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INFINITESIMAL DIFFERENTIAL GEOMETRY

P. GIORDANO

Abstract. Using standard analysis only, we present an extension •R of the real field containing nilpotent infinitesimals.

On the one hand we want to present a very simple setting to formalize infinitesimal methods in Differential Geometry,
Analysis and Physics. On the other hand we want to show that these infinitesimals may be also useful in infinite

dimensional Differential Geometry, e.g. to study spaces of mappings. We define a full embedding of the category Mann

of finite dimensional Cn manifolds in a cartesian closed category. In it we have a functor •(−) which extends these
spaces adding new infinitesimal points and with values in another full cartesian closed embedding of Mann. We present
a first development of Differential Geometry using these infinitesimals.

1. The ring of standard infinitesimals

1.1. Introduction

Frequently in Physics it is possible to find informal calculations like

1√
1− v2

c2

= 1 +
v2

2c2
√

1− h44(x) = 1− 1
2
h44(x)

Received April 20, 2004.
2000 Mathematics Subject Classification. Primary 58D15, 58B10, 58A05, 26E15.

Key words and phrases. Spaces of mappings, nilpotent infinitesimals, differential manifolds, foundations.
This research was supported through a DAAD (German Academic Exchange Service) and a European Community Marie Curie

fellowships.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

with explicit use of infinitesimals v/c � 1 or h44(x) � 1 such that e.g. h44(x)2 = 0. In fact using this type of
infinitesimals we can write an equality, in some infinitesimal neighborhood, between a smooth function and its
tangent straight line, or, in other words, a Taylor formula without remainder.

Informal methods based on actual infinitesimals are sometimes used in Differential Geometry too. Some
classical examples are the following: a tangent vector is an infinitesimal arc of curve traced on the manifold and
the sum of tangent vectors is made using infinitesimal parallelograms; tangent vectors to the tangent bundle
are infinitesimal squares on the manifold; a vector field is sometimes intuitively treated as an “infinitesimal
transformation” of the space into itself and the Lie brackets of two vector fields as the commutator of the
corresponding infinitesimal transformations.

There are obviously many possibilities to formalize this kind of intuitive reasonings, obtaining a more or less
good dialectic between informal and formal thinking (see e.g. [12, 11] and references therein).

We want to show how it is possible to extend the real field adding nilpotent infinitesimals by means of a
very simple construction completely inside “standard mathematics” (with this we mean that the formal control
necessary to work in our setting is very less strong than that necessary both in Non-Standard Analysis [3] and
Synthetic Differential Geometry [12]). To define the extension •R ⊃ R we shall use elementary analysis only.

The usefulness of this extension can be glimpsed saying e.g. that using •R it is possible to write in a completely
rigorous way that a smooth function is equal to its tangent straight line in a first order neighborhood, to use
infinitesimal Taylor formulas without remainder, to define a tangent vector as an infinitesimal curve and sum
them using infinitesimal parallelograms, to see a vector field as an infinitesimal transformation, hence, to come
to the point, to formalize many non-rigorous methods used in Physics and Geometry. This is important both for
didactical reasons and because it was by means of these methods that mathematicians like S. Lie and E. Cartan
were originally conducted to construct important concepts of Differential Geometry.

We can use the infinitesimals of •R not only as a good language to reformulate well-known results, but
also as a very useful tool to construct, in a simple and meaningful way, a Differential Geometry in classical
infinite-dimensional objects like Man(M,N) the space of all the C∞ mapping between two manifolds M , N .
Here with “simple and meaningful” we mean the idea to work directly on the geometric object in an intrinsic way



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

without being forced to use charts, but using infinitesimal points (see [12]). Some important examples of spaces of
mappings used in applications are the space of configurations of a continuum body, groups of diffeomorphisms used
in hydrodynamics, magnetohydrodynamics, electromagnetism, plasma dynamics and paths spaces for calculus of
variations (see [11, 2] and references therein). Interesting applications in classical field theories can also be found
in [1].

A complete and powerful setting for this kind of problems, but without the use of infinitesimals, can be found
in [5, 11]. The construction of our categories takes a strong inspiration from this works and from [4]. The author
hope that this work could also serve to introduce infinitesimal methods in the convenient setting of [11]. The most
complete use of infinitesimals in Differential Geometry can be found in [8, 12, 13], whose setting is incompatible
with classical logic and admits models in intuitionistic logic only. The infinitesimals methods formalized in this
work are strongly influenced by [12, 8].

We start from the idea that a smooth (C∞) function f : R −→ R is actually equal to its tangent straight line
in the first order neighborhood e.g. of the point x = 0, that is

(1.1) ∀h ∈ D : f(h) = f(0) + h · f ′(0)

where D is the subset of •R which defines the above-mentioned neighborhood of x = 0. The previous (1.1) can
be seen as a first-order Taylor formula without remainder because intuitively we think that h2 = 0 for any h ∈ D.
These almost trivial considerations lead us to understand many things: •R must necessarily be a ring and not
a field; moreover we will surely have some limitation in the extension of some function from R to •R, e.g. the
square root. But we are also led to ask if (1.1) uniquely determines the derivative f ′(0): because even if it is true
that we cannot simplify by h, we know that the polynomial coefficients of a Taylor formula are unique in classical
analysis. In fact we will prove that

(1.2) ∃!m ∈ R : ∀h ∈ D : f(h) = f(0) + h ·m,

that is the slope of the tangent is uniquely determined in case it is an ordinary real number.
If we try to construct a model for (1.2) a natural idea is to think our new numbers as equivalence classes [h] of
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usual functions h : R −→ R. In such a way we can hope both to include the real field using classes generated
by constant functions, and that the class generated by h(t) = t could be a first order infinitesimal number. To
understand how to define this equivalence relation we can see (1.1) in the following sense:

(1.3) f(h(t)) ∼ f(0) + h(t) · f ′(0).

If we think h(t) “sufficiently similar to t”, we can define ∼ so that (1.3) is equivalent to

lim
t→0

f(h(t))− f(0)− h(t) · f ′(0)
t

= 0,

that is

(1.4) x ∼ y :⇐⇒ lim
t→0

x(t)− y(t)
t

= 0.

In this way (1.3) is very near to the definition of differentiability for f at 0.
It is important to note that, because of l’Hôpital’s theorems

C1(R,R)/∼ ' R[x]/〈x2〉
that is the usual tangent bundle of R and thus we obtain nothing new. It is not easy to understand what set
of functions we have to choose for x, y in (1.4) so as to obtain a non trivial structure. The first idea is to take
continuous functions at t = 0 so that e.g. hk(t) = |t|1/k is a kth order nilpotent infinitesimal; for almost all
the results presented in this article continuous functions at t = 0 work well, but only in proving the non-trivial
property

(1.5) (∀x ∈ •R : x · f(x) = 0) =⇒ ∀x ∈ •R : f(x) = 0

(here f : •R −→ •R is a smooth function, in a sense we shall precise after) we will see that it doesn’t suffice
to take continuous functions at t = 0. The previous property (1.5) is useful to prove the uniqueness of smooth
incremental ratios, hence to define the derivative f ′ : •R −→ •R for a smooth function f : •R −→ •R which,
generally speaking, is not the extension to •R of an ordinary function defined on R (e.g. the function used for
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the small oscillations of the pendulum t 7→ sin(h · t), where h ∈ •R \ R). To prove (1.5) the following functions
turned out to be very useful:

Definition 1.1. If x : R −→ R, then we say that x is nilpotent iff |x(t)−x(0)|k = o(t) for some k ∈ N. N will
be the set of all the nilpotent functions.

E.g. any Holder function |x(t)− x(s)| ≤ c · |t− s|α (α > 0) is nilpotent. Hence we now define

Definition 1.2. Let x, y ∈ N , then we say x ∼ y iff

x(t) = y(t) + o(t) for t→ 0.

The quotient N/ ∼ will be indicated with •R and called “the ring of standard infinitesimals”. Its elements x ∈ •R
will be called “extended reals”. We can read •R either as “dot R” or “extended R”.

E.g. the previous hk(t) = |t|1/k is not equivalent to zero but its k + 1-th power is equivalent to zero, thus it is
a nilpotent infinitesimal. Because it is also an ordinary infinitesimal function for t → 0 this motivates the name
“ring of standard infinitesimals”. N is close with respect to pointwise sum and product of functions. For the
product it suffices to write x · y − x(0) · y(0) = x · [y − y(0)] + y(0) · [x− x(0)]. The case of the sum follows from
the subsequent equalities (where we use xt := x(t), u := x− x0 and v := y − y0):

uk ∼ 0 ∼ vk

(u+ v)k =
k∑

i=0

(
k

i

)
ui · vk−i

∀i = 0, . . . , k :
ui

t · vk−i
t

t
=

(
uk

t

) i
k ·
(
vk

t

) k−i
k

t
i
k · t k−i

k

=
(
uk

t

t

) i
k

·
(
vk

t

t

) k−i
k

.

Obviously ∼ is a congruence relation with respect to pointwise operations hence •R is a commutative ring.
Where it will be useful to simplify notations we will write “x = y in •R” instead of x ∼ y, and we will talk directly
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about the elements of N instead of their equivalence classes; for example we can say that x = y in •R and z = w
in •R imply x+ z = y + w in •R.
The immersion of R in •R is r 7−→ r̂ defined by r̂(t) := r, and in the sequel we will always identify R̂ with R.
Conversely if x ∈ •R then is well defined and meaningful the standard part map ◦(−) : x ∈ •R 7−→ ◦x = x(0) ∈ R
which evaluates each extended real in 0.

1.2. The ideal of first order infinitesimals

If we want that f(h(t)) ∼ f(0) + h(t) · f ′(0) then from Taylor formula we obtain

(1.6) lim
t→0

f(h(t))− f(0)− h(t) · f ′(0)
t

= lim
t→0

h(t)
t
· σ(t)

with σ(t) → 0 for t→ 0. This suggests us to define D using the condition

lim sup
t→0

∣∣∣∣h(t)t
∣∣∣∣ < +∞.

Generally we will write x ≈ y for

lim sup
t→0

∣∣∣∣x(t)− y(t)
t

∣∣∣∣ < +∞

and we will say that x is close to y. We obtain a well-defined congruence on •R that coincides with equality on
R.

Definition 1.3.
D := {h ∈ •R |h ≈ 0}.

The elements of D are called first order infinitesimals.

Thus we have x ≈ y iff x(t) = y(t) + O(t) for t → 0. For example if r, s ∈ R, then h(t) := r · |t| if t ≥ 0 and
h(t) := s · |t| if t ≤ 0 is a first order infinitesimal; another one is h(t) := r · t · sin(1/t), and obviously h(t) := t and
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in general any C1 infinitesimal function at t = 0. Conversely, if α ∈ (1/2, 1), then x(t) := |t|α is not an element
of D but note that x2 = 0 in •R.

Theorem 1.1. D is an ideal of •R, and

∀h ∈ D : h2 = 0.

Proof. It follows from elementary properties of lim sup; for example the inequalities

lim sup
t→0

∣∣∣∣h(t)− k(t)
t

∣∣∣∣ ≤ lim sup
t→0

∣∣∣∣h(t)t
∣∣∣∣+ lim sup

t→0

∣∣∣∣k(t)t
∣∣∣∣ < +∞

lim sup
t→0

∣∣∣∣x(t) · h(t)t

∣∣∣∣ ≤ |x(0)| · lim sup
t→0

∣∣∣∣h(t)t
∣∣∣∣ < +∞

prove that D is an ideal, and the following

0 ≤ lim inf
t→0

∣∣∣∣h(t)2t
∣∣∣∣ ≤ lim sup

t→0

∣∣∣∣h(t)2t
∣∣∣∣ ≤ |h(0)| · lim sup

t→0

∣∣∣∣h(t)t
∣∣∣∣ = 0

prove that every element of D has square equal to zero. �

Another interesting ideal is Dk := {h ∈ •R |hk ∈ D} for k ∈ N>0: this follows from Newton’s formula and the
equality

(1.7)
h(t)i · u(t)k−i

t
=
[
h(t)k

t

] i
k

·
[
u(t)k

t

] k−i
k

.
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It is also useful to define D0 := {0}. Using an idea similar to (1.7) and taking hk ∈ Djk
, and 0 ≤ ik, we also have

hi1
1 · . . . · hin

n = 0 if
n∑

k=1

ik
jk
> 1

hi1
1 · . . . · hin

n ∈ Dp if
1
p
≤

n∑
k=1

ik
jk
≤ 1.

(1.8)

E.g. if h ∈ D3 and u ∈ D5 we have h2u3 = 0 and h2u ∈ D2. It may also useful to note that hk = 0 if h2 = k2 = 0
and hi = 0 if h ∈ D and ◦i = 0, that is i is a generic infinitesimal. Another useful property is expressed by the
following cancellation law, which is a good substitute for the fact that •R is not a field.

Theorem 1.2. Let x ∈ •R and x 6= 0, then

x · r = x · s and r, s ∈ R =⇒ r = s.

Proof. We can write the hypothesis x · r = x · s as

lim
t→0

x(t)
t
· (r − s) = 0 = |r − s| · lim sup

t→0

∣∣∣∣x(t)t
∣∣∣∣ ,

but the lim supt→0

∣∣∣x(t)
t

∣∣∣ 6= 0 because x 6= 0, and hence r = s. �

Obviously this law is not true if r, s are generic extended reals. Finally it is also easy to prove that x ∈ •R is
invertible iff ◦x 6= 0.

1.3. Extension of functions

Before considering the proof of (1.2) we have to understand how to extend a given function f : R −→ R to a
certain •f : •R −→ •R. First of all we can define •A for A ⊆ Rk exactly as we defined •R: it is sufficient to
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consider the set NA of all the nilpotent functions x : R −→ A (that is such that ||xt−x0||k = o(t) for some k ∈ N,
where || − || is the norm in Rk) with values in A; afterward we take the quotient with respect to the analogous
of the relation ∼ defined in Def. 1.2. We shall give further the general definition of the extension functor •(−),
here we only want to examine some elementary properties of the ring •R.

Definition 1.4. Let A be a subset of Rk, f : A −→ R and x ∈ •A then we define
•f(x) := f ◦ x.

This definition is well posed if f is locally lipschitzian; in fact if x = y in •R then x0 = y0 and so for some
δ,K > 0 we have

(1.9) ∀t ∈ (−δ, δ) : ‖f(xt)− f(yt)‖ ≤ K · ‖xt − yt‖;

hence for t ∈ (−δ, δ) we have

0 ≤ lim sup
t→0

∣∣∣∣f(xt)− f(yt)
t

∣∣∣∣ ≤
≤ K · lim sup

t→0

∣∣∣∣x(t)− y(t)
t

∣∣∣∣ = 0.

Note also that (1.9) implies f(x) ∈ N if x ∈ NA. In the sequel Lip(A,B) will be the set of all the locally
lipschitzian functions defined in A and with values in B. The function •f is an extension of f , that is

•f(r) = f(r) in •R for r ∈ R,

thus we can still use the symbol f(x) both for x ∈ •R and x ∈ R without confusion.
In the following theorem I0 := {h ∈ •R | ◦h = 0} will be the set of all the infinitesimals of •R.

Theorem 1.3. Let A be an open set in R and x ∈ A, then x+ h ∈ •A for every h ∈ I0.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

It is necessary to give some explanation to understand the statement of this theorem. In fact •A = NA/ ∼,
thus we don’t have •A ⊆ •R if A ⊆ R (any equivalence relation [x]A ∈ •A is made of functions x : R −→ A only,
whereas [x]R ∈ •R is made of functions x : R −→ R). In spite of all that there is obviously a natural injection
i : •A −→ •R. In fact [x]A = {y ∈ NA |x ∼ y} and so x ∈ N = NR and we can define i([x]A) := [x]R. This map
is well defined and injective, essentially because the definition of ∼ doesn’t depend on A. Using i : •A −→ •R we
can identify •A with a subset of •R if it is clear from the context the superset we are considering (in this case
R ⊇ A); the statement of the previous theorem use this identification.

Proof. We have to prove that [x+ h]R ∈ i(•A). Because h ∈ I0 we have that x+ ht ∈ A for t sufficiently small
t ∈ (−δ, δ) and thus there exists y : R −→ A such that yt = x + ht for t ∈ (−δ, δ). Hence, directly from the
definition of ∼, i([y]A) = [y]R = [x+ h]R. �

In conclusion of this section we enunciate the following useful elementary transfer theorem for equalities, whose
proof follows directly from the previous definitions:

Theorem 1.4. Let A ⊆ Rk, and τ, σ ∈ Lip(A,R). Then it results

∀x ∈ •A : •τ(x) = •σ(x)

iff
∀r ∈ A : τ(r) = σ(r).

