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THE AMERICAN PUT OPTION CLOSE TO EXPIRY

R. MALLIER and G. ALOBAIDI

Abstract. We use an asymptotic expansion to study the behavior of the American
put option close to expiry for the case where the dividend yield is less than or equal

to the risk-free interest rate. Series solutions are obtained for the location of the
free boundary and the price of the option in that limit.

1. Introduction

Options are derivative financial securities whose value is based on the value of
some other underlying security. Equity options are options on an individual stock,
or an index of such stocks such as the Dow Jones Industrial Average (DJIA) or
S&P500, and such options are traded both on exchanges and over-the-counter.
Although more exotic pay-offs are possible, exchange-traded options tend to be
either vanilla calls or puts. If the price of the underlying stock is S and E is the
exercise price of the option, which is specified in the option contract, a vanilla call
pays an amount max(S − E, 0) at expiry while a vanilla put pays max(E − S, 0).

In addition to being classified by their pay-offs, options are also classified by
when they can be exercised: European options can be exercised only at expiry
while American options can be exercised at any time at or before expiry, while the
less-common Bermudan options can be exercised on a finite number of pre-specified
dates. Because they can be exercised only at expiry, it is straightforward to price
European options using the Black-Scholes option pricing formula [6]: essentially,
one calculates the probability distribution for the stock price at expiry and uses
that to price the option. American options are considerably harder to price because
the possibility of early exercise leads to a free boundary problem, with this free
boundary separating the region where it is optimal to hold from the region where
exercise is optimal. In theory, exercise should take place only on this free boundary,
known as the optimal exercise boundary. This sort of free boundary problem is
common in diffusion problems such as melting and solidification problems and is
referred to as a Stefan problem. To date, no closed form solution is known for
American options, except for one or two very special cases such as the American
call without dividends when exercise is never optimal meaning that the option has
the same value as a European.
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In recent years, several authors [8, 5, 15, 11, 9, 10, 2, 3] have considered the
behavior of American options close to expiry, and in particular the behavior of the
free boundary in this limit. Close to expiry, the remaining life of the option can
be regarded as a small parameter which can be used to order an expansion. These
studies have suggested that there are two distinct regimes in this limit, depending
on the relative values of the risk-free rate r and the dividend yield D. For the
call with D < r and the put with D > r [8, 9, 2], the free boundary is relatively
well-behaved close to expiry. In this case, the free boundary starts from rE/D at
expiry, and its location Sf (t) can be written as a power series of the form

ln
Sf (t)D

rE
∼

∞∑
n=1

xnτn/2,(1)

where τ = σ2(T − t)/2 is the rescaled time remaining until expiry, σ being the
volatility of the stock price. This τ1/2 behavior, referring to the leading term in
the series, is considered normal for Stefan problems, and arises frequently in the
classic works of Tao [16]–[24], who studied Stefan problems arising in solidification
and melting with various boundary conditions.

For the call with D > r and the put with D < r, the behavior of the free
boundary is somewhat less well-behaved, and involves logarithms [5, 15, 11, 9, 10,
3], with the leading term in the series being

√
−τ ln τ . This is unusual for Stefan

problems, and indeed this kind of behavior was not encountered by Tao in any of
the problems he considered [16]–[24]. In addition to the τ1/2 behavior mentioned
above, Tao found several possibilities for the behavior of the free boundary in the
various problems he considered. The richest behavior was found in [24], where
he considered the Cauchy-Stefan problem with two different materials, one a solid
and one a liquid, each occupying a semi-infinite region. For this problem, Tao
found four different cases could occur, depending on the initial conditions: (i) the
leading term in the series was τ1/2; (ii) the leading term was τm/2 for integer m > 1,
which was also found in [18]; (iii) no solidification ever occurred so there was no
boundary; (iv) a pre-solidification period occurred during which the temperatures
in both materials were redistributed, with solidification starting at some time
τc > 0 once the surface temperature had reached the freezing point. Despite
the richness of the behavior found by Tao, he did not encounter the logarithmic
behavior found in [5, 15, 11, 9, 10, 3], which appears to be caused by the
boundary conditions at expiry.

