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PATH, TRAIL AND WALK GRAPHS

M. KNOR(1) and L'. NIEPEL (2)

Abstract. We introduce trail graphs and walk graphs as a generalization of line

graphs. The path graph Pk(G) is an induced subgraph of the trail graph Tk(G),

which is an induced subgraph of the walk graph Wk(G). We prove that the walk
graph Wk(G) is an induced subgraph of the k-iterated line graph Lk(G), using a
special embedding preserving histories. Hence, trail graphs and walk graphs are in
a sense more close to line graphs than the path graphs, and some problems that are
complicated in path graphs become easier for walk graphs.

1. Introduction

Let G be a graph and k ≥ 1. Let Pk be the set of paths of length k in G, let
Tk be the set of trails of length k in G, and let Wk be the set of walks of length
k in G in which no two consecutive edges are equal. The vertex set of the path
graph Pk(G) (trail graph Tk(G) and walk graph Wk(G)) is the set Pk (Tk and
Wk). Two vertices of Pk(G) (Tk(G) and Wk(G)) are joined by an edge if and only
if one of the corresponding walks can be obtained from the other by deleting an
edge from one end and adding an edge to the other end. It means that the vertices
are adjacent if and only if one can be obtained from the other by “shifting” the
corresponding walks in G.

Path graphs were investigated by Broersma and Hoede in [2] (see also [1], [4],
[6] and [8]), as a natural generalization of line graphs (observe that P1(G) is the
line graph of G, i.e., P1(G) = L(G)). Although the relation P1(G) = L(G) is the
unique motivation for studying path graphs presented in [2], in this note we show
that there is a stronger connection of path graphs to line graphs.

The i-iterated line graph of G, the Li(G), is defined as

Li(G) =
{
G if i = 0;

L(Li−1(G)) if i > 0.

We prove that there is a special embedding of Pk(G) in Lk(G), which implies that
the path graph Pk(G) is a subgraph of Lk(G). This yields another connection
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of path graphs to line graphs. In fact, we prove more. We prove that the walk
graph Wk(G) is a subgraph of Lk(G). As Pk(G) is an induced subgraph of the
trail graph Tk(G), and Tk(G) is an induced subgraph of Wk(G), we have:

P1(G) = T1(G) =W1(G) = L(G)

P2(G) = T2(G) =W2(G) ⊆ L2(G)

P3(G) ≤ T3(G) =W3(G) ⊆ L3(G)

Pk(G) ≤ Tk(G) ≤Wk(G) ⊆ Lk(G) if k ≥ 4.

(∗)

(We remark that ≤ is used for an induced subgraph, while ⊆ denotes a subgraph.)
Observe that W2(G) is a spanning subgraph of L2(G). By (∗) trail graphs and
walk graphs are even more close to line graphs than the path graphs.

When studying Pk-path graphs, cycles of length smaller than k+1 make real
obstacles. For instance, the statement of Lemma 3 in [1] is restricted to graphs
which do not contain such small cycles if k ≥ 5. This causes also a restriction of
the main theorem in [1]. An analogous situation appears in [4], where the authors
prove a necessary and sufficient condition for a graph G to have a connected
Pk-path graph, provided that G does not contain small cycles. This is not the
case of walk graphs, where small cycles cannot cause any problem. Hence, some
difficult problems stated for path graphs, e.g. the connectivity, determining the
distances, maybe also Hamiltonicity, become easier for walk graphs. This all seems
to provide enough motivation for a further study of walk graphs.

2. The Result

In what follows we consider only walks in which no two consecutive edges are
equal. For easier handling of walks of length k in G (i.e., the vertices of Wk(G)) we
adopt the following convention. We denote the vertices of Wk(G) (as well as the
vertices of G) by small letters a, b, . . . , while the corresponding walks of length k
in G will be denoted by capital letters A, B, . . . . It means that if A is a walk of
length k in G and a is a vertex in Wk(G), then a must be the vertex corresponding
to the walk A.

We now introduce the concept of history.
Let G be a graph, i ≥ 0, and let v be a vertex in Li(G).