1.4. The derivation formula

Now we will prove the formula (1.2), which we will call derivation formula. It is natural to expect that it will be
equivalent to the usual differentiability of a function, in fact we have

Theorem 1.5. Let A be an open set in R, x ∈ A and f ∈ Lip(A; R), then the following conditions are
equivalent:

1. f is differentiable at x
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2. ∃!m ∈ R : ∀h ∈ D : f(x+ h) = f(x) + h ·m.

In this case we have m = f ′(x), where f ′(x) is the usual derivative of f at x.

Note that m = f ′(x) ∈ R, i.e. the slope is an usual real number and that we can use the previous formula with
standard real numbers x only, and not with a generic x ∈ •R, but we shall remove this limitation in a subsequent
section. In other words we can say that this formula allows us to differentiate the usual differentiable functions
using a language with infinitesimal numbers and to obtain from this an ordinary function.

Proof. 1) ⇒ 2): First of all note that because of Theorem 1.3 we can consider f(x + h) for any h ∈ D. Now
let m := f ′(x) and h ∈ D, i.e. lim supt→0

∣∣∣h(t)
t

∣∣∣ < +∞. For hypothesis f is differentiable in x, hence we can find
a function σ : (A− x) −→ R such that

∀u ∈ A− x : f(x+ u) = f(x) + u ·m+ u · σ(u)

lim
u→0

σ(u) = σ(0) = 0.

Therefore

lim sup
t→0

∣∣∣∣f(x+ ht)− f(x)− ht ·m
t

∣∣∣∣ = lim sup
t→0

∣∣∣∣ht · σ(ht)
t

∣∣∣∣
≤ σ(h0) · lim sup

t→0

∣∣∣∣ht

t

∣∣∣∣ = 0.

This proves the existence; for the uniqueness we simply use the cancellation law (Theorem 1.2).
2) ⇒ 1): For this implication it suffices to apply the hypothesis 2) with h(t) := t. �

If we apply this theorem to the C1 function p(r) :=
∫ x+r

x
f(t) dt, then we obtain the following
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Corollary 1.6. Let A open in R, x ∈ A and f ∈ C0(A). Then

∀h ∈ D :
∫ x+h

x

f(t) dt = h · f(x).

Moreover f(x) ∈ R is uniquely determined by this equality.

For multiple integrals we have analogous formulas; e.g. if h, k ∈ D2 and h · k ∈ D then∫
[0,h]×[0,k]

f(x, y) dxdy = hk · f(0, 0).

With the ideal Dk of the kth order infinitesimal numbers and a function f ∈ Ck(A) it is possible to prove
infinitesimal Taylor formula without any remainder

∀h ∈ Dk : f(x+ h) =
k∑

i=0

hi

i!
· f (i)(x)

with the standard reals f (i)(x) uniquely determined by this formula. Another useful form of the derivation formula
is the following

Theorem 1.7. Let A open in R and f : A −→ R be a C1 function. Let h, k ∈ •R be such that h · k ∈ D, then
for every x ∈ A

k · f(x+ h) = k · f(x) + kh · f ′(x)

We close this section introducing a very simple notation useful to emphasize some equalities: if h, k ∈ •R then
we say that ∃h/k iff ∃!r ∈ R : h = r · k, and obviously we indicate this r ∈ R with h/k. Therefore we can say,
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e.g., that

f ′(x) =
f(x+ h)− f(x)

h
∀h ∈ D6=0

f(x) =
1
h
·
∫ x+h

x

f(t) dt.

Moreover we can prove some natural properties of this “ratio”, like the following one

∃u
v
,
x

y
and vy 6= 0 =⇒ u

v
+
x

y
=
uy + vx

vy
.

1.5. Order relations

From the previous sections one can draw the conclusion that •R is essentially “the little-oh” calculus. If on the
one hand this is certainly true, on the other hand the extended reals give us more flexibility than this calculus:
working with •R we don’t have to bother ourselves with remainders made of “little-oh”, but we can neglect them
and use the great powerfulness of the algebraic calculus with nilpotent infinitesimals (see [12] for many examples
which can be repeated almost equal in our setting using previous theorems). But thinking the elements of •R
as new numbers, and not simply as “little-oh functions”, permits to treat them in a different and new way, for
example to define on them two meaningful partial order relations, the first one of which is the following.

Definition 1.5. For x, y ∈ •R, we say that x � y iff we can find z ∈ •R such that z = 0 in •R and

∃ δ > 0 : ∀ t ∈ (−δ, δ) : x(t) ≥ y(t) + z(t).

In other words let us write ∀0 t : P(t) to indicate that the property P(t) is true for all t in some neighborhood of
t = 0, then we can reformulate the previous definition using the “little-oh” language

x � y :⇐⇒ ∀0 t : x(t) ≥ y(t) + o(t),



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

but note that the function o(t) depends on x, y. We can read x � y saying “x is weakly greater or equal to y”.

We can equivalently say that x � y iff we can find x = x′ and y = y′ in •R such that ∀0t : x′t ≥ y′t. The
definition of � is well posed, and for example we have that the first order infinitesimal h(t) = |t| is positive but
not negative. It is easy to prove that this relation is reflexive and transitive, hence it remains to show that it is
also anti-symmetric. If x � y and y � x then we have

x(t)− y(t) ≥ z1(t) ∀t ∈ (−δ1, δ1)

y(t)− x(t) ≥ z2(t) ∀t ∈ (−δ2, δ2)

lim
t→0

z1(t)
t

= 0 = lim
t→0

−z2(t)
t

.

Taking δ := min{δ1, δ2} we obtain

∀t ∈ (0, δ) :
z1(t)
t

≤ x(t)− y(t)
t

≤ −z2(t)
t

∀t ∈ (−δ, 0) :
−z2(t)
t

≤ x(t)− y(t)
t

≤ z1(t)
t

.

Hence for t→ 0, these inequalities prove that x = y in •R.
With this relation •R becomes an ordered ring. We also observe that � extends the order relation in R and that
it is possible to prove the cancellation law for inequality, that is if h ∈ •R is different from zero and r, s ∈ R, then
from |h| · r � |h| · s we can deduce that r ≤ s.
We can enunciate an elementary transfer theorem for inequalities, simply substituting = with � in Theorem 1.4.
Finally note that the usual definition of infinitesimal number as an extended real x for which −r ≺ x ≺ r for all
standard positive real number r is equivalent to say that the standard part of x is zero.
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It is possible to define another meaningful partial order relation on •R saying that

x ≤ y :⇐⇒ x = y or (x � y and y − x is invertible).

Some properties are better stated using � (e.g. elementary transfer theorem, properties of absolute value and
those about infinitesimals), whereas ≤ is better for powers and logarithms, for topological properties and for
intervals. Actually, as we will see, a useful topology on •R is generated by the sets •U for U open in R; it is
easy to see that if ht := |t · sin 1

t |, then 0 is not an interior point neither in {x ∈ •R| − h � x � h} nor in
{x ∈ •R| − h � x � 1}. Therefore the above mentioned topology is not generated by �, whereas it is easy to
check that it is generated by ≤.
Once again the ring structure of •R is compatible with ≤; the order relation between standard reals is extended
by ≤ and we can also state the above mentioned cancellation law; for the strict relation < both the cancellation
law without limitations and the elementary transfer theorem are valid. Finally for the relation ≤ we can state a
weak form of trichotomy: let’s write x ' y for x− y ∈ I0 (that is ◦x = ◦y), then for every x, y ∈ •R

x ' y or x < y or y < x.

Anyway neither � nor ≤ are order relations, as we can see taking xt := t · sin 1
t which is not comparable with

y = 0.
We conclude this section giving a brief indication of some other possible operations and properties of •R. First

of all we can consider the absolute value: it is a well defined function for which the usual order properties still
hold (use the transfer theorem for inequalities), but for which the following ones are valid too

x � 0 ⇐⇒ |x| = x

x � 0 ⇐⇒ |x| = −x

|x| = 0 ⇐⇒ x = 0.
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Moreover we can consider powers and logarithms of strictly positive (w.r.t. ≤) extended reals (note that obviously
the square root is not well defined on D therefore the last limitation cannot be eliminate). For these operations
are still valid the usual algebraic and order properties: for example if y is strictly positive and z > 1, then we
have

x ≥ y =⇒ logz(x) ≥ logz(y).