In the next section, we will pose an expansion in τ to study the behavior of
the American put close to expiry for D ≤ r, and we will see that when D = r,
the behavior of the free boundary is slightly different than when D < r: it will
be be necessary to include logs in the expansion for D < r while a special func-
tion known as the Lambert W function is necessary when D = r. The results
of this expansion are discussed in section 3. The expansion we use is essentially
along the lines of those used by Tao, although in our case it is necessary to make
a change of variables to transform the Black-Scholes-Merton partial differential
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equation (PDE) which governs option prices into a more standard diffusion equa-
tion together with a forcing term so that we can use Tao’s method. Finally in this
section, we note that in previous work [3], we posed a similar sort of expansion for
the problem considered here, but our analysis there was limited to demonstrating
that it was necessary to include logs in the expansion and we did not explore the
details, which are supplied in the current analysis, nor did we consider the case
r = D, which again is included in this study.

2. Analysis

The starting point for our analysis is the Black-Scholes-Merton PDE [6, 13] for
the price V (S, t) of an equity derivative,

∂V

∂t
+

σ2S2

2
∂2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0,(2)

where S is the price of the underlying, r is the risk-free rate, D is the constant
dividend yield, and σ is the volatility. For European options, this equation is valid
for times t < T , with a pay-off at expiry t = T of V (S, T ) = max(E − S, 0) for
a vanilla put, where E is the strike price of the option. The corresponding pay-off
for a vanilla call is V (S, T ) = max(S − E, 0).

For American-style options, the possibility of early exercise leads to the addi-
tional constraint that the value of the option cannot fall below the pay-off from
immediate exercise, so that V (S, t) ≥ max(E − S, 0) for an American put, and
similarly V (S, t) ≥ max(S − E, 0) for an American call. This constraint leads to
conditions on the value of the option V and its delta or derivative with respect to
S, (∂V/∂S), at the free boundary, specifically that they must be continuous across
the free boundary so that for a put V = E − S and (∂V/∂S) = −1 on the free
boundary. The condition on the delta (∂V/∂S) is known as the smooth pasting
or high contact condition of Samuelson [14]. The above constraint allows us to
find the location of the optimal exercise boundary at expiry, which we will label
S0. At expiry, for a put we know V (S, T ) = max(E − S, 0), and substituting this
into the PDE (2) enables us to calculate (∂V/∂t) at expiry; the sign of (∂V/∂t) at
expiry will then tell us whether the constraint is violated as we move away from
expiry. If (∂V/∂t) > 0 at expiry, then as we move away from expiry, V (S, t) will
decrease and the constraint will be violated, so that the option should already
have been exercised, while if (∂V/∂t) ≤ 0, it should have been held to expiry,
and if (∂V/∂t) = 0, the holder will have been ambivalent between holding and
exercising. We can examine this behavior for a put by substituting the pay-off
V (S, T ) = max(E − S, 0) = (E − S)H(E − S) into (2), where

H(S) =
{

1 S < 0
0 S < 0(3)
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is the Heaviside step function. This tells us that for a put at expiry, we have

∂V

∂t
= (rE −DS)H(E − S) + S

[
(E − S)(r −D)− σ2S

]
δ(S − E)

+
1
2
σ2S2(E − S)δ

′
(S − E)

=

 rE −DS S < E
−σ2E2δ(0) + (r −D)EH(0) S = E

0 S > E
,(4)

where δ(S) is the delta function, which is defined to be zero for S 6= 0 and infinite
for S = 0, subject to

∫∞
−∞ δ(S)dS = 1. From (4), we can see that there are two

distinct cases. If D > r, so that the dividend yield is greater than the risk-free
rate, we have

∂V

∂t

 > 0 S < rE/D < E
= 0 S = rE/D
< 0 S > rE/D

,(5)

so that the free boundary will start at S0 = rE/D < E. However, for D ≤ r, we
have

∂V

∂t

{
> 0 S < E
< 0 S ≥ E

,(6)

which means that the option should have been held to expiry if S ≥ E but exercised
if S < E, so that the free boundary must start at S0 = E.

