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MULTIVARIATE BIRKHOFF-LAGRANGE INTERPOLATION SCHEMES AND
CARTESIAN SETS OF NODES

N. CRAINIC

Abstract. In this paper we study the relevance of cartesian shapes to the solvability of Birkhoff-Lagrange interpolation
schemes.

1. Introduction

The bivariate1 Birkhoff-Lagrange interpolation problem depends on a finite set Z ⊂ R2 (of “nodes”), and a lower
set S ⊂ N2 defining the interpolation space

PS = {P ∈ R[x, y] : P =
∑

(i,j)∈S

ai,jx
iyj}.

Recall [3] that S is lower if
(i, j) ∈ S =⇒ R(i, j) ⊂ S,

where R(i, j) is the rectangle

R(i, j) = {(i′, j′) ∈ N2 : 0 ≤ i′ ≤ i, 0 ≤ j′ ≤ j}.
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1Our results hold in arbitrary dimension, and the only reason for restricting to the bi-variate case is notational simplicity.
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Given such a scheme (Z, S), the interpolation problem consists of finding the polynomials P ∈ PS satisfying the
equations

P (z) = c(z), ∀ z ∈ Z,(1.1)

where c(z) are given arbitrary constants. One says that (Z, S) is solvable if, for any choice of the constants c(z),
(1.1) has at least one solution P ∈ PS . If the solution is unique, one says that (Z, S) is regular.

The Birkhoff-Lagrange schemes are a particular case of uniform Birkhoff schemes [2], and the present work
should be understood in the general context of finding the influence that the shape of Z has on the regularity
of the schemes. In this paper we discuss particular shapes (cartesian shapes, cf. Section 2), and we explain the
influence that they have on the regularity/solvability of Birkhoff-Lagrange schemes. While referring to the next
section for the most general results, we mention here (as the main result) the following:

Theorem 1.1. Given a set of nodes Z, there exists at least one lower set S with the property that the Birkhoff-
Lagrange scheme (Z, S) is regular. Moreover, S is unique if and only if Z is cartesian.

2. Cartesian sets of nodes

In this section we introduce the notion of cartesian sets of nodes.

Definition 2.1. We say that a set Z of nodes is cartesian if there exists a lower set S such that Z can be
written as

Z = {(xi, yj) : (i, j) ∈ S},
where the xi’s are distinct real numbers, and similarly the yj ’s. We also say that Z is S-cartesian.

Remark 2.1. This notion is useful for understanding “special shapes” for the set of nodes (and not only).
For instance, in the case of the rectangles S = R(p, q), one recovers the notion of rectangular sets of nodes, i.e.
sets which are at the intersection of (p + 1) distinct vertical lines with (q + 1) distinct horizontal lines.
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In general, any set of nodes Z induces two lower sets Sx(Z), and Sy(Z), which reflect the shape of Z. To
describe Sy(Z), one covers Z by lines l0, . . . , lk parallel to the OY axis, and one defines the numbers ni so that
on each line li there are exactly ni + 1 points of Z. We index the lines so that n0 ≥ n1 ≥ . . . ≥ nk, and we define

Sy(Z) = {(i, j) : 0 ≤ i ≤ k, 0 ≤ j ≤ ni}.(2.1)

The lower set Sx(Z) is defined similarly, by interchanging the role of x and y.

Remark 2.2. One should think of Sy(Z) as obtained from Z by moving it downwards (on vertical lines),
to the left (on horizontal lines), and reordering the vertical and horizontal lines until one obtains a lower shape.
Note also that, in general, Sx(Z) is different from Sy(Z). An examples is shown in the figure.

×: the points of Z

Sy(Z) Sx(Z)

With these, we have:
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Lemma 2.1. A set of nodes Z is cartesian if and only if Sx(Z) = Sy(Z).