2. The cartesian closure of F

In this section we shall define the basic constructions which will lead us to the notion of Cn space and Cn function.
They represent the most general kind of spaces and functions extendible with our infinitesimal points. Any Cn

manifold is a Cn space too, and the category Cn of all Cn spaces is cartesian closed, hence it contains several
infinite-dimensional spaces, e.g. that formed by all the usual Cn functions between two manifolds. It is important
to note that, exactly as in [4, 14, 5, 11, 13], the category Cn contains many “pathological” spaces; actually
Cn works as a “cartesian closed universe” and we will see that, like in [8, 12, 13], the particular infinitesimally
linear Cn spaces have the best properties and will work as a good substitute of manifolds.

The ideas used in this section arise from analogous ideas of [4] and [5]; actually C∞ is the category of diffeological
spaces (see [14] and references therein).

We present the construction starting from a concrete category F of topological spaces (which satisfies few
conditions) and embedding it in a cartesian closed category F̄ . We will call F̄ the cartesian closure of F .
We need this generality because we shall use it to define both domain and codomain of the extension functor
•(−) : Cn −→ •Cn starting from two different categories F . The problem to generalize the definition of •R to a
functor •(−) can also be seen from the following point of view: now it is natural to define a tangent vector as a
map

t : D −→ •M.

But we have to note that: t has to be “regular” in some sense, hence we need some kind of geometric structure
both on D and •M ; the ideal D is not of type •M for some manifold M because the only standard real number in



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

D is 0; the definition of •M has to generalize •R. We shall define structures on D and •M so that D, •M ∈ •Cn,
hence we shall define the concept of tangent vector so that t ∈ •Cn(D, •M).

Hypotheses:

1. F is a subcategory of Top which contains all the constant maps and all the open subspaces U ⊆ H (with
the induced topology) of every H ∈ F with their inclusion i : U ↪→ H ∈ FUH := F(U,H).

In the following |− | : F −→ Set is the forgetful functor which associate to any H ∈ F its support set |H| ∈ Set.
Moreover with τH we will call the topology of H and with (U ≺ H) the subspace of H induced on the open set
U ∈ τH.

2. F is closed with respect to restrictions to open sets, that is if f ∈ FHK, U and V are open in H, K resp.
and f(U) ⊆ V , then f |U ∈ F(U ≺ H,V ≺ K);

3. Every topological space H ∈ F has the following “sheaf property”: let H, K ∈ F , (Hi)i∈I an open cover
of H and f : |H| −→ |K| a map such that ∀i ∈ I : f |Hi

∈ FHiK, then f ∈ FHK.

For the construction of the domain of the extension functor we want to consider a category F which permits to
embed finite dimensional manifolds in Cn. To this aim we will set F = ORn, the category with objects open
sets U ⊆ Ru (with the induced topology), for some u ∈ N, and with hom-set the usual Cn(U, V ) of Cn functions
between the open sets U ⊆ Ru and V ⊆ Rv. What type of category F we have to choose depends on the setting
we need: e.g. in case we want to consider manifolds with boundary we have to take the analogous of the above
mentioned category ORn but with objects open set U ⊆ Ru

+ = {x ∈ Ru |xu ≥ 0}.
The basic idea to define a Cn space X (which faithfully generalizes the notion of manifold) is to substitute the

notion of chart with a family of mappings d : H −→ X with H ∈ F . E.g. for F = ORn these mappings are of
type d : U −→ X with U open in some Ru, thus they can be thought as u-dimensional figures on X. Hence a Cn

space can be thought as a support set and the specification of all the finite-dimensional figures on the space itself.
Generally speaking we can think F as a category of “types of figures”. Always considering the case F = ORn, we
can also think F as a category which represents “a well known notion of regular space and regular function”: with



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

the cartesian closure F̄ we want extend this notion to a more general type of spaces (e.g. spaces of mappings).
In the diffeological setting [4, 14] a figure d : U −→ X is called a plot on X.

We are trivially generalizing both the work of [5, 11], where only curves as types of figures are considered, and
the notion of diffeology in which F = OR∞. This generalization permits to obtain in an easy way the cartesian
closedness of F̄ , and thus to have at our disposal a general instrument F 7→ F̄ very useful in the construction
e.g. of the codomain of the extension functor •(−), where we will choose a different F . In the sequel we will
frequently use the notation f · g := g ◦ f for the composition of maps so as to facilitate the lecture of diagrams,
but we will continue to evaluate functions “on the right” hence (f · g)(x) = g(f(x)). Objects and arrows of F̄
generalize the same notions of the diffeological setting.

Definition 2.1. If X is a set, then we say that (D, X) is an object of F̄ if D = {DH}H∈F is a family with

DH ⊆ Set(|H|, X).

We indicate with the notation FJH · DH the set of all the compositions f · d of functions f ∈ FJH and d ∈ DH .
The family D has finally to satisfy the following conditions:

1. FJH · DH ⊆ DJ .
2. DH contains all the constant maps d : |H| −→ X.
3. Let H ∈ F , (Hi)i∈I an open cover of H and d : |H| −→ X a map such that d|Hi

∈ D(Hi≺H), then d ∈ DH .
Finally we set |(D, X)| := X.

For the condition 1. we can think DH as the set of all the regular functions defined on the “well known” object
H ∈ F and with values in the new space X; in fact this condition says that the set of figures DH is closed with
respect to re-parametrization with f ∈ FJH . Condition 3. is the above mentioned sheaf property and asserts that
a figure has a local character depending on F . We will frequently write d ∈

H
X to indicate that d ∈ DH and we

can read it “d is a figure of X of type H” or “d belong to X at the level H” or “d is a generalized element of
X of type H” or, finally, “(d, U) is a plot of X”. This kind of arrows is important to obtain cartesian closure,
whereas we shall further use arrows of kind X −→ |H| to extend these spaces with new infinitesimal points.
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The definition of arrow f : X −→ Y between two spaces X, Y ∈ F̄ is the usual one for diffeological spaces,
that is f : |X| −→ |Y | takes, through composition, generalized elements d ∈

H
X of type H in the domain to

generalized elements of the same type in the codomain f(d) := d · f ∈
H
Y . Note that we have f : X −→ Y in F̄

iff ∀H∀x ∈
H
X : f(x) ∈

H
Y , moreover X = Y iff ∀H∀d : d ∈

H
X ⇔ d ∈

H
Y . These and many other properties

justify the notation ∈
H

and the name “generalized element”.
With these definitions F̄ becomes a category. Note that it is, in general, in the second Grothendieck universe

because D is a family indexed in the set of objects of F (this is not the case for F = ORn which is a set).
The simplest F̄-object is K̄ := (F(−)K , |K|) for K ∈ F , and for it we have that d : K̄ −→ X iff d ∈

K
X and

F(H,K) = F̄(H̄, K̄). Therefore F is fully embedded in F̄ if H̄ = K̄ implies H = K; e.g. this is true if the given
category F verifies the following hypothesis

|H| = |K| = S and H
1S−−−−→ K

1S−−−−→ H =⇒ H = K.

E.g. this is true for F = ORn. Another way to construct an object of F̄ is to generate it starting from a
given family D0

H ⊆ Set(|H|, X), for any H ∈ F , closed with respect to constant functions. We will indicate this
space with (F · D0, X) and its figures are, locally, compositions f · d with f ∈ FHK and d ∈ D0

K . More precisely
δ ∈

H
(F · D0, X) iff δ : |H| −→ X and for every h ∈ |H| there exist an open neighborhood U of h in H, K ∈ F ,

d ∈ D0
H and f : (U ≺ H) −→ K in F such that δ|U = f · d.

On each space X ∈ F̄ we can put the final topology τX for which any figure d ∈
H
X is continuous, that is a

subset U ⊆ |X| is in τX iff d−1(U) ∈ τH for any H ∈ F and any d ∈
H
X. With respect to this topology any

arrow of F̄ is continuous and we still have the given τH in the space H̄, that is τH = τ H̄ .
Open subsets U on a space X will serve us, e.g., as domains for arrows of type U −→ Rk. These maps, which

trivially generalize the notion of chart and that we will call “observables on X”, will permit us to define the
extension functor •(−).
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2.1. Categorical properties of the cartesian closure

We shall now examine subobjects in F̄ and their relation with the restriction of functions, after which we shall
analyse completeness, co-completeness and cartesian closure of F̄ .

Definition 2.2. Let X ∈ F̄ and S ⊆ |X|, then we define

(S ≺ X) := (D, S)

where
d ∈ DH :⇐⇒ d : |H| −→ S and d · i ∈

H
X.

Here i : S ↪→ |X| is the inclusion map. We will call (S ≺ X) “the subspace induced on S by X”.

Using this definition only it’s very easy to prove that (S ≺ X) ∈ F̄ and that its topology contains the induced
topology. Moreover τ (S≺H) ⊆ τX if S is open, hence in this case we have on (S ≺ X) the induced topology.
Finally we have the following

Theorem 2.1. Let f : X −→ Y be an arrow of F̄ and U , V subsets of |X| and |Y | respectively, such that
f(U) ⊆ V , then

(U ≺ X)
f |U−−−−−→ (V ≺ Y ) in F̄ .

Obviously it is easy to state and prove that any X ∈ F̄ has the sheaf property. Using our notation for
subobjects we can prove the following useful and natural properties directly from definition 2.2

• (U ≺ H̄) = (U ≺ H) for U open in H ∈ F
• i : (S ≺ X) ↪→ X is the lifting of the inclusion i : S ↪→ |X| from Set to F̄
• (|X| ≺ X) = X
• (S ≺ (T ≺ X)) = (S ≺ X) if S ⊆ T ⊆ |X|
• (S ≺ X)× (T ≺ Y ) = (S × T ≺ X × Y ).
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These properties imply that the relation X ⊆ Y iff |X| ⊆ |Y | and (|X| ≺ Y ) = X is a partial order. Note that
this relation is stronger to say that the inclusion is an arrow, because it asserts that X and the inclusion verify
the universal property of (|X| ≺ Y ), that is X is a subobject of Y .

Completeness and co-completeness are analyzed in the following theorem. For its standard proof see [5] for a
similar theorem.

Theorem 2.2. Let (Xi)i∈I be a family of objects in F̄ and pi : |X| −→ |Xi| arrows in Set ∀ i ∈ I. Define

d ∈
H
X :⇐⇒ d : |H| −→ |X| and ∀ i ∈ I : d · pi ∈H

Xi

then (X
pi−−−−→ Xi)i∈I is a lifting of (|X| pi−−−−→ |Xi|)i∈I in F̄ .

Whereas if ji : |Xi| −→ |X| are arrows in Set∀ i ∈ I and

∀x ∈ |X| ∃ i ∈ I ∃xi ∈ Xi : x = ji(xi)

then defining d ∈
H
X iff d : |H| −→ |X| and for every h ∈ |H| there exist an open neighborhood U of h in H,

i ∈ I and δ ∈
U
Xi s.t. d|U = δ · ji, we have that (Xi

ji−−−−→ X)i∈I is a co-lifting of (|Xi|
ji−−−−→ |X|)i∈I in F̄ .

Directly from the definitions it is easy to prove that on quotient spaces we exactly have the quotient topology
and that on any product we have a topology stronger than the product topology.

Finally if we define

DH := {d : |H| −→ F̄(X,Y ) | H̄ ×X
d∨−−−−→ Y in F̄}

(we are using the notations d∨(h, x) := d(h)(x) and µ∧(x)(y) := µ(x, y)) then 〈D, F̄(X,Y )〉 =: Y X is an object
of F̄ . With this definition, see e.g. [4] or [5], it is easy to prove that F̄ is cartesian closed, i.e. that the
F̄-isomorphism (−)∨ realizes

(Y X)Z ' Y Z×X .
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3. The category Cn

3.1. Observables on Cn spaces and separated spaces

The most natural way to apply the results of previous section for our aims is to set F = Mann, that is to consider
directly the cartesian closure of the category of finite dimensional Cn manifolds (we shall not formally assume
any hypothesis on the topology of a manifold because we will never need it in the following; moreover if not
differently specified, with the word “manifold” we will always mean “finite dimensional manifold”). We shall not
follow this idea for several reasons; we will set instead Cn := ORn, that is the cartesian closure of the category
ORn of open sets and Cn arrows. For n = ∞ this gives exactly diffeological spaces [4, 14]. As we noted before
Mann is in the second Grothendieck universe and, essentially for simplicity, from this point of view the choice
F = ORn is better. In spite of this choice it is natural to expect, and in fact we will prove it, that the category
of finite-dimensional manifolds is faithfully contained in Cn. Another reason for our definition of Cn is that in
this way the category of Cn spaces and arrows is more natural to accept and to work in with respect to Mann;
hence ones again a reason of simplicity. We will see that manifolds modelled in convenient vector spaces (see
[11]) are faithfully embedded in Cn, hence our choice to take finite dimensional objects in the definition of Cn is
not restrictive from this point of view.

Now we pay attention to another type of maps which go “on the opposite direction” with respect to figures
d : K −→ X. As mentioned above we shall use them to introduce new infinitesimal points for any X ∈ Cn.

Definition 3.1. Let X be a Cn space, then we say that

UK is a zone (in X)

iff U ∈ τX is open in X and K ∈ ORn. Moreover we say that

c is an observable on UK or c ∈UK X

iff c : (U ≺ X) −→ K̄ in Cn.
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Remember that for any open set K the Cn space K̄ is

K̄ = (Cn(−,K),K),

hence composition of figures d ∈
H
X with observables c ∈UK gives ordinary Cn maps: d|S · c ∈ Cn(S,K), where

S := d−1(U).
From our previous theorems it follows that Cn functions f : X −→ Y take observables on the codomain to

observables on the domain i.e.:

(3.1) c ∈UK Y =⇒ f |S · c ∈SK X,

where S := f−1(U). Therefore isomorphic Cn spaces have isomorphic sets of figures and observables.
Generalizing through the observables the equivalence relation 1.2 to generic Cn spaces, we will have to study the
following condition, which is connected with the faithfulness of the extension itself.

Definition 3.2. If X ∈ Cn and x, y ∈ |X|, then we write

x � y

and we read it “x and y are identified in X”, iff for every zone UK and every c ∈UK X we have
1. x ∈ U ⇐⇒ y ∈ U
2. x ∈ U =⇒ c(x) = c(y).

Moreover we say that X is separated iff x � y implies x = y for any x, y ∈ |X|.

Observe that if two points are identified in X then a generic open set contains the first iff it contains the second
too (take a constant observable), and from (3.1) that Cn functions f : X −→ Y preserve the relation �:

x � y in X =⇒ f(x) � f(y) in Y.

Trivial examples of separated spaces can be obtained considering the objects Ū with U ∈ ORn, or taking
subobjects of separated spaces. But the full subcategory of separated Cn spaces has other good enough properties.
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Theorem 3.1. The category of separated Cn spaces is complete and admits co-products. Moreover if X, Y
are separated then Y X is separated too, and hence separated spaces form a cartesian closed category.

Sketch of the proof. We only do some considerations about co-product, because it is easy to prove that products
and equalizers of separated spaces are separated too. Let us consider a family (Xi)i∈I of separated spaces with
support sets Xi := |Xi|. Constructing their sum in Set

X :=
∑
i∈I

Xi

ji : x ∈ Xi 7−→ (x, i) ∈ X,

from the completeness of Cn we can lift it to a co-product (Xi
ji−−−→ X )i∈I . To prove that X is separated we

take two points x, y ∈ X = |X | identified in X . These points are of the form x = (xr, r) and y = (ys, s), with
xr ∈ Xr, ys ∈ Xs and r, s ∈ I. We want to prove that r and s are necessarily equal. In fact from the definition of
figures of X (Theorem 2.2) we have that

A ∈ τX ⇐⇒ ∀ i ∈ I : j−1
i (A) ∈ τXi

,

and hence Xr × {r} is open in X and x � y implies

(xr, r) ∈ Xr × {r} ⇐⇒ (ys, s) ∈ Xr × {r} hence r = s.

Hence x = y iff xr and ys = yr are identified in Xr and this is a consequence of the following facts:
1. if U is open in Xr then U × {r} is open in X ;
2. if c ∈UK Xr, then γ(x, r) := c(x) ∀x ∈ U is an observable of X on U × {r}.

