ACTA MATHEMATICA UNIVERSITATIS COMENIANAE 
 
Vol. LXXII, 1(2003)
p. 15 – 22
 
 
On Standard Basis and Multiplicity of  (Xa – Yb, Xc – Yd)
 
E. Boda and R. Farnbauer
 
Abstract. 
 
Let $I=(X^{a}-Y^{b},X^{c}-Y^{d})\cdot k[X,Y]$ be an ideal of
dimension zero in polynomial
ring in two variables. In this note a formula for standard basis of  $I$ 
 with respect of anti-graded lexicographic order is derived. As
a consequence the discussion on the common points of the plane
curves $V(X^{a}-Y^{b})$ and $V(X^{c}-Y^{d})$  is given.
 
AMS subject classification: 
13H15, Secondary 13P10
 
Keywords: 
Standard basis of ideal, local intersection multiplicity, Bezout Theorem
invariance
   Download:         Adobe PDF         Compressed  Postscript
         Compressed  Postscript   
     
      
 
 
Acta Mathematica Universitatis Comenianae
 
Institute of Applied Mathematics 
Faculty of Mathematics, Physics and Informatics
 
Comenius University
842 48 Bratislava, Slovak Republic  
Telephone: + 421-2-60295111 Fax: + 421-2-65425882 
 
e-Mail: amuc@fmph.uniba.sk 
   Internet: www.iam.fmph.uniba.sk/amuc
© 
Copyright 2003, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE