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SUBJECTIVE SURFACES AND RIEMANNIAN MEAN
CURVATURE FLOW OF GRAPHS

A. SARTI and G. CITTI

Abstract. A geometric model for segmentation of images with missing boundaries

is presented. Some classical problems of boundary completion in cognitive images,
like the pop up of subjective contours in the famous triangle of Kanizsa, are faced
from a surface evolution point of view. The method is based on the mean curvature
evolution of a graph with respect to the Riemannian metric induced by the image.
Existence, uniqueness and maximum principle of the parabolic partial differential
equation are proved. A numerical scheme introduced by Osher and Sethian for
evolution of fronts by curvature motion is adopted. Results are presented both for
modal completion of cognitive objects and segmentation of medical images with
missing boundaries.

1. Introduction

The phenomenon of contours that appear in the absence of physical gradients has
aroused considerable interest among psychologists and computer vision scientists.
Psychologists suggested a number of images that strongly requires image comple-
tion to detect the objects. In Figure 1 the solid triangle in the center of the figure
appears to have well defined contours even in completely homogeneous areas.

Kanizsa called the contours without gradient “anomalous contours” or “sub-
jective contours” [15], because the missed boundaries are provided by the visual
system of the subject.

Subjective contours are not a property of the image alone, but they depends
both on the position of the point of view and on the geometric properties of the
image. Kanizsa pointed out that “if you fix your gaze on one of these contours, it
disappears, yet if you direct your gaze to the entire figure, the contours appear to be
real” [15, 16, 17]. It is evident that the perception of spatial patterns is dependent
on the location of the gaze and that the breaking of the shift invariance between
the observer and the image plays an important role in perceptual organization.

As in [31], we define a segmentation as a piecewise constant graph that varies
rapidly across the boundary between different objects and stays flat within it. In
our approach the segmentation is a piecewise constant approximation of the point
of view- or reference surface, while in [31] the segmentation is an approximation
of the image itself. To achieve the piecewise constant graph, an initial surface
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Figure 1. Kanizsa triangle.

depending on the point of view is evolved with a mean curvature flow with respect
to the Riemannian metric given by the image features. During the evolution,
the point-of-view surface is attracted by the existing boundaries and steepens.
The surface evolves towards the piecewise constant solution by continuation and
closing of the boundary fragments and the filling in the homogeneous regions. A
solid object is delineated as a constant surface bounded by existing and recovered
shape boundaries. The theoretical basis of the method has been presented in [36]
and its extension to 3D image completion has been discussed in [37] and [38].
In this study we outline the geometric interpretation of the flow and we proof
the basic analytical results about existence, uniqueness and maximum principle
of the associated parabolic partial differential equation. The mathematical model
relies on a considerable body of work in front propagation and geometric flows for
image analysis. Level set methods, introduced by Osher and Sethian [34], track
the evolution of curves and surfaces implicitly defined as zero level set of a higher
dimensional function [42]. Malladi, Sethian and Vemuri [27] and Caselles, Catt,
Coll, and Dibos in [4] used this technology to segment images. In [5] a variational
geometric interpretation of curve evolution for image segmentation is proposed. In
[19, 44, 45] an intrinsic geometric formulation for image filtering as Riemannian
surface evolution is presented.

Our approach takes a more general view of the segmentation problem. Rather
than follow a particular front or level curve which one attempts to steer to the
desired edge we begin with an initial surface, chosen on the basis of a user-supplied
reference fixation point. We then flow this entire surface under speed law depen-
dent on the image gradient, without regard to any particular level set. Suitably
chosen, this flow sharpens the surface around the edges and connects segmented
boundaries across the missing information.