Now let us consider exponential objects. If f , g ∈ |Y X | are identified, to prove that they are equal is equivalent
to prove that f(x) and g(x) are identified in Y for any x. To obtain this conclusion is sufficient to consider that
the evaluation in x i.e. εx : ϕ ∈ |Y X | 7−→ ϕ(x) ∈ |Y | is a Cn map and hence from any observable c ∈UK Y we can
always obtain the observable εx|U′ · c ∈U′K Y X where U ′ := ε−1

x (U). �
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Finally let’s consider two Cn spaces such that the topology τX×Y is equal to the product of the topologies τX

and τ Y . Then if x, x′ ∈ |X| and y, y′ ∈ |Y | it is easy to prove that we have x � x′ in X and y � y′ in Y iff
(x, y) � (x′, y′) in X × Y .

3.2. Manifolds as objects of Cn

We can associate in a very natural way a Cn space M̄ to any manifold M ∈ Mann with the following

Definition 3.3. Define |M̄ | := |M | and for every H ∈ ORn

d ∈
H
M̄ :⇐⇒ d ∈ Mann(H,M).

We obtain a Cn space with the same topology of the starting manifold. Moreover the observables of M̄ are the
most natural that one could expect, in fact it is very easy to prove that

c ∈UK M̄ ⇐⇒ c ∈ Mann(U,K).

Hence it is clear that M̄ is separated, because charts are observables of the space. The following theorem says
that the passage from Mann to Cn that we are considering is a full embedding and therefore it says that Cn is a
non-trivial generalization of the notion of manifold which include infinite-dimensional spaces too.

Theorem 3.2. Let M and N be Cn manifolds, then
1. M̄ = N̄ =⇒ M = N

2. M̄
f−−−→ N̄ in Cn ⇐⇒ M

f−−−→ N in Mann.
Hence Mann is fully embedded in Cn.

Proof of 1). If (U,ϕ) is a chart onM , then ϕ−1|A : A := ϕ(U) −→M is a figure of M̄ , that is ϕ−1|A ∈
A
M̄ = N̄ .

But if ψ : U −→ ψ(U) ⊆ Rk is a chart of N , then it is also an observable of N̄ , and composition of figures and
observables gives ordinary Cn maps, that is the atlases of M and N are compatible.
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Proof of 2) We use the same ideas as above and moreover that ϕ−1|A ∈
A
M̄ implies ϕ−1|A · f ∈A

N̄ . Finally
we can compose this A-figure of N̄ with a chart (observable) of N obtaining an ordinary Cn map. �

Directly from the definitions we can prove that for two manifolds we also have

M ×N = M̄ × N̄ .

This property is useful to prove the affirmations done in the following examples.

3.3. Examples

Example 3.1. Let M be a C∞ manifold modelled on convenient vector spaces (see [11]). We can define M̄
analogously as above, saying that d ∈

H
M̄ iff d : H −→M is a smooth map between H (open in some Rh) and M .

In this way smooth curves on M are exactly the figures c ∈R M̄ of type R in M̄ . On M we obviously think the so
called natural topology, that is the identification topology with respect to some smooth atlas, which is also the final
topology with respect to all smooth curves and hence is also the final topology τ M̄ with respect to all figures of M̄ .
More easily with respect to the previous case of finite dimensional manifolds, it is possible to study observables,
obtaining that c ∈UK M̄ iff c : U −→ K is smooth as a map between manifolds modelled on convenient vector
spaces. Moreover if (U,ϕ) is a chart of M on the convenient vector space E, then ϕ : (U ≺ M̄) −→ (ϕ(U) ≺ Ē) is
C∞. Using these results it is easy to prove the analogous of Theorem 3.2 for the category of manifolds modelled
in convenient vector spaces. Hence also classical smooth manifolds modelled in Banach spaces are embedded in
C∞.

Example 3.2. It is possible to prove that the following applications, frequently used e.g. in calculus of
variations, are smooth, that is they are arrows of C∞.
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(a) The operator of derivation:

∂i : C∞(Rn,Rk) −→ C∞(Rn,Rk)

u 7−→ ∂u

∂xi

(b) The integral operator:

i : C∞(R2,R) −→ C∞(R,R)

u 7−→
∫ b

a

u(−, s) ds

(c) Using the previous examples we can prove that the classical operator of calculus of variations is smooth

I(u)(t) :=
∫ b

a

F [u(t, s), ∂2u(t, s), s] ds

I : C∞(R2,Rk) −→ C∞(R,R),
where the function F : Rk × Rk × R −→ R is smooth.

Example 3.3. Because of cartesian closedness set-theoretical operations like the following are examples of Cn

arrows:
• composition:

(f, g) ∈ BA × CB 7→ g ◦ f ∈ CA

• evaluation:
(f, x) ∈ Y X ×X 7→ f(x) ∈ Y

• insertion:
x ∈ X 7→ (x,−) ∈ (X × Y )Y
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Example 3.4. Inversion between smooth manifolds modelled on Banach spaces

(−)−1 : f ∈ Diff(N,M) 7→ f−1 ∈ Diff(M,N)

is a smooth mapping, where Diff(M,N) is the subspace of NM given by the diffeomorphisms between M and
N . So (Diff(M,M), ◦) is a (generalized) Lie group. To prove that (−)−1 is smooth let’s consider a figure
d ∈

U
Diff(N,M), then f := (d · i)∨ : U ×N −→ M , where i : Diff(N,M) ↪→ MN is the inclusion, is an ordinary

smooth function between Banach manifolds. We have to prove that g := [d · (−)−1 · j]∨ : U ×M −→ N is smooth,
where j : Diff(M,N) ↪→ NM . But f [u, g(u,m)] = m and D2f(u, n) = D[d(u)](n) hence the conclusion follows
from the implicit function theorem because d(u) ∈ Diff(N,M).

Example 3.5. Since the category Cn is complete, we can also have Cn spaces with singular points like e.g.
the equalizer {x ∈ X | f(x) = g(x)}. Any algebraic curve is in this way a C∞ separated space too.

Example 3.6. Another type of space with singular points is the following. Let ϕ ∈ Cn(Rk,Rm) and consider
the subspace ([0, 1]k ≺ Rk), then (ϕ([0, 1]k) ≺ Rm) ∈ Cn is the deformation in Rm of the hypercube [0, 1]k.

Example 3.7. Let C be a continuum body, I the interval for time, and E the 3-dimensional Euclidean space.
We can define on C a natural structure of C∞ space. For any point p ∈ C let pr(t) ∈ E be the position of p at
time t in the frame of reference r; we define figures of type U on C (U ∈ ORn) the functions d : U −→ C for
which the following application

d̃ : U × I −→ E
(u, t) 7−→ d(u)r(t)

is smooth. For example if U = R then we can think d : R −→ C as a curve traced on the body and parameterized
by u ∈ R. Hence we are requiring that the position d(u)(t) of the particle d(u) ∈ C varies smoothly with the
parameter u and the time t. This is a generalization of the continuity of motion of any point of the body (take
d constant). This smooth (that is diffeological) space will be separated, as an object of C∞, if different points of
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the body cannot have the same motion:

pr(−) = qr(−) =⇒ p = q ∀p, q ∈ C.

The configuration space of C can be viewed (see [15]) as the space

M :=
∑
t∈I

Mt with Mt ⊆ EC

and so, for the categorical properties of C∞ the spaces EC , Mt and M are always objects of C∞ as well. With
this structure the motion of C:

µ : C × I −→ E
(p, t) 7−→ p(t)

is a smooth map. Note that to obtain these results we need neither Mt nor C be manifolds, but only the possibility
to associate to any point p of C a motion pr(−) : I −→ E . If we had the possibility to develop differential geometry
for these spaces too we would have the possibility to obtain many results of continuum mechanics for body which
cannot be naturally represented using a manifolds or with infinite-dimensional configuration space. Moreover in
the next section we will see how to extend any C∞ space with infinitesimal points, so that we can also consider
infinitesimal sub-bodies of C.