The case D > r can be recovered from [8, 2] by using put-call symmetry [7, 12].
Because of this, in the present study we will consider only the case D ≤ r. Put-call
symmetry means that this study also covers the call with D ≥ r. Returning to
(2), we will proceed as in [8, 2, 3] and make the change of variables S = E e x,
t = T − 2τ/σ2 and V (S, t) = E − S + Ev(x, τ), which converts (2) into a more
standard diffusion-like equation.

∂v

∂τ
=

∂2v

∂x2
+ (k2 − 1)

∂v

∂x
− k1v + f(x),(7)

where the nonhomogeneous term is given by f(x) = (k1 − k2) e x − k1 for the put,
with k1 = 2r/σ2 and k2 = 2(r−D)/σ2. The restriction D ≤ r means that k2 ≥ 0.
This equation (7) is valid for τ > 0 and must be solved together with the payoff
at expiry, τ = 0,

v(x, 0) =
{

e x − 1 x > 0
0 x ≤ 0 ,(8)

while on the free boundary, we have

v =
∂v

∂x
= 0.(9)
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At expiry, we have

∂v

∂τ
= [(k1 − k2) e x − k1] [1 + H(x)] + [k2 − 1− (k2 + 1) e x] δ(x) + [1− e x] δ

′
(x)

=

 2(k1 − k2) e x − 2k1 x > 0
−2δ(0)− k2 [1 + H(0)] x = 0

(k1 − k2) e x − k1 x < 0
,

(10)

so that the free boundary must start at x = 0 at τ = 0.
In the analysis that follows, strictly speaking the equation (7) is valid only

where it is valid to hold the option, so that at expiry, we can only impose the
initial condition on x > 0 that

v(x, 0) = e x − 1,(11)

while for x < 0, it is assumed that the option has already been exercised so that
we cannot impose the initial condition.

Following [16]–[24], we will seek series solutions to (7). We will consider first
the case D < r, and consider the case D = r later. If we try a series of the form

v(x, τ) =
∞∑

n=1

τn/2Fn(ξ)(12)

where ξ = x/(2
√

τ) is a similarity variable, we run into the problems discussed in
[2] and elsewhere, and it is necessary instead to assume a series of the form

v(x, τ) = τ1/2F
(0)
1 (ξ) +

∞∑
n=2

∞∑
m=0

τn/2 (− ln τ)−m
F (m)

n (ξ).(13)

The minus sign is included in (− ln τ) because ln τ is negative for 0 < τ < 1. It
is worth noting that logarithms first enter in this series with the τ1 terms rather
than the leading τ1/2 term. In order to solve for the functions F

(m)
n (ξ) in (13),

we substitute this series (13) into (7) and group powers of τ and (− ln τ). The
resulting equations can be written in terms of the operator

Ln ≡ 1
4

d2

dξ2
+

1
2

d

dξ
− n

2
.(14)

For the terms independent of (− ln τ), we find

L1F
(0)
1 = 0,

L2F
(0)
2 =

1
2

(1− k2) F
(0)′

1 + k2,

L3F
(0)
3 =

1
2

(1− k2) F
(0)′

2 + k1F
(0)
1 + 2 (k2 − k1) ξ,

(15)

with the general case for n ≥ 3 given by

LnF (0)
n =

1
2

(1− k2) F
(0)′

n−2 + k1F
(0)
m−2 +

2n−2

(n− 2)!
(k2 − k1) ξn.(16)
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It is straightforward to find solutions to (15), (16) that satisfy the initial condition
(11) by assuming that the solutions are of the form

