
Acta Math. Univ. Comenianae
Vol. LXX, 1(2001), pp. 15–31
Proceedings of Algoritmy 2000

15

DIFFUSION MODELS AND THEIR ACCELERATED SOLUTION
IN IMAGE AND SURFACE PROCESSING

U. DIEWALD, T. PREUSSER, M. RUMPF and R. STRZODKA

Abstract. During the last decade nonlinear anisotropic diffusion models have
shown to be powerful methods not only in image processing. Moreover these
methodologies can be adopted to other areas in computer vision. On the level of
the continuous model one can study the qualitative aspects and properties whereas
approved discretization schemes are at hand for an efficient implementation. In this
paper we discuss several anisotropic diffusion methods and outline a novel technique
for geometric surface processing. Moreover we will show how the solution process
can be accelerated significantly by using texture hardware of modern graphics cards,
making use of the much better memory bandwidth and the built-in parallelism.

1. Introduction

In the last decade PDE based models in the field of computer vision and image
analysis became very popular. Here we outline how these techniques can be gener-
alized to surface processing and visualization purposes. Furthermore, we introduce
a novel concept for fast implementation of the underlying algorithms.

The nonlinear diffusion models as we know them today were first introduced by
a work of Perona and Malik [23], who introduced a model that allows for denoising
of images while retaining and enhancing edges. Analysis of the Perona Malik model
showed its mathematical ill-posedness [18, 19, 35], that drove the derivation of a
regularized model by Cattè et. al. [7]. This still has the edge preserving property as
long as the regularization parameter is chosen appropriately. The so called scale
space methods were later classified by a rigorous axiomatic theory by Alvarez
et. al. [2]. Recovering of lower dimensional structures was analyzed by Weickert
[31]. He considered an anisotropy depending on the so called structure tensor
of images, that steers a nonlinear diffusion process taking care of tangential and
normal directions on edges.

But the continuous diffusion models are not only limited to image processing.
In [24] Preußer and Rumpf have adopted the nonlinear diffusion to visualization
of vector fields – a fundamental topic in scientific visualization. Clarenz, Diewald
and Rumpf picked up the idea of nonlinear diffusion and incorporated anisotropic

Received January 10, 2001.
2000 Mathematics Subject Classification. Primary 65M60, 65Y10.
Key words and phrases. Hardware accelerated solver, image processing, level set method,

multiscale, nonlinear diffusion, surface processing, vector field visualization.



16 U. DIEWALD, T. PREUSSER, M. RUMPF and R. STRZODKA

surface smoothing that retains edges on surfaces and whose diffusion tensor de-
pends on the shape operator of the evolving surface [8]. Their methodology also
enables visualization of vector fields on surfaces [12]. All the derived models profit
from important properties from the original diffusion model in image processing.

Finite element methods are widely spread to discretize the underlying partial
differential equations. Their convergence properties were first studied by Kačur
and Mikula [17]. Weickert [31] proposed additive operator splitting techniques
based on finite difference schemes to accelerate the solution process. Also multigrid
methods have been considered in the past [1]. They allow for a good convergence
as long as the anisotropic behavior of the diffusion process is not too strong. The
use of adaptive finite elements has been discussed in [4, 25]. Moreover parallel
computing has been considered in e.g. [32].

An alternative to the parallelization in conventional hardware is the use of
modern graphics cards for computations. This has been extensively exploited in
volume rendering [9, 33, 34] and more recently in filter applications [15, 16].
The advantages are mainly the very fast memory access and inherently parallel
processing of data. In this paper we show how the graphics processor unit may be
even used for the more complex task of solving linear systems of equations which
arise in finite element schemes. This finally allows the whole application to run
solely on the graphics board.

The paper is organized as follows: In Section 2 we review the general diffu-
sion model in image processing and show various applications and adaptations to
computer vision in section 3. Here we revisit the model for visualization of vector
fields on Euclidean domains and on surfaces. An anisotropic parametric surface
processing model and also a new geometric level set method for geometric image
smoothing will be presented. In section 4 we discretize the diffusion models using
finite elements. Finally we discuss the hardware acceleration in Section 5.