4. The extension of Cn spaces and functions

Now we want to extend any Cn space and any Cn function by means of our “infinitesimal points”. First of all we
will have to extend to a generic space X the notion of nilpotent path. Afterward we shall use the observables to
generalize the equivalence relation ∼ (see Definition 1.2) using the following idea

ϕ(xt) = ϕ(yt) + o(t) with ϕ ∈UK X.
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In this point the main problem is to understand how to relate x, y with the domain U of ϕ. In the subsequent
sections we will also prove some results that will conduct us toward the theorem •(M × N) ' •M × •N with
M,N manifolds. The fact that this useful theorem is not proved for generic Cn spaces is due to the fact that the
topology on a product between Cn spaces is generally stronger than the product topology.

4.1. Nilpotent paths

If X is a Cn space, then using τX we can define the set C0(X) of all the maps x : R −→ X continuous at the
origin t = 0. Because any Cn function f is continuous we have f ◦ x ∈ C0(Y ) if x ∈ C0(X).

If U is open in X then on the subspace (U ≺ X) we have the induced topology and from this it follows that

Theorem 4.1. Let X be a Cn space and x ∈ C0(X). Take an observable ϕ ∈UK X with x(0) ∈ U , then

lim
t→0

ϕ(xt) = ϕ(x0).

As many other concepts we will introduce, the notion of nilpotent map is defined by means of observables.

Definition 4.1. Let X be a Cn space and x ∈ C0(X), then we say that x is nilpotent (rel. X) iff for every
zone UK of X and every obsevable ϕ ∈UK X we have

x(0) ∈ U =⇒ ∃k ∈ N : ‖ϕ(xt)− ϕ(x0)‖k = o(t).

Moreover
NX := N(X) := {x ∈ C0(X) | x is nilpotent}.

Because of property (3.1), if f ∈ Cn(X,Y ) and x ∈ NX then f ◦x ∈ NY , that is Cn functions preserve nilpotent
maps. In case of a manifold M , a map x : R −→ |M | is nilpotent iff we can find a chart (U,ϕ) on x0 such that
‖ϕ(xt)− ϕ(x0)‖k = o(t) for some k ∈ N.

Finally we enunciate the relations between product manifolds and nilpotent paths. For the (standard) proof
is essential to observe that τ M̄×N̄ = τM×N = τM×N and thus on the product M̄ × N̄ of Cn spaces we exactly have
the product topology.
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Theorem 4.2. Let M,N be manifolds and x : R −→ |M |, y : R −→ |N |, then

x ∈ NM̄ and y ∈ NN̄ ⇐⇒ (x, y) ∈ NM̄×N̄ .

Here (x, y)t := (xt, yt).

4.2. The extension of spaces and functions

Definition 4.2. Let X be a Cn space and x, y ∈ NX then we say that

x ∼ y in X or simply x = y in •X

iff for every zone UK of X and every observable ϕ ∈UK X we have

1) x0 ∈ U ⇐⇒ y0 ∈ U

2) x0 ∈ U =⇒ ϕ(xt) = ϕ(yt) + o(t).

Obviously we write •X := NX/∼ and •f(x) := f ◦ x if f ∈ Cn(X,Y ) and x ∈ •X. We prove the correctness
of the definition of •f in the following:

Theorem 4.3. If f ∈ Cn(X,Y ) and x = y in •X then •f(x) = •f(y) in •Y .

Proof. Take a zone V K in Y and an observable ψ ∈V K Y , then from continuity of f , U := f−1(V ) ∈ τX . We
can thus apply hypothesis x = y in •X with the zone UK and the observable ϕ := f |U · ψ ∈UK X. From this it
follows the conclusion noting that f ◦ x, f ◦ y ∈ NY and x0 ∈ U iff f(x0) ∈ V . �

Using Theorem 4.1 we can note that x = y in •X implies that x0 and y0 are identified in X (Definition 3.2)
and thus using constant maps x̂(t) := x we obtain an injection ˆ(−) : |X| −→ •X if the space X is separated.
Therefore if Y is separated too, •f is really an extension of f . Finally note that •(−) preserves compositions and
identities.
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Example 4.1. If X = M is a Cn manifold then we have x ∼ y in M iff there exists a chart (U,ϕ) of M such
that

1. x0, y0 ∈ U
2. ϕ(xt) = ϕ(yt) + o(t).

Moreover the previous conditions do not depend on the chart (U,ϕ). In particular if X = U is an open set in Rk,
then x ∼ y in U is simply equivalent to the limit relation x(t) = y(t) + o(t); hence if i : U ↪→ Rk is the inclusion
map, it’s easy to prove that •i : •U −→ •Rk is injective. As in Theorem 1.3 we will always identify •U with
•i(•U), so we simply write •U ⊆ •Rk. Using this equivalent way to express the relation ∼ on manifolds, we can
see that (x, y) = (x′, y′) in •(M ×N) iff x = x′ in •M and y = y′ in •N . From this conclusion and from Theorem
4.2 we can prove that the following applications

αMN := α : ([x]∼, [y]∼) ∈ •M × •N 7−→ [(x, y)]∼ ∈ •(M ×N)

βMN := β : [z]∼ ∈ •(M ×N) 7−→ ([z · pM ]∼, [z · pN ]∼) ∈ •M × •N

(for clarity we have used the notation with the equivalence classes) are well-defined bijections with α−1 = β
(obviously pM , pN are the projections). We will use the first one of them in the following section with the
temporary notation 〈p, x〉 := α(p, x), hence f〈p, x〉 = f(α(p, x)) for f : •(M × N) −→ Y . This simplifies our
notations but it permits to avoid the identification of •M × •N with •(M ×N) until we will have proved that α
and β are arrows of the category •Cn.

5. The category of extended spaces and the extension functor

5.1. Motivations:

Up to now every •X is a simple set only. Now we want to use the general passage from a category F to its
cartesian closure F̄ so as to put on any •X some kind of useful structure. Our aim is to obtain in this way a new
cartesian closed category F̄ =: •Cn and a functor “extension” •(−) : Cn −→ •Cn. Therefore we have to choose
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F , that is what will be the types of figures of •X. It may seem very natural to take •g : •U −→ •V as arrow in
F if g : U −→ V is in ORn (in [6] we followed this way). The first problem in this idea is that, e.g.

•R
•f−−−−→ •R =⇒ •f(0) = f(0) ∈ R,

hence there cannot exist a constant function of type •f to a non-standard value and so we cannot satisfy the
closure of F with respect to generic constant functions (see hypotheses on F in Section 2). But we can make
further considerations about this problem so as to motivate better the choice of F . The first one is that we surely
want to have the possibility to lift, using cartesian closedness, maps simple as the sum between extended reals:

s : (p, q) ∈ •R× •R −→ p+ q ∈ •R.

Hence s∧(p) : q ∈ •R −→ p + q ∈ •R must be an arrow of •Cn. Note that it is nor constant neither of type •f
because s∧(p)(0) = p and p could be an extended real.
The second consideration is about α: if we want to have α as an arrow of •Cn, then in the following situation we
have to obtain a •Cn arrow again

•R× •R
p× 1•R−−−−−−−−→ •R× •R α−−−→ •(R× R)

•g−−−−→ •R

(t, s) 7−→ (p, s) 7−→ 〈p, s〉 7−→ •g〈p, s〉

(where p ∈ •R and g ∈ Cn(R2,R)). The idea we shall follow is exactly to take as arrows of F maps that locally are
of type δ(s) = •g〈p, s〉, where p works as a parameter of •g〈−,−〉. Obviously in this way δ could also be a constant
map to an extended value (take as g a projection). Frequently one can find maps of type •g〈p,−〉 in informal
calculations in physics or geometry. Actually they simply are Cn maps with some fixed parameter p, which could
be an infinitesimal distance (e.g. in the potential of the electric dipole, see below), an infinitesimal coefficient
associated to a metric (like in the formula given at the beginning), or considering a side of an infinitesimal surface.
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Note the importance of α to perform passages like the following

M ×N
f−−−→ Y in Cn

•(M ×N)
•f−−−−→ •Y in •Cn

•M × •N
•f−−−−→ •Y in •Cn (identification via α)

•M
•f∧−−−−−→ •Y

•N using cartesian closedness.