F (0
n )(ξ) = f

(0)
n1 (ξ)erf(ξ) + f

(0)
n1 (ξ) e−ξ2

+ f
(0)
n3 (ξ),(17)

where the f ’s are polynomials in ξ, and erf is the error function (and later on, erfc
is the complementary error function). Using this approach, we find that

F
(0)
1 = 2ξ + C

(0)
1

[
π−1/2 e−ξ2

+ ξ (erfc(−ξ)− 2)
]
,

F
(0)
2 = 2ξ2 +

[
1
2

(k1 − 1) C
(0)
1 +

(
2ξ2 + 1

)
C

(0)
2

]
(erfc(−ξ)− 2)

+ 2C
(0)
2 π−1/2ξ e−ξ2

,

F
(0)
3 =

4
3
ξ3 +

[
−k1C

(0)
1 + 2 (k2 − 1) C

(0)
2 + C

(0)
3

(
3 + 2ξ2

)]
ξ (erfc(−ξ)− 2)

+ π−1/2 e−ξ2

[
C

(0)
1

4
(
(1− k2)2 − 4k1

)
+ 2C

(0)
2 (k2 − 1) + 2C

(0)
3

(
1 + ξ2

)]
,

F
(0)
4 =

2
3
ξ4

+
[
1
2
C

(0)
1 k1 (1− k2) +

1
2
C

(0)
2

(
(1− k2)

2 − k1

(
2 + ξ2

))
+

3
2
C

(0)
3 (k2 − 1)

(
1 + 2ξ2

)
+ C

(0)
4

(
3 + 12ξ2 + 4ξ4

)]
(erfc(−ξ)− 2)

+ π−1/2ξ e−ξ2
[

1
12

C
(0)
1 (1− k2)

3 − 2k1C
(0)
2

+3 (k2 − 1) C
(0)
3 + 2C

(0)
4

(
5 + 2ξ2

)]
.(18)

In (18), the C
(0)
n are constants which can be determined by applying the conditions

on the free boundary.
For the moment, we will set aside the log terms and try to impose the conditions

(9) on the free boundary, which we will assume that we can write as x = xf (τ).
If we assume that

xf (τ) ∼
∞∑

n=1

xnτn/2(19)

as τ → 0, we find that at leading order,

C
(0)
1

[x1

2
erfc(−x1/2) + π−1/2 e−x2

1/4
]

+
[
1− C

(0)
1

]
x1 = 0,

C
(0)
1 erfc(−x1/2) + 2

[
1− C

(0)
1

]
= 0,

(20)

and in order to solve both of these equations simultaneously, we require that
e−x2

1/4 = 0 so that x1 = ±∞. Since we require the boundary to go down rather
than up, we must choose x1 = −∞, so that e−x2

1/4 = erfc(−x1/2) = 0 and
C

(0)
1 = 1. In a moment, we will see that in our analysis, where we have grouped
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terms in powers of τ , the statement e−x2
1/4 = erfc(−x1/2) = 0 actually means

that the terms e−x2
1/4 and erfc(−x1/2) are O

(
τ1/2

)
, so they vanish at this order

but re-appear at a later order in the analysis.
At the next order, if we set e−x2

1/4 = erfc(−x1/2) = 0 and C1 = 1, we find that
we require

1
2

(
1− 2C

(0)
2

)
x2

1 + 1− 2C
(0)
2 − k2 = 0,

2
(
1− 2C

(0)
2

)
x1 = 0,

(21)

and if we set C
(0)
2 = 1/2, the second equation is satisfied, but the first reduces

to −k2 = 0, which is clearly wrong, except for the special case D = r when we
actually do have k2 = 0. It is to deal with this inconsistency that we require
e−x2