Proof. If Z is S-cartesian for some lower set S, we see that the operations involved in the definition of Sy(Z)
produces the lower set S, hence Sy(Z) = S and similarly Sx(Z) = S. Hence Sx(Z) = Sy(Z). To prove the
converse we use induction on the number of elements n of Z. First of all, since each of the lines li does contain
at least one point, it follows that (i, 0) ∈ Sy(Z) for all 0 ≤ i ≤ k. Since Sx(Z) = Sy(Z), it then follows that there
is a line l, parallel to the OX axis, which intersects each of the lines li in a point situated in Z. We then see that
Sy(Z \ l) = Sx(Z \ l), and, by the induction hypothesis, Z \ l must be cartesian. This clearly implies that Z must
be cartesian too. �

Example 2.1. Although this example is one of the simplest, it is already very suggestive for the relation to
the Lagrange problem, and can be seen as an illustration of the role of Sx(Z) and Sy(Z) for the proof of Theorem
1.1 (next section).

Assume that Z is made of the points (1, 0) and (0, 1) and a third (distinct) one, (a, b), with a, b ∈ R. The
computation of Sx(Z) and Sy(Z) depends on whether a and b belong to {0, 1} or not. More precisely, from the
definition we deduce that Sy(Z) = {(0, 0), (1, 0), (2, 0)} if a /∈ {0, 1} and Sy(Z) = {(0, 0), (1, 0), (0, 1)} if a ∈ {0, 1},
and similarly for Sx(Z). Hence there are several possibilities, and we see that Z is cartesian if and only if the
third point, namely (a, b), is either {(1, 1)} or {(0, 0)}.

All these cases reflect in the regularity of the associated Lagrange problems. More precisely, by analyzing the
associated determinants, we see that the Lagrange problem has unique solutions of type P (x, y) = a0,0 + a1,0x +
a2,0x

2 unless a ∈ {0, 1}, has unique solutions of type P (x, y) = a0,0 + a0,1y + a0,2y
2 unless b ∈ {0, 1}, and has

unique solutions of type P (x, y) = a0,0 + a1,0x + a0,1y unless a + b = 1. Since the conditions

a ∈ {0, 1}, b ∈ {0, 1}, a + b = 1(2.2)

cannot be all satisfied (since (a, b) was assumed distinct from (1, 0) and (0, 1)), we see that (Z, S) is regular for
at least one lower set S. Also, if we require that this happens for a unique lower set S, we see that two of the
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three conditions (2.2) must be satisfied, and then we deduce that (a, b) must be either (1, 1) or (0, 0). Note that
these are precisely the cases for which Z is cartesian, and this is in complete agreement with Theorem 1.1

3. Lagrange schemes and cartesian sets of nodes

In this section we study the relation between cartesian sets of nodes and the regularity of the Birkhoff-Lagrange
schemes. We will show the following, whose particular case appearing in Lemma 3.1 below can be seen as an
analogue of Theorem 12.3.1 of [3].

Proposition 3.1. Given two lower sets S and S0, and a S-cartesian set of nodes Z, the following are equivalent

(i) (Z, S0) is solvable.
(ii) S ⊂ S0.

Proposition 3.2. For any set of nodes Z, both schemes (Z, Sx(Z)) and (Z, Sy(Z)) are regular.

These immediately imply the theorem stated in the introduction (see the end of the section). For the proof of
Proposition 3.1, we will first need to establish the particular case of rectangular sets of nodes (for the notion of
rectangular shapes, see Remark 2.1):

Lemma 3.1. Given a lower set S and a (p, q)-rectangular set of nodes Z, the Lagrange interpolation problem
for (Z, S) is solvable if and only if R(p, q) ⊂ S.

The remaining part of this section is devoted to the proof of these results.