The paper is organized as the following. In Section 2 we recall some basic con-
cepts of Riemannian geometry and introduce the model equation. In Section 3 we
discuss some analytical properties of the flow. In Section 4 we present a numerical
method to solve it. In Section 5 we show results of the application of the method
to different cognitive and medical images.
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2. The Differential Model of Boundary Completion

2.1. The image induced metric

We consider an image I : (x1, x2) → I(x1, x2) as a real positive function defined
in a rectangular domain Ω ⊂ R

2. The first task in image analysis is to extract
the low level information from the image. The result of this stage is a representa-
tion of the image corresponding to the raw primal sketch, as introduced by David
Marr [30], that involves the detection of image gradient, orientation of struc-
tures, T-junctions and texture. Several methods have been proposed to compute
the raw primal sketch, including multiscale/multiorientation image decomposition
with Gabor filtering [10], wavelet transform [23], deformable filter banks [35],
textons [22, 26] etc. For the purpose of the present paper we consider a simple
edge indicator, namely

(1) h(x1, x2) =
1

1 + (|∇Gσ(x1, x2) � I(x1, x2)|/β)2
where

Gσ(x1, x2) =
exp(−(|(x1, x2)|/σ)2)

σ
√
π

.

The edge indicator function h(x1, x2) is a non-increasing function of
|∇Gσ(x1, x2)�I(x1, x2)|, where Gσ(x1, x2) is a gaussian kernel and (�) denotes the
convolution. The denominator is the gradient magnitude of a smoothed version
of the initial image. Thus, the value of h is closer to 1 in flat areas (|∇I| → 0)
and closer to 0 in areas with large changes in image intensity, i.e. the local edge
features. The minimal size of the details that are detected is related to the size of
the kernel, which acts like a scale parameter. By viewing h as a potential function,
we note that its minima denotes the position of edges. Also, the gradient of this
potential function is a force field that always points towards the local edge; see
Figure 2.
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Figure 2. Local edge detection: The edge map h and its spatial gradient −∇h.

We use the edge indicator h to construct a metric in R
3 that will be used as

embedding space for the surface evolution. In [36] starting from the edge indicator
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h(x1, x2), a conformal metric hδij i = 1, . . . , 3, j = 1, . . . , 3 is builded. In the
present study we build a more general metric that allows to stretch one direction
respect to the others by a factor ε > 0:

g =


 h 0 0

0 h 0
0 0 h/ε




The conformal metric proposed in [36] corresponds to the particular case
ε = 1. The meaning of the stretching factor ε and its influence on the bound-
ary completion method will be clarified in the Section 2.4.

2.2. Riemannian mean curvature of graph

Let us now recall some properties of a Riemannian metric (see for example [21]).
The scalar product of two vectors X and Y in (R3, g) is defined as

〈X,Y 〉g = XtgY,

therefore the norm of X with respect to g is

||X ||g =
√
〈X,X〉g =

√
h

ε

√
εX2

1 + εX2
2 +X2

3 .

If u is a regular function defined on the set Ω ⊂ R
2 with real values, its graph

M = {(x1, x2, u(x1, x2)) : (x1, x2) ∈ Ω}
is a bidimentional submanifold of (R3, g), with the natural metric. A basis (e1, e2)
of the tangent plane at any point is the following:

e1 = (1, 0, ∂1u)t, e2 = (0, 1, ∂2u)t.

It is well known that the mean curvature of the graph of u in the euclidean
metric is

(3) He = div(νe) = −∂i

( ∂iu√
1 + |∂1u|2 + |∂2u|2

)
,

where

νe =
(−∂1u,−∂2u, 1)√
1 + |∂1u|2 + |∂2u|2

is a vector of unitary length, orthogonal to M with respect to the euclidean scalar
product (see for example [8]).

Similarly, the definition of mean curvature in a Riemannian space (R3, g), is
given by

(4) Hg = divg(νg)

where

divg(·) = 1√
det(g)

∂i

(√
det(g)(·)i

)
=

1√
h3
∂i

(√
h3(·)i

)
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is the Riemannian divergence and the vector

(5) νg =
g−1νe

||g−1νe||g =
(−∂1u,−∂2u, ε)√

h
√|∂1u|2 + |∂2u|2 + ε

is the normal unit vector with respect to the metric g (see [2]).
Finally the Riemannian mean curvature of the manifold M is given in these

notations as

(6) Hg = − 1√
h3
∂i

(
h

∂iu√
ε+ |∂1u|2 + |∂2u|2

)
.

Remark 2.1. Note that the mean curvature of a graph vanishes if and only if
it is a critical point of the volume form. If B is the 3× 2 matrix (e1, e2), this can
be computed as

vol(M) =
∫

Ω

√
det(BtgB) dx1dx2

where BtgB is the metric induced on the graph (see [21]).

In particular the value of the functional is decreasing along the motion and this
property has been used to give integral definitions of mean curvature motion. We
recall the following weak approaches to the problem: the definition of motion of
varifolds by mean curvature [3], [13], [14], the variational approach of Almgren-
Taylor-Wang [1], the definition of minimizing movements of De Giorgi [7].

2.3. Graph evolution with weighted mean curvature flow

We say that the graph of u evolves by its mean curvature, if each point (x1, x2, u)
of the graphM moves with speed proportional to H is the direction orthogonal to
the graph. (see for example [9] or [12] for mean curvature motion in an euclidean
setting and [2], [6], for level sets evolution in a Riemannian, or Finsler manifold.

Following [36] here we requires that each point of the graph moves with speed
h2Hg in the normal direction. In other words it evolves according to the ODE

(ẋ1(t), ẋ2(t), u̇(t)) = −h2Hgνg(x1(t), x2(t), u(t))

= −Hg

√
h3

(−∂1u,−∂2u, ε)√|∂1u|2 + |∂2u|2 + ε
.

Since by the chain rule

u̇(t) =
d

dt
u(x1(t), x2(t), t) = ẋ1∂1u+ ẋ2∂2u+ ∂tu,

we immediately have

∂tu = u̇(t)− ẋ1∂1u− ẋ2∂2u = −Hg

√
h3

√
|∂1u|2 + |∂2u|2 + ε.

By identity (6) the motion of the graph u by its weighted mean curvature in the
metric g is

(7) ∂tu =
√
|∂1u|2 + |∂2u|2 + ε∂i

( h∂iu√
ε+ |∂1u|2 + |∂2u|2

)
.
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As ε goes to 0, this equation is the Evans-Spruck type regularization of the cur-
vature flow of a single level set. Here on the contrary we are interested in the
evolution of the whole graph.

2.4. The model equation

The model equation of weighted mean curvature flow of graphs for image segmen-
tation and boundary completion yields

(8)




∂tu = h
(ε+(∂2u)2)∂11u−2∂1u∂2u∂12u+(ε+(∂1u)2)∂22u

|∂1u|2+|∂2u|2+ε + ∂1h∂1u+ ∂2h∂2u

in QT = Ω×]0, T [
u(x, t) = min(u0) in ST = ∂Ω×]0, T [
u(x, 0) = u0 for x ∈ Ω.

If u denotes the solution of (8), to avoid the asymptotic convergence to the trivial
constant solution, we plot the function u

sup u . Note that the renormalization
is performed only in visualization and does not affect the computation
of u. The indicator function h is computed as in (2). The input to the model
is a user-defined point-of-view or a reference surface u0, centered in the object
we are interested in segmenting. Different choices exist for the reference surface;
as examples, we show two such choices in Fig. 3. In the next examples we use
u0 = 1/(D + ε), where D is the distance from the initial point of view.

Figure 3. Point-of-view surfaces: on the left u0 = −D, where D is the distance function from
the fixation point, and on the right u0 = 1/D.

To achieve the image segmentation the initial surface depending on the point of
view is evolved with the weighted curvature flow. During the evolution, the point-
of-view surface is attracted by the existing boundaries and steepens. The surface
evolves towards the piecewise constant solution by continuation and closing of the
boundary fragments and the filling in the homogeneous regions. The set where u
attains its maximum, is the segmented figure.

The first term on the right hand side is a parabolic term that evolves the surface
in the normal direction under its mean curvature weighted by the edge indicator h.
The surface motion is slowed down in the vicinity of edges (h → 0). The second
term on the right corresponds to pure passive advection of the surface along the
underlying velocity field −∇h whose direction and strength depend on position.
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This term pushes/attracts the surface in the direction of the image edges. Note
that h(I(x1, x2)) is not a function of the third coordinate, therefore the vector
field −∇h lies entirely on the (x1, x2) plane.