1/4 and erfc(−x1/2) to be O
(
τ1/2

)
, so that they enter into this equation and

remove the inconsistency. To accomplish this, the expansion for xf (τ) must be of
the form

xf (τ) ∼
∞∑

n=1

τn/2fn(− ln τ),(22)

where

fn(− ln τ) ∼ (− ln τ)an

∞∑
m=0

x(m)
n (− ln τ)−m.(23)

The presence of logs in the series (22), (23) for xf (τ) and the functions fn neces-
sitate the presence of logs in the series (13) for v(x, τ)

With this expression for xf , on the free boundary we have

e−ξ2
= exp

[
−

x2
f

4τ

]

∼ e−f2
1 /4

[
1− 1

2
f1f2τ

1/2 +
(

1
8
f2
1 f2

2 −
1
2
f1f3 −

1
4
f2
2

)
τ + · · ·

]
.

(24)

At leading order in this expression, we require that e−f2
1 /4 ∼ O

(
τ1/2

)
, so that

exp
[
−x

(0)2
1
4 (− ln τ)2a1

]
∼ τ1/2 or −x

(0)2
1
4 (− ln τ)2a1 ∼ 1

2 ln τ , which means that

a1 = 1/2 and x
(0)
1 = −

√
2, and hence

e−f2
1 /4 ∼ τ1/2 e x

(2)
1 /
√

2

[
1 +

(
x

(2)
1√
2
− x

(1)2
1

4

)
(− ln τ)−1 + · · ·

]
.(25)

Similarly, we can show that

erfc(−ξ) = erfc
[
− xf

2
√

τ

]
∼ erfc

[
−f1

2

]
+

e−f2
1 /4

√
π

[
f2τ

1/2 +
(

f3 −
1
4
f1f

2
2

)
τ · · ·

]
,

(26)
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and we can use the result that as ζ →∞ [1],

erfc(ζ) ∼ e−ζ2

ζ
√

π

[
1 +

∞∑
m=1

1× 3× · · · × (2m− 1)
(−2ζ2)m

]
(27)

to give

erfc
[
−f1

2

]
∼ τ1/2 (− ln τ)−1/2

π−1/2 e x
(2)
1 /
√

2

×

[
√

2 +

(
x

(1)
1 + x

(2)
1 −

√
2− x

(2)2
1

2
√

2

)
(− ln τ)−1 + · · ·

]
.

(28)

Before we can compute the coefficients in the series (22), (23) for the location
of the free boundary, it is necessary to solve for some of the terms involving logs
in the series (13) for v(x, τ). Considering the terms at O

(
τn/2 (− ln τ)−1

)
, at

successive orders we find

L2F
(1)
2 (ξ) = 0

L3F
(1)
3 (ξ) =

1− k2

2
F

(1)′

2 (ξ),
(29)

with the general equation for n ≥ 3 given by

LnF (1)
n (ξ) =

1− k2

2
F

(1)′

n−2(ξ) + k1F
(1)
m−2.(30)

The solutions at the first few orders are given by

F
(1)
2 = C

(1)
2

[
2π−1/2ξ e−ξ2

+
(
2ξ2 − 1

)
(erfc(−ξ)− 2)

]
F

(1)
3 = 2C

(1)
2 (k2 − 1)

[
ξ (erfc(−ξ)− 2) + π−1/2 e−ξ2

]
+ C

(1)
3

[(
3 + 2ξ2

)
ξ (erfc(−ξ)− 2) + 2

(
1 + ξ2

)
π−1/2 e−ξ2

]
.