2. Diffusion Models in Image Processing

To begin with, let us briefly review the standard nonlinear diffusion model in
image processing. We consider images as functions on a given domain Ω ⊂ R

d

having values in R
m with m ∈ {1, 2, 3}. For gray value images we clearly have

m = 1, whereas the case m = 2, 3 corresponds to color images. Our image domain
Ω ⊂ R

d, d ∈ {2, 3} corresponds to 2D images in the case d = 2 and to 3D images
that are widespread in medical applications in the case d = 3. The basic nonlinear
diffusion problem then reads:

Find a function ρ : R
+
0 × Ω → R

m which solves the parabolic problem

∂tρ− div (A(∇ρσ)∇ρ) = f(ρ)in Ω,

ρ(0, ·) = ρ0 on ∂Ω,(2.1)

A(∇ρσ)∇ρ · ν = 0 on R
+ × ∂Ω,

for given initial density ρ0 : Ω → R
m. Here ρσ = χσ ∗ ρ is a convolution of the

current density, which is necessary for the wellposedness of the above parabolic,
boundary and initial value problem (cf. [7]). The function f(·) may serve as
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a penalty which forces the solution to stay close to the initial image, e. g. by
choosing f(ρ) = γ(ρ0 − ρ) where γ is a positive constant. We regard the solution
ρ(·) as a family of images {ρ(t)}t∈R

+
0
, where the time t acts as a scale parameter.

The parabolic equation can then be seen as a filter which for each t ∈ R
+ delivers

a filtered version ρ(t) of the original density ρ0.
So far we have not yet defined the nonlinear diffusion tensor A(∇ρσ) that

steers the evolution process. In the following sections we will define A(∇ρσ)
in different ways, leading to the desired models. Replacing the diffusion tensor
with the identity we would get the basic heat equation model. Whereas setting
A = G(‖∇ρσ‖), leads to the regularized Perona Malik model with an edge indica-
tor function G : R

+
0 → R

+. We suppose G to be a monotone decreasing function
chosen such that limd→∞G(d) = 0 and G(0) = β where β ∈ R

+ is constant,
e. g. G(d) = β

1+‖d‖2/λ2 , with λ > 0. As already mentioned above the convolution
avoids the non-wellposedness of the model. A widespread choice is the convolution
with a Gaussian kernel [7], which corresponds to the solution of the heat equation
evaluated at a corresponding short time. Figures 1 shows the application of a
regularized Perona Malik smoothing process in 2D.

Figure 1. Different scale steps of the Perona Malik evolution of a noisy image are being shown.
From left to right the noisy image, respectively the scale-steps 3, 7 and 10 are depicted.

In contrast to the nonlinear diffusion model presented so far another but purely
morphological model has become fundamental in image processing. It is based on
simultaneous evolution of all level sets Mc := {x ∈ Ω

∣∣ρ(t, x) = c} of an image by
mean curvature motion (cf. [3])

(2.2) ∂tρ− ‖∇ρ‖ div
(

∇ρ
‖∇ρ‖

)
= 0.

I.e. we consider the parabolic equation which is the level set variant of ∂tx =
−H(x)N(x), where H(x) is the mean curvature and N(x) the normal to the
levelset curve at a point x. From differential geometry we know that for a distinct
surface M := Mc this surface propagation is equivalent to solving

∂tx− ∆Mx = 0,

where ∆M denotes the Laplace Beltrami operator on a surface M and x is the
identity on M.
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3. Applications in Computer Vision

In this section we will study various applications for which we apply the diffusion
models. We will first discuss the modification to anisotropic diffusion in vector field
visualization, and then carry over the multiscale concept to surface processing.
After the extension of the anisotropic diffusion to visualization of vector fields on
surfaces, we proceed to a new geometric level set method.

3.1. Vector Field Visualization on Euclidean Domains

The central goal in this area of scientific visualization is to define methods that
allow for an intuitive reception and give an overall as well as detailed view of the
underlying flow field. The simplest method of drawing vector plots often leads
to visual clutter, due to the different local scaling of the field within the domain.
Many other techniques have therefore been derived. For a detailed review of related
work we refer to [8, 12, 24].