The following characterizes the behavior of the model Eqn. (8) in different
regions of the image. In regions of the image where edge information exists, the
advection term drives the surface towards the edges. The level sets of the surface
also get attracted to the edge and accumulate. Consequently, the spatial gradient
increases and the surface begins to develop a discontinuity. Now, when spatial
derivatives |∂1u|, |∂2u| � 1, the Eqn. (8) approximates to

∂tu ≈ h (∂2u)
2∂11u− 2∂1u∂2u∂12u+ (∂1u)2)∂22u

|∂1u|2 + |∂2u|2 + ∂1h∂1u+ ∂2h∂2u(9)

which is nothing but the geodesic level set flow for shape recovery [5, 18, 29]. In
addition, the (parabolic) first term in Eqn. (9) is a directional diffusion term in
the tangent direction and limits diffusion across the edge itself.

In the region inside the objects where h → 1, |∇h| → 0 the surface is driven
by the Euclidean mean curvature motion towards a flat surface. In these regions
we observe |∂1u|, |∂2u| � 1 and equation (8) approximates to the non uniform
diffusion equation:

∂tu ≈ h(∂11u+ ∂22u) + ∂1h∂1u+ ∂2h∂2u.(10)

If image gradient inside the object is actually equal to zero, then h = 1 and
Eqn. (10) becomes a simple linear heat equation and the flow corresponds to
linear uniform diffusion.

We now address the regions in the image corresponding to subjective contours.
In our view, subjective contours are simply continuation of existing edge fragments.
As we explained before, in regions with well defined edge information, Eqn. (8)
causes the level curve accumulation thereby causing an increase in the spatial
gradient of u. Due to continuity in the surface, this edge fragment information is
propagated to complete the missing boundary. The main equation (8) is a mixture
of two different dynamics, the level set flow (9) and non uniform diffusion (10)
and locally, points on the u surface move according to one of these mechanisms.
In steady state solution, the points inside the objects are characterized by pure
linear diffusion, while points on the boundary are characterized by the level set
edge enhancing flow.
Let’s outline that ε weighted the two dynamics (9) and (10). If ε is big with

respect to spatial derivatives then the behaviour of the flow (8) is mostly diffusive.
In the opposite when ε is small the behaviour is mostly like level set plane curve
evolution. In other words the stretching of the metric in the direction x3 given by
the weighting factor ε determines how likely geodesic boundaries are formed. In
the Results Section we will present a comparison among the flows (8), (9) and (10)
and we will observe the undesirable characteristics of both the extreme dynamics.

Finally let us note that a similar piecewise constant solution can be achieved
with different models. In [39] the authors have used the weighted Perona-Malik
model to extract subjective surfaces by anisotropic diffusion in Riemannian space.
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3. Existence, Uniqueness and Maximum Principle

In the sequel we will denote (x, t) = (x1, x2, t) any point in QT , ∇u = (∂1u, ∂2u)
the spatial gradient of u. We will also denote Lip(Q̄T ) the set of functions Lips-
chitz continuous on Q̄T , and C21(QT ) the set of C1(QT ) functions, whose second
derivatives with respect to the spatial variables are continuous. We will also set:

(aij(x, p)) =
h(x)

ε+ |p1|2 + |p2|2
(
ε+ p22 −p1p2
−p1p2 ε+ p21

)
, a(x, p) = ∂ihpi,

so that the equation in (8) becomes

(11) Pu := −∂tu+ aij(x,∇u)∂iju+ a(x,∇u) = 0, in QT = Ω× [0, T ].

The existence result for the initial boundary problem associated euclidean non
parametric mean curvature flow is extremely classic: it is due to Jenkins and Ser-
rin [20] for convex sets and extended to other family of open sets by Serrin [41],
and very recently by [32], [33]; general boundary conditions have been studied
by Huisken in [12]. In [25] many curvature equations are considered, and several
existence results are provided. Our equation does not seem to satisfy these con-
ditions, but we will show that the classical results stated for example in [25], can
be applied to it and for every positive ε we find a classical solution. When ε → 0
the equation in (8) degenerates. Existence of viscosity solutions for the analogous
problem on all the space have been proved in [2], [6], [9], [18]. Here, if ε = 0, we
will prove the existence of a viscosity solution on the bounded set Ω.