(31)

It follows that the conditions (21) on the free boundary become

τ−1/2

[
f1

2
erfc(−f1/2) + π−1/2 e−f2

1 /4

]
(32)

[
1
2

(
1− 2C

(0)
2

)
f2
1 + 1− 2C

(0)
2 − k2

]
+ (− ln τ)−1

C
(1)
2

(
2− f2

1

)
+ · · · = 0,

and

τ−1/2erfc(−f1/2) + 2
(
1− 2C

(0)
2

)
f1 − (− ln τ)−1 4C

(1)
2 f1 + · · · = 0.(33)

or

(− ln τ)
(
1− 2C

(0)
2

)
+
(
1− 2C

(0)
2

)(
1− x

(1)
1√
2

)
− k2 − 2C

(1)
2

+(− ln τ)−1/2
π−1/2 e x

(2)
1 /
√

2

(
x

(1)2
1

4
− x

(2)
1√
2

)
+ O

(
(− ln τ)−1

)
= 0

(34)
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and

(− ln τ)1/2 23/2
(
2C

(0)
2 − 1

)
+(− ln τ)−1/2

[
2x

(1)
1

(
1− 2C

(0)
2

)
+ 25/2C

(1)
2 + 21/2π−1/2 e x

(2)
1 /
√

2
]

+ (− ln τ)−1 e x
(2)
1 /
√

2π−1/2
[
x

(2)
1 − 2−3/2x

(1)2
1

]
+ O

(
(− ln τ)−3/2

)
= 0

(35)

so that we find C
(0)
2 = 1/2, and that C

(1)
2 = −k2/2 and e x

(1)
1 /
√

2 = 2k2π
1/2, so

x
(1)
1 =

√
2 ln

(
2k2π

1/2
)
, and x

(2)
1 = 2−3/2x

(1)2
1 . Similarly, at the next order in τ ,

we find C
(0)
3 = 1/3, and that C

(1)
3 = k1−k2 and a1 = 0 and x

(0)
2 = 2k1/k2−1−k2.

It follows that the free boundary is given by

xf (τ) ∼
√

2τ(− ln τ)

−1 +

[
ln
(
2k2π

1/2
)

− ln τ

]
+

1
2

[
ln
(
2k2π

1/2
)

− ln τ

]2

+ · · ·


+ τ [2k1/k2 − 1− k2 + · · · ] + · · ·(36)

with the value of the option given by

v(x, t) ∼ τ1/2

[
ξerfc(−ξ) +

e−ξ2

√
π

]

+ τ

[(
k2

2
+ ξ2

)
erfc(−ξ) +

ξ e−ξ2

√
π

− k2

]

+ τ(− ln τ)−1k2

[
−
(

1
2

+ ξ2

)
erfc(−ξ)− π−1/2ξ e−ξ2

+ 2ξ2 + 1
]

+ · · ·

+ τ3/2

[(
k2 − k1 +

2
3
ξ2

)
ξerfc(−ξ)

+
e−ξ2

4
√

π

(
k2
2 + 2k2 − 4k1 −

1
3

+
8ξ2

3

)
+ 2 (k1 − k2) ξ

]
+ τ3/2(− ln τ)−1

[(
2k2 + k2

2 − 3k1 + 2(k2 − k1)ξ2
)
ξerfc(ξ)

+
e−ξ2

√
π

(
2k1 − k2 − k2

2 + 2(k1 − k2)ξ2
)
e−ξ2

]
+ · · ·

+ · · · .

(37)

2.1. The case D = r

Looking at the solution (37) for D < r, we recall that we required e x
(1)
1 /
√

2 =
2k2π

1/2, so that if k2 = 0, corresponding to D = r, we again have a problem. For
this case, (7) becomes

∂v

∂τ
=

∂2v

∂x2
− ∂v

∂x
− k1v + f(x),(38)
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with f(x) = k1 (e x − 1). Proceeding as above, F
(0)
1 , F

(0)
2 , F

(0)
3 , · · · are again given

by (18), but with k2 = 0. If we impose the conditions at the free boundary, at
leading order we again find that C

(0)
1 = 1 and at the next order we find C

(0)
2 = 1/2,

so that

F
(0)
1 = π−1/2 e−ξ2

+ ξerfc(−ξ)

