ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXII, 1(2003)
p. 15 22

On Standard Basis and Multiplicity of (Xa Yb, Xc Yd)
E. Boda and R. Farnbauer


Abstract.  Let $I=(X^{a}-Y^{b},X^{c}-Y^{d})\cdot k[X,Y]$ be an ideal of dimension zero in polynomial ring in two variables. In this note a formula for standard basis of $I$ with respect of anti-graded lexicographic order is derived. As a consequence the discussion on the common points of the plane curves $V(X^{a}-Y^{b})$ and $V(X^{c}-Y^{d})$ is given.

AMS subject classification:  13H15, Secondary 13P10
Keywords:  Standard basis of ideal, local intersection multiplicity, Bezout Theorem invariance

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2003, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE