof. Define on {−1, 1}∞ the following relation: α ∼ β if and only if there
exists a positive integer k such that σk(α) = σk(β). Obviously ∼ is an equivalence
relation. Moreover, for α ∈ {−1, 1}∞ the class of α is given by

[α] =
∞⋃
k=0

{σ−k(σk(α))} ∩ {−1, 1}∞.

Since {−1, 1}∞ is uncountable and [α] is countable for all α ∈ {−1, 1}∞, the set
containing all the equivalence classes {−1, 1}∞/ ∼ is uncountable.

Let A be a set containing one and only one representative α ∈ [α] for all
[α] ∈ {−1, 1}∞/ ∼, and let D be the set containing exactly one x ∈ X ∩Kα for
all α ∈ A. We claim that D is a scrambled set for f . In order to see this take
x, y ∈ D, x ∈ Kα and y ∈ Kβ with α, β ∈ A, α 6= β. Then there exists an
increasing sequence of positive integers (ki)∞i=0 satisfying αki 6= βki and αj = βj
if j 6= ki for all i ∈ N. Note that τ(α|n) = τ(β|n) for all n ∈ N. Suppose, for
example, that αki = 1 and βki = −1 for some i. Then, by (P3),

fτ(α|ki )(x) ∈ K
(0,0,...,

ki−1
0 ,1)∗σki (α)

and fτ(α|ki )(y) ∈ K
(0,0,...,

ki−1
0 ,−1)∗σki (β)

.

By (P2), |fτ(α|ki )(x)− fτ(α|ki )(y)| ≥ |K0| and then

lim sup
n→∞

|fn(x)− fn(y)| ≥ lim sup
i→∞

|fτ(α|ki )(x)− fτ(α|ki )(y)| ≥ |K0|.
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Let now j 6= ki for all i ∈ N, and suppose that αj = βj = 1 (the case αj = −1
is analogous). Then fτ(α|j)(y), fτ(α|j)(x) ∈ K

(0,0,...,0,
j

1)
. For any n ∈ N let K+

0|n

and K−0|n be the right and left side components of K0 \K0|n . Applying (P4), for
any ε > 0 there exists a positive integer nε such that max{|K+

0|n |, |K
−
0|n |} < ε for

all n ≥ nε. By (P2) and (P3), K
(0,0,...,0,

j

1)
⊂ K−0|j or K

(0,0,...,0,
j

1)
⊂ K+

0|j , and so

for j ≥ nε we conclude that |fτ(α|j)(y)− fτ(α|j)(x)| < ε. This proves that

lim inf
n→∞

|fn(y)− fn(x)| = 0,

and the proof concludes. �
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