Let us first note that, if u is a solution of (8) and we set v = u −minu0, then
v is also a solution of (8), with initial condition v0 = u0 −minu0, and boundary
datum 0. In particular we can assume that minu0 = 0. Because of the particular
choice of the initial datum, the minimum of initial condition is 0 and it is attained
on the boundary of Ω. By simplicity we will also assume to modify the initial
datum in such a way that it is 0 on the boundary of Ω.

As it is well known the main existence theorem for quasilinear elliptic equations
is based on some a priori estimates of the solutions. These will be established in
the following Sections 3.1 and 3.2.

3.1. Comparison and maximum principle for solutions

Proposition 3.1. Assume that u ∈ C21(QT )∩C(Q̄T ) is a solution of (8) in a
parabolic cylinder QT , and that the matrix (aij) is nonnegative. Also assume that

(12) a(x, 0) = 0 in Ω.

Then
sup
QT

u = sup
ΓT

u0, inf
QT

u = inf
ΓT

u0,

where QT is defined in (8), and ΓT = Ω̄∪ST is the parabolic boundary of QT (see
for example Theorem 9.5 in [25] for the proof).

Since condition (12) is obviously satisfied, then the maximum principle holds
for solutions of our equation. In particular, since u = 0 in ST and u0 ≥ 0 in Ω,
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also u ≥ 0 in QT , and

(13) sup
QT

|u| = sup
Ω

|u0| = C,

where the last equality defines C, and it is obviously independent of ε.

Proposition 3.2. Let P be the operator defined in (11), where the coefficients
aij and a are independent of u. If u and v are functions in C21(QT )∩C(Q̄T ) such
that Pu ≥ Pv in Q̄T − ΓT , and u ≤ v on ΓT , then u ≤ v in Q̄T (see for example
Theorem 9.1 in [25] for the proof).

From this theorem we immediately infer the uniqueness of solutions of prob-
lem (8). Indeed, if u and v are two solutions then Pu = Pv in Q̄T −ΓT , and u = v
on ΓT . Thus they coincide because of the previous theorem.

3.2. A priori estimate for the gradient

The estimates for the gradient are classically divided in two steps. First, using the
maximum principle the gradient on all QT is estimated in terms of the gradient
at the boundary. Since the coefficients aij are independent of u, and a is linear in
p, the classical proof of Bernstein can be applied to the operator P . We refer to
[11], where the proof is given under these assumptions:

Theorem 3.1. Let u ∈ C21(QT ) ∩ Lip(Q̄T ) be a solution of (8). Then there
exists a constant C depending on the coefficient h, and T , and the trace of aij such
that

sup
QT

|∇u| ≤ C sup
ΓT

|∇u|.

The second step is the estimate of the gradient at the parabolic boundary.

Theorem 3.2. Assume that Ω is convex, u ∈ C21(QT )∩Lip(Q̄T ) is a solution
of (8), and that the initial datum u0 is of class C1(Ω̄). Then there exists a constant
C > 0 dependent on the initial datum u0, and on the least eigenvalue of (aij) such
that

sup
ΓT

|∇u| ≤ C.

Proof. Let x0 ∈ ST be fixed, and let ν be the outer normal in R
2 (with respect

to the euclidean metrics) to ∂Ω at the point x0. Let

(14) v(x) = f(〈ν, x0 − x〉),
where 〈·, ·〉 is the standard scalar product in R

2, and f is a real function to be
chosen later. Since

∂iv = −f ′(〈ν, x0 − x〉)νi, and ∂ijv = f ′′(〈ν, x0 − x〉)νiνj ,

substituting in the operator P defined in (11), we get

Pv = −∂tv + aij∂ijv + ∂ih∂iv = f ′′(〈ν, x0 − x〉)aijνiνj − ∂ihf
′(〈ν, x0 − x〉)νi ≤
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(if sup
∣∣∣∂h

∂ν

∣∣∣ = S, λ1 is the least eigenvalue of aij(x, p), λ1 = minx,p λ(x, p), f ′ ≥ 0,
and f ′′ ≤ 0)

(15) ≤ f ′′(〈ν, x0 − x〉)λ1 + Sf ′(〈ν, x0 − x〉) = 0,

if S �= 0 and f(t) = Cλ1
S

(
1− exp(− S

λ1
t
))
. Since Ω is convex, 〈ν, x0 − x〉 ≥ 0 in Ω.