1◦ The 0-history B0(v) is a subgraph of Li(G) formed by the unique vertex
v.

2◦ If 0 < j ≤ i, the j-history Bj(v) is a subgraph of Li−j(G). Assume that
V (Bj−1(v)) = {a1, a2, . . . , al}. Then, the vertices and edges of Bj(v) are
the vertices and edges of A1, A2, . . . , Al.

Recall that L(G) = W1(G), and hence, according to our agreement A1, A2, . . . , Al
are edges corresponding to the vertices a1, a2, . . . , al in the preceding definition.
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Let v be a vertex in Li(G). Then Bi(v) is the minimum subgraph of G such
that Li(Bi(v)) contains the vertex v. Thus, one can imagine the history Bi(v) as
a “footprint” of v in G.

We have to point out that the notion of history is crucial in determining the
distances in iterated line graphs and P2-path graphs.

In [7] it is proved that every connected subgraph of G with at most i edges,
different from a path with fewer than i edges, is an i-history of a vertex in Lk(G).
If u and v are vertices in Li(G), then their distance can be computed already in
G (if it is large enough), using i-histories. More precisely, in [7] it is proved that

dLi(G)(u, v) = dLi−j(G)(Bj(u), Bj(v)) + j

if the j-histories Bj(u) and Bj(v) are edge-disjoint (see also [5] for an analogous
result in iterated P2-path graphs). This result was used for determining the be-
havior of the diameter and the radius of i-iterated line graph (as a function of i),
see [7], and for a theorem that states that almost all i-iterated line graphs are
selfcentric of diameter (and radius) i+ 2, see [3].

Let U be a walk of length k in G. By Ũ we denote the subgraph of G formed
by the vertices and edges of U .

We are now ready to prove the main result of this note.

Theorem 1. Let G be a graph and k ≥ 2. Then there is an embedding
ϕ : Wk(G) → Lk(G) such that for each vertex u in Wk(G), the walk U and the
k-history Bk(ϕ(u)) satisfy Ũ = Bk(ϕ(u)).

Proof. Let U be a walk of length i in G, U = (u0, u1, . . . , ui), and let E0 =
(u0, u1), E1 = (u1, u2), . . . , Ei−1 = (ui−1, ui) be edges of U . Then e0, e1 . . . , ei−1

are vertices in L(G) and K(U) = (e0, e1, . . . , ei−1) is a walk of length i−1 in L(G).
(Observe that no two consecutive edges of K(U) are equal.) Define

Ki(U) =
{
U if i = 0;

K(Ki−1(U)) if i > 0.

Then Ki(U) is a single vertex in Li(G).
Let ϕ : Wk(G) → Lk(G) be defined so that ϕ(u) = Kk(U). Then clearly,

Ũ = Bk(ϕ(u)). We prove that ϕ is an injective mapping on vertex sets that
preserves edges.

First suppose that u and v are distinct vertices in Wk(G). Then U and V are
distinct walks in G (although Ũ and Ṽ can be identical graphs). Following this,
K(U) and K(V ) are distinct walks of length k−1 in L(G), and finally, Kk(U) and
Kk(V ) are distinct vertices in Lk(G). Hence, ϕ is injective.

Now suppose that (u, v) is an edge in Wk(G). Then both U and V are walks
of length k in G, and their union forms a walk of length k + 1. Assume that
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U = (u0, u1, . . . , uk), V = (u1, u2, . . . , uk+1) and denote Z = (u0, u1, . . . , uk+1).
Then Kk+1(Z) is a vertex in Lk+1(G), and hence, Kk(Z) = (u′, w′) is an edge in
Lk(G). Since u′ = Kk(U) and w′ = Kk(V ), ϕ preserves edges. �

Let v be a vertex in Lk(G) such that Bk(v) is a path of length k. Then it is easy
to prove that there is no other vertex, say u, in Lk(G) such that Bk(v) = Bk(u).
Hence, when considering path graphs, there is a unique embedding guaranteed by
Theorem 1.
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