F
(0)
2 = π−1/2ξ e−ξ2

+ ξ2erfc(−ξ)
(39)

while from the O
(
τ3/2

)
terms we require

−4
(

C
(0)
3 − 1

3

)
ξ3 + 2

(
k1 + 1− 3C

(0)
3

)
ξ = 0.(40)

If we set C
(0)
3 = 1/3, this equation reduces to 2k1ξ = 0, which again is clearly

wrong, and to rectify this, the erfc(−ξ) and e−ξ2
terms from F

(0)
1 must be added

to (40) to balance the 2k1ξ term. To do this, if we suppose that

xf (τ) ∼
∞∑

n=1

τn/2gn(τ),(41)

then we require e−g2
1/4 ∼ τg1, as opposed to the relation e−f2

1 /4 ∼ τ1/2 for the
case D < r, so that

g1(τ) ∼
[
2WL

(
1

2τ2

)]1/2

(42)

where WL is a special function, the Lambert W function, which is defined to be
the solution to the equation WL(x) e WL(x) = x. It follows that

g1(τ) ∼
[
2WL

(
τ−2

2

)]1/2 ∞∑
m=0

x
(m)
1

[
2WL

(
τ−2

2

)]−m

gn(τ) ∼
[
2WL

(
τ−2

2

)]an ∞∑
m=0

x(m)
n

[
2WL

(
τ−2

2

)]−m
(43)

This means that our series for v(x, τ) must be of the form

v(x, τ) = τ1/2F
(0)
1 (ξ) + τF

(0)
2 (ξ)

+
∞∑

n=3

∞∑
m=0

τn/2

[
2WL

(
τ−2

2

)]−m

F (m)
n (ξ),(44)

with F
(0)
1 and F

(0)
2 given by (39) above while F

(1)
3 obeys

L3F
(1)
3 = 0(45)

with a solution

F
(1)
3 = C

(1)
3

[
2π−1/2 e−ξ2 (

1 + ξ2
)
− ξ

(
3 + 2ξ2

)
erfc(ξ)

]
.(46)
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It is straightforward to show that as τ → 0, the counterparts of (24), (25), (26)
and (28) are
(47)

e−g2
1/4 ∼ e−x

(1)
1 /2τ

[
2WL

(
τ−2

2

)]1/2

×

(
1−

[
x

(2)
1

2
+

x
(1)2
1

4

] [
2WL

(
τ−2

2

)]−1

+ · · ·

)
+ O

(
τ3/2

)
,

erfc
[
−g1

2

]
∼π−1/2 e x

(1)
1 /2τ

×

(
2 +

[
x

(2)
1 + 2x

(1)
1 − 1

2
x

(1)2
1 − 4

] [
2WL

(
τ−2

2

)]−1

+ · · ·

)
+ O

(
τ3/2

)
.

The conditions on the free boundary then tell us that we require

2k1 − 3C
(1)
3 + 2π−1/2 e x

(1)
1 /2 + O

([
2WL

(
τ−2

2

)]−1
)

= 0

(
1
2
C

(1)
3 − k1

)[
2WL

(
τ−2

2

)]1/2

+ O

([
2WL

(
τ−2

2

)]−1/2
)

= 0

(48)

so that C
(1)
3 = 2k1 and e x

(1)
1 /2 = 2k1π

1/2, or equivalently x
(1)
1 = 2 ln

(
2k1π

1/2
)
.

Hence for the case r = D, the value of the option is given by

v(x, t) ∼τ1/2

[
ξerfc(−ξ) +

e−ξ2

√
π

]

+ τ

[
ξ2erfc(−ξ) +

ξ e−ξ2

√
π

]

+ τ3/2

[(
2
3
ξ3 − 1

12
− k1

)
e−ξ2

√
π

+ k1ξerfc(ξ) +
2ξ3

3
erfc(−ξ)

]

+ 2k1τ
3/2

[
2 e−ξ2

√
π

(
1 + ξ2

)
− ξ

(
3 + 2ξ2

)
erfc(ξ)