We want to define a texture that represents the flow field globally on the spatial
domain, since single particle lines only very partially are capable of illuminating
features of a complex flow. Our method to be presented generates streamline
like patterns and in addition carries the possibility to successively coarsen those
patterns. We base our method on the coherence enhancing filters from [31] and
furthermore pick up the line integral convolution (LIC) approach as proposed by
Cabral and Leedom [6] using the observation that the built in convolution along
streamlines corresponds to solving the heat equation on the streamlines. The
desired coarsening will be steered by a Perona Malik type diffusion that acts in
the orthogonal direction. We consider Neumann boundary conditions as before on
Section 2.

To be more precise, let v : Ω → R
d be a given vector field, which we assume to

be continuous and non vanishing on Ω. Clearly there exists a family of orthogonal
mappings B(x) : Ω → SO(n) such that B(x)v(x) = e0, where {ei}i=0,...,d−1 is the
standard basis in R

d. Hence, we consider a diffusion tensor A(v,∇ρσ) depending
on the vector field v defined by

A(v,∇ρσ) = B(x)T

(
α(‖v(x)‖) 0

0 G(‖∇ρσ‖)Idd−1

)
B(x).

Here α : R
+ → R

+ controls the linear diffusion in vector field direction, i.e. along
streamlines, and the above introduced edge enhancing diffusion coefficientG(·) acts
in the orthogonal directions. In general, we choose α to be a constant function, but
we may also select a monotone function with α(0) > 0 and limα→∞ α(s) = αmax.
We could run the evolution with any image density as initial data ρ0, but to avoid
aliasing artefacts, we choose a random noise of appropriate frequency range as
initial data. During the evolution, patterns will diffuse along the streamlines, but
there is still some diffusion perpendicular to the flow field. This supplies us with
coarser representations of the flow field as the scale increases. Unfortunately, if
we run the evolution with a vanishing right hand side f , the contrast of the image
density will decrease, because of the linear diffusion along streamlines. Thus, we
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select a source term f : [0, 1] → R
+ satisfying

(3.1) f(0) = f(1) = 0, f < 0 on (0, 0.5), f > 0 on (0.5, 1),

that pushes values towards zero and 1, respectively. Well known maximum princi-
ples ensure that we do not enlarge the interval of gray values using this f . Choosing
m ∈ {2, 3} in the diffusion equation 2.1 provides additional asymptotic states of
the process. We then select the corresponding initial data randomly distributed
within the cube [0, 1]m, interpret the components of ρ as color-components and
define the force f to work on the luminance of ρ. In Figure 2 we have depicted a
scale of vector field representations.

Figure 2. From top left to bottom right four successive scale-steps of the anisotropic diffusion
process are depicted. The vector field visualized here results from a CFD computation, where a

fluid flows from the inlet (black circle) toward an outlet on the lower right corner.

3.2. A parametric surface processing model

In this section we will review a first anisotropic diffusion model on parametric
surfaces. This method extends the edge enhancing diffusion filters from [31] to
surfaces. Other contributions to PDE based smoothing on/of surfaces have been
made by [10, 11, 20].

To support the reading of the following sections, in Table 1 we have collected
all notations used in the following. For the sake of simplicity let us assume our
surfaces to be compactly embedded manifolds in R

3 without boundary. In case
of noisy parametrized surfaces M0 with parameterization x0 we can proceed in
analogy to diffusion in image processing and consider the corresponding anisotropic
geometric evolution problem. This method first presented in [8] is able to preserve
important features such as edges and corners on the surface and allows tangential
smoothing along an edge but not in the direction perpendicular to it. The core
of the method is diffusion that depends on the shape operator S, which indicates
edges and corners by sufficiently large eigenvalues.
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T M Tangent bundle on M
TxM Tangent space of M in x ∈ M
g(·, ·) Metric on M
S Shape operator
Sσ Regularized shape operator
Sσ Shape operator of a regularized image. (In general Sσ �= Sσ)
Sσ
TxM Shape operator acting on the tangent space of M in x ∈ M
N Normal of a surface respectively level set
Nσ Normal of a regularized surface respectively level set
DN Jacobian of the normal
XM(t) Manifold on which the differential operator X is defined

Table 1. Notations concerning geometric anisotropic diffusion.

Because the evaluation of the shape operator on a noisy surface might be mis-
leading with respect to the original but unknown surface and its edges, we pre-
filter the current surface M(t) by straightforward “geometric Gaussian” filtering.
Hence, we compute a shape operator Sσ

TxM on the resulting prefiltered surface
Mσ(t), where σ is the corresponding filter width. Finally one obtains the follow-
ing type of evolution problem:

∂tx− divM(t)(aσ
TxM ∇M(t)x) = f.