Then it is possible to choose the constant C in such a way that v(x) ≥ u0(x)
in Ω. Besides v(x) = f(〈ν, x0 − x〉) ≥ 0 = u(x, t) in ST . Thus v(x) ≥ u(x) in ΓT ,
and Pv ≤ 0 = Pu in QT , by (15). By Proposition 3.2 v(x) ≥ u(x) in QT . Since
v(x0) = u(x0) = 0, then for every positive t,

(16)
v(x0 − sν)− v(x0)

−s ≤ u(x0 − sν)− u(x0)
−s ≤ 0

and

∂v(x0)
∂ν

≤ ∂u(x0)
∂ν

≤ 0.

And this gives a bound for the normal derivative: −C ≤ ∂u(x0)
∂ν ≤ 0. The tangential

component of ∇u is 0, since u is constant on ST . �

We explicitly remark that the constant in Theorem 3.2 depends on the least
eigenvalue of aij , so that it depends on ε, while the constants in Proposition 3.1
and Theorem 3.1 are independent of ε. In order to provide an a priori bound
independent of ε, we can extend h to a new function he defined in a neighborhood
Ωe of Ω, in such a way that ∂he

∂ν = 0 at the boundary. Then we prove

Proposition 3.3. Assume that Ωe is a rectangle, and ∂he

∂ν = 0 in a neighbor-
hood of the boundary, u ∈ C21(QeT ) ∩ Lip(Q̄eT ) is a solution of (8), and that
the initial datum u0 is of class C1(Ω̄e). Then there exists a constant C > 0 only
dependent on the initial datum u0 and on the trace of (aij) such that

sup
ΓT (Ωe)

|∇u| ≤ C.

Proof. We suitably modify the previous proof. We call

Ω = [a, b]× [c, d], Ωe = [ae, be]× [ce, de],

and we choice a point x0 ∈ ∂Ωe. Assume that x0 ∈]ae, be[×{ce}, and define v as
in (14). Choosing f(t) = kt, where k is constant and S = sup[ae,be]×[ce,c]

∣∣∣∂h
∂ν

∣∣∣ = 0,
by (15) we deduce

Pv ≤ 0 on [ae, be]× [ce, c].
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Choosing k in such a way that inf [ae,be]×{c} v ≥ maxu0 ≥ max[ae,be]×{c} u, we
deduce

v ≥ u on ΓT ([ae, be]× [ce, c]),

and by Proposition 3.2 v(x) ≥ u(x) in QT ([ae, be] × [ce, c]), while u(x0) = v(x0).
Arguing as in (16) we conclude the proof. �

Proposition 3.4. Assume that u ∈ C21(QT ) ∩ Lip(Q̄T ) is a solution of (8),
and that the initial datum u0 is of class C1(Ω̄). Then for every α ∈]1, 2[ there
exists a constant C > 0 dependent on the initial datum u0 and on the trace of
(aij), and on ε such that

|u|α = sup
QT

|u|+ sup
QT

|∇u|+ sup
(x,t) �=(y,s)

|∇u(x, t) −∇u(y, s)|
(|x− y|2 + |t− s|)α/2

≤ C.

Proof. Indeed, by Proposition 3.1

sup
QT

|u| ≤ C.

By Theorem 3.1, and 3.2

sup
QT

|∇u| ≤ C sup
ΓT

|∇u| ≤ C.