Proof of Proposition 3.2. This follows from the univariate case. To explain this, we choose k and ni as in the
definition of Sy(Z) (see (2.1)). It follows that Z can be written as

Z = {(xi, y
i
j) : 0 ≤ i ≤ k, 0 ≤ j ≤ ni}(3.1)
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where all the xi’s are distinct, as well as all the yi
j ’s for each i. Denote by lxi (x;x0, . . . , xp) the fundamental

(univariate) interpolation polynomial at the node xi, with respect to the Lagrange problem with the nodes
x0, . . . , xp, i.e.

lxi (x;x0, . . . , xp) =
(x− x0) . . . ̂(x− xi) . . . (x− xp)

(xi − x0) . . . ̂(xi − xi) . . . (xi − xp)
,

where “â” means that a is omitted. Similarly we consider lyj (y; yi
0, . . . , y

i
ni

). Then lx,y
i,j = lxi (x;x0, . . . , xp)

lyj (y; yi
0, . . . , y

i
ni

) will be the fundamental interpolation polynomials for the problem corresponding to the scheme
(Z, Sy(Z)). The case (Z, Sx(Z)) is obtained by interchanging the role of x and y. �

Proof of Lemma 3.1. Since (Z,R(p, q)) is regular (Proposition 3.2), we only have to prove that solvability
implies R(p, q) ⊂ S. The solvability condition ensures the existence of a polynomial P ∈ PS with the property
that P (xi, yj) = 0 for all (i, j) ∈ R(p, q), except for P (xp, yq) = 1. We consider the polynomials φx

0 = 1,

φx
i = (x− x0) . . . (x− xi−1)/(xi − x0) . . . (xi − xi−1),

where we extend the sequence x0, . . . , xp to an infinite sequence of distinct numbers (the only role of this extension
is to simplify the presentation. Actually, all we need is to extend the family of linearly independent polynomials
{φx

i : 0 ≤ i ≤ p} to a basis of the polynomial ring R[x], and using such an infinite sequence is one way of doing
that). Similarly we define the polynomials φy

j in the variable y. Since {φx
i φy

j : i, j ≥ 0} is a basis for the space
of bivariate polynomials, we can write P =

∑
i,j ai,jφ

x
i φy

j , and, since P ∈ PS , we see that (i, j) ∈ S whenever
ai,j 6= 0. Now, since φx

i (xk) = 0 for all k < i, φx
i (xi) = 1, and similarly for the φy

j ’s, one has the following
implication:

ai,j = 0 ∀ (i, j) ∈ R(u, v) \ {(u, v)} =⇒ P (xu, yv) = au,v.

Hence, by a simple induction, we deduce that ai,j = 0 for (i, j) ∈ R(p, q) \ {p, q}, and ap,q = P (xp, yq) = 1. Since
ap,q 6= 0, it follows that (p, q) ∈ S, hence R(p, q) ⊂ S. �
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Proof of Proposition 3.1. By Proposition 3.2, (Z, S) is regular, and this shows that (ii) =⇒ (i). Assume now
that (Z, S0) is solvable, and, as before, write

S = {(i, j) : 0 ≤ i ≤ k, 0 ≤ j ≤ ni},
Z = {(xi, yj) : 0 ≤ i ≤ s, 0 ≤ j ≤ ni},

with n0 ≥ . . . ≥ nk, and with the xi’s, as well as the yj ’s, distinct. We now use that (Z0, S0) is solvable for all
Z0 ⊂ Z. For any s ≤ k, we choose Z0 = Z0(s), where Z0(s) = {xi, yj) : 0 ≤ i ≤ s, 0 ≤ j ≤ ns}. Since Z0(s) is
(s, ns)-rectangular, it follows from Lemma 3.1 that R(s, ns) ⊂ S0. Since the sets R(s, ns) with 0 ≤ s ≤ k cover S
entirely, it follows that S ⊂ S0. Hence (i) =⇒ (ii). �

Proof of Theorem 1.1. The first part is implied by Proposition 3.2. The same proposition shows that the
uniqueness of S implies that Sy(Z) = Sx(Z) hence, by Lemma 2.1, Z must be cartesian. Finally, assume that Z
is S-cartesian for some lower set S. Then, if S0 is a lower set such that (Z, S0) is regular, on one hand we must
have |S0| = |Z|(= |S|), and, on the other hand, Proposition 3.1 implies that S0 ⊂ S; hence S0 must coincide with
S. The same proposition applied to S0 = S implies that (Z, S) is indeed regular. �
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