Thereby, we define the diffusion tensor aσ
TxM = a(Sσ

TxM) with respect to the
orthonormal basis of principal curvature directions on Mσ by

aσ
TxM =

(
G(κ1,σ) 0

0 G(κ2,σ)

)
,

where G is the already introduced edge indicator function. Thus, diffusion on the
surface is significantly reduced in directions of high principle curvature, i.e. those
perpendicular to an edge. On the other hand, a larger diffusion coefficient in the
edge direction enables the tangential smoothing along the edge. The right hand
side f of the considered evolution problem can be chosen such that the volume
enclosed by M is preserved (cf. [8]) or one can select a simple retrieving force
which avoids large deformations.

The evaluation of the shape operator will be based on an interpretation of
the triangular grids of the discrete manifold as a graph over the tangent plane.
A succeeding L2 projection of the graph onto the quadratic polynomials enables
the actual approximate evaluation of the shape operator, whose eigenvectors and
eigenvalues we pick up for the definition of the diffusion tensor.

If we compare the new model with the anisotropic diffusion model in image
processing we see a strong analogy. The difference only consists in the interpreta-
tion of the operators compared to the Euclidean case. Basically we have replaced
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Euclidean differential operators by their geometric counterparts. The anisotropy
in the new geometric model depends on regularized curvatures, which are based
on second derivatives, whereas the Euclidean model considers a gradient based
model. For a detailed description we refer the reader to [8].

As an example, in Figure 3 we see the evolution of a noisy laser scan surface
under the anisotropic geometric diffusion method.

Figure 3. From left to right we have depicted four different scale steps of the anisotropic geo-
metric evolution of the Venus head. The surface representation was obtained by a laser scan

with additionally added noise.

3.3. Vector field visualization on surfaces

In Section 3.1 we have reviewed an anisotropic diffusion model for visualization
of vector fields on domains that are subsets of the two- and three-dimensional
Euclidean space. In what follows we will briefly outline how to carry over this
concept to visualize vector fields on surfaces. The applications we show here will
focus on vector fields in differential geometry, i.e. principal directions of manifolds,
but the method is also applicable to results from meteorological computations or
flow fields on stream surfaces. In analogy to the diffusion equation in the Euclidean
case, we now ask for a solution ρ : R

+
0 ×M → R

d of the parabolic equation

∂tρ− divM(A∇Mρ) = f(ρ)

on R
+
0 × M for given initial data ρ(0, · ) = ρ0 on M. Here we suppose A to be

some positive definite symmetric endomorphism on T M. To represent a vector
field v ∈ T M we let w, for a non vanishing v, be a vector orthogonal to v in the
sense of the metric, i.e. g(v, w) = 0, and then define with respect to the basis
{v, w} of TxM the diffusion tensor A as before in the Euclidean case

A(v,∇ρσ) =
(
α(‖v‖) 0

0 G(‖∇ρσ‖)

)
.

For the right hand side f(·), we take the function defined by (3.1) in Section 3.1
and again assume ρ0 to be a random noise, either scalar or vector valued, but
now on the surface M. As an example in Figure 4 we have depicted the principal
directions of curvature of Costa’s surface.
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Figure 4. We depict the visualization of the principal directions of curvature of Costa’s surface
using the anisotropic diffusion method on surfaces.

3.4. A level set method for geometric image smoothing

The parametric surface processing model described in Section 3.2 is a well suited
approach to edge preserving surface smoothing. One disadvantage, however, is the
dependence upon a parameterization of the surface that makes it enormously diffi-
cult to apply the method to e.g. the isosurfaces of medical data, where parametriza-
tions of the isosurfaces are not known. A modification of MCM was proposed by
Sapiro [28] who considered so called self-snakes, which are steered by a coefficient
depends on the image gradient. Here we present a level set approach which in
addition comes along with the feature that ellipsoidal level sets remain invariant
under the evolution [26].

As already described in Section 3.2 an edge feature is characterized by a small
curvature in tangential direction along the feature and a sufficiently large curva-
ture in the perpendicular direction in the tangent space. Let us assume κ1 ≤ κ2

to be the principal curvatures and denote by v1 and v2 the corresponding prin-
cipal directions of curvature. Hence we consider an anisotropic diffusion tensor
depending on the shape operator extended to R

3: S := DN . Thereby the dif-
fusion tensor is supposed to significantly decrease the diffusion in the dominant
curvature direction v2, whereas a fixed diffusion is prescribed in the subdominant
v1 direction. This distinction will again be made via a function G applied to the
principle curvatures κ1, κ2.

Again the evaluation of the shape operator S on a level set of a noisy image
might be misleading with respect to the true but unknown level sets and edges.
E.g. noise might be identified as features. Thus we have to consider a regularization
and prefilter the current image ρ(t, ·), which leads to a regularized shape operator
Sσ. Either we consider an appropriate “morphological” filter which is a short
timestep of the level set evolution by mean curvature, or alternatively we base
it on a least square approximation of the true local level set in a suitable finite
dimensional space of smooth functions and compute the shape operator on the
corresponding level set. A third choice would be the convolution of the image
ρ(t, ·) with a Gaussian kernel (cf. [7]).
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We end up with the following type of nonlinear parabolic problem. Given an
initial 3D image ρ0 on in Ω, we ask for a scale of images {ρ(t, ·)}t≥0 which obey
the anisotropic geometric evolution equation:

∂tρ− ‖∇ρ‖ div
(
A(Sσ)

∇ρ
‖∇ρ‖

)
= 0 on R

+ × Ω,

ρ(0, ·) = ρ0(·) on Ω,

A(Sσ)∇ρ · ν = 0 on R
+ × ∂Ω,

where ν is the outer normal to ∂Ω. A(Sσ) is supposed to be a symmetric, positive
definite, linear endomorphism on R

3, which cares about the preservation of edges
and the tangential smoothing along edges. Thus we define

A(Sσ) = BT
σ


 G(κ1,σ)

G(κ2,σ)
0


Bσ .

Here Bσ ∈ SO(3) denotes the basis transformation from the regularized frame of
principal directions of curvature and the normal {v1,σ, v2,σ, Nσ} onto the canonical
basis {e1, e2, e3}.

The underlying evolution turns out to be equivalent to the propagation of the
level sets Mc(t) with speed f in normal direction N , i.e. ∂tx = f N with

f := tr(A(Sσ)(Sσ − S)) + (div A(Sσ))(Nσ −N) ,

because (using the abbreviation aσ := A(Sσ)) we have

div(aσN) = (div aσ)N + tr(aσDN)

= (div aσ)Nσ + (div aσ)(N −Nσ) + tr(aσS)

= div(aσNσ) − tr(aσDNσ) + (div aσ)(N −Nσ) + tr(aσS)

= 0 − tr(aσSσ) + (div aσ)(N −Nσ) + tr(aσS) .

Here we define Sσ := DNσ, where Nσ is the normal of the regularized image.
Clearly Sσ coincides with the regularized shape operator Sσ if we evaluate Sσ on
the level sets of a globally prefiltered image. But evaluating Sσ separately for each
point x ∈ Ω on a locally regularized level set surface leads in general to Sσ �= Sσ.

For noisy images we expect tr(A(Sσ)(Sσ − S)) to be the dominant term in the
propagation speed, since in general for x ∈ Ω

‖Sσ(x) − S(x)‖ � ‖N(x) −Nσ(x)‖.
This enables us to characterize the behavior of the anisotropic level set method.
It is mainly driven by the difference of a regularized shape operator and the true
shape operator weighted by the anisotropic weights given by the diffusion tensor.
Furthermore, we verify that the propagation speed f vanishes if the regularization
Sσ coincides with the original S, which gives reason for the invariance property
stated above.

In our model above we have made extensive use of a regularized shape operator,
on which we base the computation of the anisotropic diffusion tensor. Whatever
process we apply to locally or globally regularize the image intensities, we have to
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define a discrete shape operator on level sets described by finite element functions.
As long as we do not use at least quadratic elements even a definition – without
thinking of the consistency problem – remains an open question [29]. Since typical
image discretizations are based on trilinear interpolation of pixel or voxel values,
we consider the second regularization variant, which is based on a local L2 projec-
tion. Unfortunately this regularization defined in the sequel is not guaranteed to
be invariant under gray value transformations. Nevertheless we expect the corre-
sponding regularized shape operator to depend essentially only on the morphology
of the local image.

We base the local regularization on a least squares fit of the image ρ onto a
subspace of the polynomials P2. To this end let us fix a point x ∈ Ω and denote
by Q the subspace of P2 that does not contain constant functions. It is not
necessary to consider constant functions in Q since we can locally shift the image
ρ such that ρ(x) = 0. The local L2 projection Πx,σρ ∈ Q of the intensity ρ onto
Q is then defined by the orthogonality∫

Bσ(x)

(ρ− Πx,σρ) q = 0 ∀ q ∈ Q,

where Bσ(x) is a small neighborhood of x. For the ease of presentation we write
ρσ instead of Πx,σρ for a fixed x ∈ Ω. Now we define the shape operator Sσ :=
D ∇ρσ

‖∇ρσ‖ , which is symmetric and therefore is characterized by its real eigenvalues
0 and κj,σ, j = 1, 2 and the eigenvectors {Nσ, v1,σ, v2,σ}. In general we have
Sσ �= Sσ. For a more detailed description of the model, the regularization and a
discussion of the implementation we refer to [26].

In Figure 5 we see the evolution of a noisy echocardiographical data set and in
Figure 6 we have compared the new anisotropic level set method with other well
known techniques (cf. [14, 21]).

Figure 5. From left to right we depict a noisy echocardiographical data set of the left ventricle
of the human heart and three scale steps of the new anisotropic level set method applied to that

initial data.
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Figure 6. The results of the isotropic Perona Malik diffusion (left), anisotropic Perona Malik
diffusion [31] (middle) and mean curvature motion (right) applied to the noisy data set from
Figure 5 are shown. The new geometric diffusion clearly retains most of the edges and preserves

the volume best.

4. Finite Element Discretization

In what follows, we discuss the discretization and implementation of the nonlinear
diffusion methods. We will focus on domains in 2D and 3D Euclidean space and
refer to [8, 12] for a detailed description of a discretization on manifolds.

Let us first look at the discretization of the anisotropic diffusion. The variational
formulation of the diffusion problem 2.1 is obviously given by

(∂tρ, θ) + (A(v,∇ρσ)∇ρ,∇θ) = (f, θ),

for all θ ∈ C∞(Ω), where (·, ·) denotes the L2 product on the domain Ω. We
consider a finite element discretization and a semi implicit backward Euler scheme
in time. Here we have restricted ourselves to regular grids in 2D and 3D generated
by recursive subdivision. On these grids we consider bilinear, respectively trilin-
ear finite element spaces. Numerical integration is based on the lumped masses
product (·, ·)h [30] which approximates the L2 product (·, ·) in the variational for-
mulation and a one point quadrature rule for the bilinear form (A∇·,∇·). The
semi-implicit character of the scheme results in the evaluation of the nonlinearity
A(·) and the right hand side at the old time. So finally, we have to solve a system
of linear equations in each timestep of the discrete evolution. For the backward
Euler discretization, we obtain

(Mn + τLn(An))ρ̄n+1 =Mnρ̄n + τMnf̄n .

Here ρ̄n = (ρ̄n
i )i denotes the vector of nodal intensity values at time tn = nτ ,

where τ is the selected timestep size. Furthermore, if we consider the “hat shaped”
multilinear basis functions Φi and assume An to represent the diffusion tensor with
respect to the discrete intensity at time tn,

Mn :=
(
(Φi,Φj)h

)
ij

and Ln(An) := ((An∇Φi,∇Φj))ij

are the lumped mass matrix and stiffness matrix respectively. Finally, the compo-
nents of the right hand side f̄n are evaluated by (f̄n)i = f(ρ̄n

i ).
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In each timestep the computation of the prefiltered intensity vector ρ̄n
σ is based

on a single implicit timestep of size σ2/2 for the corresponding discrete heat equa-
tion scheme with respect to initial data ρ̄n.