Now a direct application of Theorem 8.3 in [25], provides the thesis.
Let us explicitly note that the previous Proposition ensures in particular that

no solution of class C21(QT ) ∩ Lip(Q̄T ) exists out of the set

S = {u ∈ C1α(QT ) ∩ Lip(Q̄T ) : |∇u|α ≤ C}.
Hence in the following section we will look for a solution in this set S. �

3.3. Existence and uniqueness of the solution

We can now conclude the proof of the existence of a solution:

Theorem 3.3. Assume that the initial datum u0 is of class Lip(Ω̄), and satisfies
u0|∂Ω = 0.
Assume that there exists a constant C only dependent on T , the functions h

and u0 such that no solution of class C21(QT ) ∩ Lip(Q̄T ) exists out of the set S.
Then problem (8) has a solution of class C∞(QT ) ∩ Lip(Q̄T ).

Proof. Theorem 12.10 in [25] applies and it ensures the existence of a solution
in the set S. This is of class C∞(QT ), since the equation is uniformly parabolic,
and it is unique, by Proposition 3.2. �

If we make no assumption on the function h, the estimate on the gradient
depends on ε. If we assume that h is constant on a neighborhood of the boundary
of Ω, for every ε we find as before an unique solution uε of class C∞ of problem
(8). This time we have a stronger estimate by Proposition 3.3. The a priori bound

sup
QT

|u|+ sup
QT

|∇u| ≤ C



96 A. SARTI and G. CITTI

is independent from ε. Hence the family uε is equicontinuous and uniformly con-
verges as ε tends to 0 to a viscosity solution of problem (8), with ε = 0.

4. Numerical Scheme

In this section, we show how to approximate Eqn. 8 with finite differences. The
proof of existence of viscosity solutions (Section 3), provides the theoretical justi-
fication to exploit PSC (Propagation of Surfaces by Curvature) numerical schemes
introduced in [34]. These schemes approximate the equation of motion of propa-
gating fronts (surfaces), which resambles Hamilton-Jacobi equations with viscosity
terms. Then a correct entropy-satisfying approximation of the difference operator
is builded by exploiting the technology of hyperbolic conservation laws.

Let us consider a rectangular uniform grid in space-time (t, x, y); then the grid
consists of the points (tn, xl, ym) = (n∆t, l∆x,m∆y). Following standard nota-
tion, we denote by un

lm the value of the function u at the grid point (tn, xl, ym). We
approximate time derivative with a first order forward difference. The first term
of Eqn. 8 is a parabolic contribution to the equation of motion and we approxi-
mate this term with central differences. The second term on the right corresponds
to passive advection along an underlying velocity field ∇h whose direction and
strength depend on edge position. This term can be approximated using the up-
wind schemes. In other words, we check the sign of each component of ∇h and
construct one-sided difference approximation to the gradient in the appropriate
(upwind) direction [34].

With this, we can write the complete first order scheme to approximate equation
(8) as follows:

un+1
lm = un

lm +∆t




[
hlm

(ε+D0x2
lm )D0yy

lm −2D0x
lmD0y

lmD0xy
lm +(ε+D0y2

lm )D0xx
lm

ε+D0x2
lm +D0y2

lm

]

−
[

[max(h0x
lm, 0)D

−x
lm +min(h0x

lm, 0)D
+x
lm

+max(h0y
lm, 0)D

−y
lm +min(h0y

lm, 0)D
+y
lm ]

]



where D is a finite difference operator on un
lm, the superscripts {−, 0,+} indicate

backward, central and forward differences respectively, and the superscripts {x, y}
indicate the direction of differentiation. We impose Dirichlet boundary conditions
by fixing the value on the boundary equal to the minimum value of the point-of-
view surface. The time step ∆t is upper bounded by the CFL (Courant-Friedrich-
Levy) condition that insures the stability of the evolution [24]. In the numerical
experiments we have used for simplicity ∆x = ∆y = 1 and ∆t = 0.1, that is the
classic configuration parameters used in [34]. For further detail on the derivation
of the CFL condition we refer to [34]. The computational complexity of the
algorithm is of order od NP ×NI where NP is the number of pixels of the image
and NI is the number of iterations required to solve the model equation. The
number of iterations strongly depends on the size of the objects contained in the
image. Small objects are rapidly segmented, while big size figures take longer. For
an object of N ×N pixels the number of iterations is about 4N .
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5. Results

Next, we present a series of results of computing subjective surfaces. The same pa-
rameters ε = 10−6, σ = 0.3, β = 0.5 have been chosen for the all set of experiments
if not otherwise specified.
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Figure 4. Two steps of the boundary completion of the triangle of Kanizsa: on the left a set of
equispaced contour lines of the point-of-view surface are drawn and on the right is the level set of
the subjective surface that corresponds to the triangle boundary as estimated by the algorithm.