] [
2WL

(
τ−2

2

)]−1

+ · · ·

(49)

and the location of the free boundary is given by

xf (τ) ∼
[
2τWL

(
τ−2

2

)]1/2
(
−1 + ln

(
2k1π

1/2
)[

WL

(
τ−2

2

)]−1

+ · · ·

)
+ O (τ) .(50)
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3. Discussion

In the previous section, we revisited the problem of the American put close to
expiry and used an asymptotic expansion of the Black-Scholes-Merton PDE to
find expressions for the location of the free boundary (36), (50) and the value of
the option (37), (49) for the cases D < r and D = r in that limit. For the case
D < r, we found that close to expiry, the location of the free boundary was given
by xf (τ) ∼ −

√
2τ(− ln τ),the location of the free boundary was given by xf (τ) ∼

−
√

2τ(− ln τ), while for D = r it was given by xf (τ) ∼ −
√

2τWL (τ−2/2), where
WL was the Lambert W function. For the case D > r, put-call symmetry [7, 12]
together with results from the call [8, 2] indicates that the behavior close to
expiry in that case will be xf (τ) ∼ −x0

√
τ where x0 is a constant that must be

found numerically. The free boundary in terms of the stock price S is located at
S = Sf (τ) = E e xf (τ), so that close to expiry we have

Sf ∼


−σ
√

(T − t)(− ln σ2(T−t)
2 ) D < r

−σ

√
(T − t)WL

(
2

σ4(T−t)2

)
D = r

−x0σ
√

(T − t)/2 D > r.

(51)

These three behaviors are somewhat different. The τ1/2 behavior for D > r
is the standard behavior for Stefan problems found in the classic works of Tao
[16]–[24]. The

√
−τ ln τ behavior for r < D , although previously found by a

number of other authors working on the American put [5, 15, 11, 9, 10, 3]
must be considered somewhat of an oddity for Stefan problems in that we are
unaware of this behavior having been encountered in a physical problem, and it
does not appear in Tao’s work. We should mention that although [5, 15, 11,
9, 10] came across this behavior, they did not use our method: Barles et al.
[5] found upper and lower bounds close to expiry and showed that these bounds
approached each other, while [15, 11, 9, 10] all used integral equation approaches
to reformulate the Black-Scholes-Merton PDE and associated boundary and initial
conditions as integral equations which they solved asymptotically: Stamicar et al.
[15] used Fourier transforms, Kuske and coworkers [11, 9] used Green’s functions,
and Knessl [10] used Laplace transforms to arrive at their respective integral
equation, and inevitably various approximations such as Laplace’s method were
used to evaluate the integrals in those equations. Finally, the

√
τWL (τ−2/2)

behavior for r = D is even more unusual that the
√
−τ ln τ behavior discussed

above: it does not appear to have been encountered in any physical problems, and
it would appear that previous studies of American options have not encountered
this behavior.

Although as we mentioned above, this problem has been studied previously
by reformulating it as an integral equation, we believe that in some respects our
approach has advantages over the integral equation approach. Firstly, in most if
not all of the integral equation studies, it is necessary to use some sort of approx-
imation to determine the asymptotic behavior of the integrals, and that sort of
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approximation is not required for the asymptotic expansion used here. Secondly,
in a sense our analysis sheds more light on why logs are necessary when D < r,
and the Lambert W function is necessary when D = r: for our expansion to
work in those cases, we required the erfc(−ξ) and e−ξ2

terms to appear at a later
order in the expansion to balance certain other terms, so for D < r we needed
e−x2

f /(4τ) ∼
√

τ while for D = r we needed e−x2
f /(4τ) ∼

√
τxf .

In closing, we would note that although the present study was carried out for
the American put with D ≤ r, it can trivially be modified to cover the American
call with D ≥ r using put-call symmetry [7, 12], and also that we have recently
presented a similar analysis for an American-style exotic, the lock-in option [4].
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