To discretize the anisotropic level set method, we regularize the variational
formulation, since in general we cannot guarantee that ∇ρ �= 0 (cf. [13]). Thereby,
we work with the variational formulation

(4.1)

(
∂tρ√

‖∇ρ‖2 + ε2
, θ

)
+

(
A(Sσ)

∇ρ√
‖∇ρ‖2 + ε2

,∇θ
)

= 0

for ε > 0 and for all test functions θ ∈ C∞(Ω) and proceed as described above.
In our implementation the regular grids are procedurally interpreted as quad-

trees, respectively octtrees. Finally no matrix is explicitly stored. The necessary
matrix multiplications in the applied iterative solver are performed in successive
tree traverses. Hierarchical BPX type [5] preconditioning is used to accelerate the
convergence of the linear solver. Furthermore the code is prepared to incorporate
spatial grid adaptivity if possible [25].

5. Hardware Accelerated Solvers

Numerical computations in graphics hardware are only slightly different from those
of a computer. Graphics cards also consist of a central processor, the graphics pro-
cessor unit (GPU), and memory, typically called texture memory. (The structure
of some graphics cards does not exactly fit this simple scheme). The performance
of nowadays standard CPUs and GPUs are comparable, whereas the texture mem-
ory offers a significantly higher bandwidth than the main memory of a computer.
The main difference in computing is that the commands to be executed are not
listed in the texture memory, but still in the main memory of the PC, only the
operands are in the texture memory. For example to perform an addition, the cor-
responding command is sent to the GPU, which then gets the operands from the
texture memory, processes them and writes the result back to the texture memory.
We should think of the operands as large data blocks, e.g. entire images, because
only then the advantages of the graphics cards can be fully exploited. For the
execution of the pixelwise addition of two entire images the GPU namely needs
only very few commands, the access to the operands is very fast, and the operation
is performed in parallel on several components.

While using graphics hardware for computations there are two important issues
which we must pay attention to. First, the number formats supported by the GPU
offer only the range [0, 1], which is suitable for the representation of intensities.
As usually our computation will require a bigger range, we have to encode are
numbers appropriately and perform any operations compliantly to the encoding.
Second, the resolution of numbers in the GPU offers at most 12 bit per color com-
ponent. Therefore the algorithm should be designed with the intention of reducing
the necessary interval of numbers, because any extension of it leads through the
encoding to a decrease in precision.
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We will now consider the regularized Perona Malik model reviewed in Section 2.
In Section 4 we have seen that after appropriate discretization in space and time we
have to solve the following system of equations: (Mn + τLn(ρn

σ))ρ̄n+1 =Mnρ̄n +
τMnf̄n. If we rescale the above equation to reference finite elements we obtain(

I +
τ

h2
L̂(ρn

σ)
)

︸ ︷︷ ︸ ρ̄n+1 = ρ̄n + τ f̄ (ρn)︸ ︷︷ ︸
An ρ̄n+1 = R̄n.

Now, let us consider a simple iterative solver, like the Jacobi solver

F (X̄) = D−1(R̄ − (A−D)X̄), D := diag(A),

and think of the operations needed to implement it in graphics hardware. The GPU
provides operations for the componentwise addition and multiplication as well as
for the application of one argument functions (D−1), but we cannot implement
the matrix vector product straight forward. Instead we consider a splitting of
operations and observe the following:(

L̂(ρn
σ)
)

α,β
=
(
G(‖∇ρn

σ‖)∇Φ̂α,∇Φ̂β

)
=

∑
E∈E(α)

G(‖∇ρn
σ‖)|E

(
∇Φ̂α|E ,∇Φ̂β |E

)
=

∑
E∈E(α)

Ḡn
ES

β−α ,

where E(α) is the set of elements around the node α, Ḡn
E := G(‖∇ρn

σ‖)|E is
the constant value of the diffusion coefficient on such an element and Sβ−α :=(
∇Φ̂α|E ,∇Φ̂β |E

)
is a constant depending only on the index offset β−α, provided

we deal with equidistant meshes. Then applying L̂(ρn
σ) to an arbitrary vector X̄

results in: (
L̂(ρn

σ)X̄
)

α
=
∑

β

∑
E∈E(α)

Ḡn
ES

β−αX̄β

=
∑

E∈E(α)

Ḡn
E

∑
γ

SγX̄α+γ .