First, we consider the classical triangle of Kanizsa (Fig. 1) and apply the al-
gorithm in order to perform completion of the missing boundaries. We compute
the edge map as shown in the left image of Fig. 4, and then choose a reference
point approximately at the center of the perceived triangle. The evolution of the
surface under the flow induced by Eqn. 8 is visualized in Fig. 5. The triangle
boundary shown in the right image of Fig. 4 is found by plotting the level set
ū = {max(u) − ε} of the subjective surface. Note that in visualizing the surface,
we normalize it with respect to its maximum.

In Section 2.4 we noted that the model equation (Eqn. 8) is a combination of
two dynamics weighted by the stretching factor ε: a geodesic flow for ε = 0 and
a linear diffusion flow for ε → ∞. In the next experiment, we show what the
boundary completion result looks like under these two extremes specially for the
case when the user-defined fixation point is a bit off center. In the left image of
Fig. 6, we consider a slightly off center initial condition. As shown in the right
image of Fig. 6, the flow under Eqn. 8 succeeds in producing a good segmentation
of the triangle. If we consider a strongly off center initial condition as in Fig. 7, the
triangle is still present in the subjective surface, but the closest white inducer be-
comes predominant. On the other hand, the flows under both Eqn. 9 and Eqn. 10
fail to produce a good completion even with a slightly off center point of view; see
Fig. 8. In facts the level set flow (Eqn. 9) causes the formation of false surface
gradient due to the off center initial condition (Fig. 8, left), and the flow under
Eqn. 10 produces a result that is too diffusive (Fig. 8, right).

In Fig. 9 we show an example of multiple objects segmentation. Three circles
with missing boundaries are present in the image. The fixation point is chosen



98 A. SARTI and G. CITTI

Figure 5. Four time frames showing the evolution of the point-of-view surface (upper left)
towards the subjective surface (bottom right). In this visualization the original image has been

texture mapped onto the surface.
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Figure 6. A slightly off center fixation point: on the left equispaced contour lines of the point-
of-view surface are shown and the computed triangular contour is shown on the right.

inside the middle circle and the initial surface is its distance function (Fig. 9
upper). When the subjective surface is computed a level set is selected in order to
choose the segmented object: for ū = {max(u) − ε} only one circle is segmented
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Figure 7. A strongly off center fixation point: on the left equispaced contour lines of the point-
of-view surface are shown and on the right the subjective surface is visualized.

Figure 8. Comparison with different metrics: On the left is shown the result of the segmentation
with pure level set curve evolution (ε = 0). On the right is shown the result of the segmentation

with pure nonuniform diffusion. The point of view surface is the same as in Fig. 6).

(Fig. 9 middle) and for ū = ε all the object of the scene are segmented (Fig. 9
bottom).

Medical images are difficult candidates for shape recovery because they possess
noisy structures and large parts of the boundary are often found absent thereby
making shape recovery very difficult. In Fig. 10, we show anatomical structures
segmentation from a CT image. To segment the left ventricle chamber we initialize
with a distance function from a fixing point internal to the chamber (Fig. 10 upper
left). In the segmentation of the liver we use a line initialization instead of a fixation
point and the point-of-view surface is constructed to be the distance function
from this initial line. The final result, a particular level set of the subjective
surface is shown in the right images of Fig. 10. More examples of subjective
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Figure 9. Boundary completion of open circles. Level curves of the point of view surface (upper),
level curve ū = {max(u) − ε} of the subjective surface (middle) and level curve ū = ε of the

subjective surface segmenting all the circles together (bottom).

surface segmentation applied to texture and photographic images can be found
in [40].
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Figure 10. Segmentation of anatomical structures form a CT image: segmentation of cardiac
chamber (upper) and of liver section (bottom).
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