Here it is convenient to look upon α and β as 2 or 3 dimensional multi-indices,
enumerating the nodes of the 2 or 3 dimensional grid respectively. Then γ := β−α
is the spatial offset from node α to node β. Hence the inner sum represents a
weighted sum of neighboring node values, where the weights Sγ are independent
of the local position α. This discrete convolution with constant weights is directly
supported by some GPUs. If not available, one can simulate it by adding shifted
and weighted copies of X̄. For the underlying quadtree or octtree and linear basis
functions Φα, the index offset γ satisfies |γ| ≤ d, if | · | indicates the 1-norm on
R

d, in other words the stencil of the convolution filter is a 3 by 3 (by 3) matrix.
Finally the multiplication with Ḡn

E is simply a componentwise multiplication with
the vector Ḡn := (Gn

E)E .
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Consequently, we list the operations required for the implementation of the
Jacobi solver and their counterparts in graphics hardware using the OpenGL
API [22]:

operation OpenGL
componentwise linear combination blending function
componentwise multiplication blending function
componentwise function of one argument lookup table
convolution convolution extension

Table 2. OpenGL functionality corresponding to vector operations.

Figure 7 shows computations on the InfiniteReality2 graphics system of a SGI
Onyx2 applied to the same noisy image as in Figure 1. Unlike many others,
this graphics system offers display modes with 12 bit per color component, which
enhances the accuracy of the calculations. We see that this precision is sufficient for
the task of denoising pictures by nonlinear diffusion models. Certainly the images
produced by hardware and software vary, but the overall effect of the image seems
very much the same for our visual perception, which is the decisive factor in this
application.

Figure 7. Nonlinear diffusion in graphics hardware (cf. Figure 1).

The performance of the InfiniteReality2 system of about 17sec for the compu-
tation of 10 timesteps à 10 Jacobi iterations which lead to the 2562 images in
Figure 7 is rather weak in this setting. This is because our algorithm strongly
depends on a fast texture loading from the framebuffer, but in the time when the
InfiniteReality2 graphics emerged, the graphics pipeline has only been optimized
for drawing textured images into the framebuffer.

An implementation on the modern ELSA Gladiac Ultra PC graphics card pow-
ered by NVIDIA’s GeForce2 Ultra chip runs through the 10 Jacobi iterations of
a timestep in just 0.1sec. Here also the inverse path from the framebuffer to the
texture memory has been optimized, eliminating the afore mentioned bottleneck.
The lower resolution of only 8 bits per color component, however, poses addi-
tional difficulties in bounding the computational error and thus reconstructing the
qualitative behavior of the analytical model.
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Fortunately, the development of PC graphics hardware tends towards higher
precision formats with up to 16 bits per component, such that in future even
more precision sensitive algorithms will permit graphics hardware implementa-
tions. Moreover, performance is still very likely to rise by factors, because cur-
rently certain restrictions and unoptimized paths in the graphics pipeline enforce
time consuming computational detours.

In this section we have outlined the implementation of the regularized Perona
Malik model in graphics hardware. The availability of the basic vector operations
and the reformulation of the sparse matrix vector product in graphics hardware,
however, also allow the implementation of more complex models like these from
sections 3.1 and 3.4. Generally speaking, the array of applications feasibly imple-
mentable in graphics hardware is restricted by the precision requirements and the
homogeneity of the processed data. An example for the graphics hardware imple-
mentation of a different model than the nonlinear diffusion has been discussed in
[27]. There, we have implemented an explicit solver for the levelset equation, and
use it for the segmentation of images.

6. Conclusions

We have seen a wide range of applications for the nonlinear diffusion models,
ranging from denoising techniques to vector field visualization. In either case we
could experience the advantage of a multiscale of solutions which allows to choose
the appropriate coarsening scale for the application. Concerning the implementa-
tion we have proposed a software and a hardware solution. The software solution
uses hierarchical adaptivity and fast solvers for optimal performance with mini-
mum memory requirements, whereas the hardware solution operates on equidistant
meshes, but benefits from the higher memory bandwidth of the graphics hardware
and its intrinsic parallelization. Both approaches have their pros and cons. The
software solution guaranties high precision, very good scalability and implemen-
tational flexibility, but lacks ultimate performance. The graphics hardware, on
the other hand, frees the CPU for other computations and still offers supreme
performance, but lacks high precision and flexibility. Depending on the appli-
cation, choosing the appropriate approach or a combination of both will lead to
satisfactory results.
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