This motivates the choice of arrows in F , but there is a second problem about the choice of its objects. Take a
manifold M and an arrow t : D −→ •M in •Cn. Whatever this will mean we want to think t as a tangent vector
applied either to a standard point t(0) ∈M , and in this case it is a standard tangent vectors, or to an extended
one, t(0) ∈ •M \M . Roughly speaking this is the case if we can write t(h) = •g〈p, h〉 for some g, p. If we want
to obtain this equality it is useful to have both 1D as a figure of D

1D ∈
D
D =⇒ t ∈

D

•M,

and maps of type •g〈p,−〉 : D −→ •M as figures of •M . Therefore it would be useful to have D as an object of
F . But D is not the extension of a standard subset of R, thus what will be the objects of F? We will take generic
subsets S of •(Rs) with the topology τ S generated by U = •U ∩ S for U open in Rs (in this case we will say that
the open set U is defined by U in S). These are the motivations to introduce F by means of the following

Definition 5.1. We call S•Rn the category whose objects are subsets S ⊆ •(Rs), for some s which depends
on S, and with the previous topology τ S. If S ⊆ •(Rs) and T ⊆ •(Rt) then we say that

S
f−−−→ T in S•Rn
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iff f maps S in T and for every s ∈ S we can write

f(x) = •g〈p, x〉 ∀x ∈ V

for some

p ∈ •(Rp)

U open neighborhood of p defined by U in •(Rp)
V open neighborhood of s defined by V in S

g ∈ Cn(U × V,Rt).

Moreover we will consider on S•Rn the forgetful functor given by the inclusion | − | : S•Rn ↪→ Set.

It is easy to prove that S•Rn and the functor | − | verify the hypotheses on F (see Section 2), hence we can
define

•Cn := S•Rn.

Each object of •Cn is called an “extended (Cn) space”.

5.2. The extension functor

Now the problem is: what extended spaces could we associate to sets like •X or D? For any subset Z ⊆ •X we
call •(ZX) the extended space generated on Z (see Section 2) by the following set of figures d : T −→ Z (where
T ⊆ •(Rt))

(5.1)
d ∈ D0

T (Z) :⇐⇒ d is constant or we can write

d = •h|T for some h ∈
V
X such that T ⊆ •V .
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Thus in the non-trivial case we start from a standard figure h ∈
V
X, where the extension of V contains T ; we

extend this figure obtaining •h : •V −→ •X, and finally the restriction •h|T is a generating figure if it maps T in
Z.

Using this definition we call (with some abuses of language)
•X := •(•XX)

D := •(DR)
•R := •(•RR)
•Rk := •(•(Rk)Rk)

Dk := •(DkRk).

We will call •(ZX) the extended space induced on Z by X. We can now study the extension functor:

Theorem 5.1. Let f ∈ Cn(X,Y ) and Z a subset of •X with •f(Z) ⊆W ⊆ •Y , then in •Cn we have that

•(ZX)
•f |Z−−−−−−→ •(WY ).

Therefore •(−) : Cn −→ •Cn.

Proof. Take a figure δ ∈
S
•(ZX) in the domain. We have to prove that δ ·•f |Z locally factors through S•Rn and

D0(W ). Hence taking s ∈ S we can write δ|U = f1 ·d where U is an open neighborhood of s, f1 ∈ S•Rn(U ≺ S, T )
and d ∈ D0

T (Z). We omit the trivial case d constant, hence we can suppose to have, using the same notation as
above, d = •h|T : T −→ Z with h ∈

V
X. Therefore

(δ · •f |Z)|U = f1 · •h|T · •f |Z = f1 · •(hf)|T .

But hf ∈
V
Y and so (δ · •f |Z)|U = f1 · d1, where d1 := •(hf)|T ∈ D0

T (W ), which is the conclusion. �
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5.3. The isomorphisms α and β

We want to prove that the above mentioned bijective applications α and β are arrows of •Cn. To simplify the
proof we will use the following preliminary results. The first one is a general property of the extension F 7→ F̄ .

Lemma 5.1. Suppose that F admits finite products, and for every objects K, J an isomorphism

β := βKJ : K × J −−−−→
∼

K̄ × J̄ in F̄ .

Now let Z, X, Y ∈ F̄ with X and Y generated by DX and DY respectively. Then we have

X × Y
f−−−→ Z in F̄

iff for any K, J ∈ F and d ∈ DX
K , δ ∈ DY

J we have

β · (d× δ) · f ∈
K×J

Z

The second Lemma asserts that F = S•Rn verifies the hypotheses of the previous one.

Lemma 5.2. The category S•Rn admits finite products and the above mentioned isomorphisms βKJ . Moreover
let M , N be Cn manifolds, and h ∈

V
M , l ∈

V ′
N with K ⊆ •V and J ⊆ •V ′, then

βKJ · (•h|K × •l|J) · αMN = •(h× l)|K×J

The proofs are a direct effect of the given definitions.

Theorem 5.2. Let M , N be Cn manifolds, then in •Cn we have
•(M ×N) ' •M × •N.

Proof. Note that in the statement each manifold is identified with the corresponding Cn space M̄ . Hence we
mean •M = •M̄ = •(•MM̄). In proving that α is a •Cn arrow we can use the Lemma 5.1 because of Lemma
5.2 and considering that •M and •N are generated by D0(•M) and D0(•N). Because these generating sets are
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defined using a disjunction (see definition 5.1) we have to check four cases depending on d and δ. In the first one
we have d = •h|K ∈ D0

K(•M) and δ = •l|J ∈ D0
J(•N) (we are using the same notations of the previous Lemma

5.2). Thus
βKJ · (d× δ) · α = βKJ · (•h|K × •l|J) · α = •(h× l)|K×J .

That is βKJ · (d × δ) · α is a generating element in •(M ×N), and so it is also a figure. In the second case let’s
suppose δ constant to n ∈ •N , take a chart l−1 : U −→ Rp on ◦n = n0 ∈ N and let p := •l−1(n), W := •Rp.
Then for any k ∈ K and j ∈ J we can write

α{(d× δ)[βKJ(〈k, j〉)]} = α[•h(k), •l(p)]

= {βKW · [•h|K × •l|J ] · α}〈k, p〉
= •(h× l)|K×W 〈k, p〉

(5.2)

where we have used once again the equality of Lemma 5.2. Thus let’s call τ : 〈k, j〉 ∈ |K×J | 7→ 〈k, p〉 ∈ |K×W |,
so that we can write (5.2) as

βKJ · (d× δ) · α = τ · •(h× l)|K×W

But •(h× l)|K×W is a generating figure of •(M ×N) and τ is an arrow of S•Rn, and this proves that βKJ · (d×
δ) · α ∈

K×J
•(M ×N). The remaining cases are either trivial or analogous to the last one.

For βMN the proof is simpler, and it suffices to note that e.g. α · •pM is the projection on •M ; hence the
conclusion follows from the fact that •pM and •pN are arrows of •Cn. �

In the following we shall always use α to identify these type of spaces •M × •N = •(M ×N).

5.4. Figures of extended spaces

In this section we want to understand better the figures of the extended space •(ZX); we will use these results
later, for example when we will study the embedding of Mann in •Cn.
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From the general definition of F̄–space generated by D0 given in section 2, a figure δ ∈
S
•(ZX) can be locally

factored as δ|V = fd through an arrow f of S•Rn and a generating function d ∈ D0
T (Z); here V = V(s) is an open

neighborhood of the fixed s ∈ S. Hence, either δ|V is constant (if d is constant) or we can write d = •h|T and
f = •g(p,−) so that

δ(x) = d[f(x)] = •h[•g(p, x)] = •(gh)(p, x) ∀x ∈ B,

where B = •B ∩ V and A×B is an open neighborhood of (◦p, ◦s). Therefore we can write

δ(x) = •γ(p, x) ∀x ∈ B

with γ := g|A×B · h ∈ Cn(A × B,X). Thus figures of •(ZX) are locally necessarily either constant map or a
natural generalization of the maps of S•Rn, that is “parameterized extended Cn arrows”. Using the properties
of •Cn and of its arrow αRpRs it is easy to prove that these conditions are sufficient too. Moreover if X = M is
a manifold, the condition “δ|V constant” can be omitted. In fact if δ|V is constant to m ∈ Z ⊆ •M , then taking
a chart ϕ on ◦m ∈ M we can write δ(x) = m = •γ(p, x), where p = •ϕ(m) and γ(x, y) = ϕ−1(x). Using these
results we can see that •(ZX) = (Z ≺ •X). Hence if we take Z ⊆ •Rz, we have three coincident ways to see it as
an extended space: Z̄ = •(ZRz) = (Z ≺ •Rz) (here Z̄ is the general passage from an object H ∈ F to H̄ ∈ F̄).
E.g. if f : •Rz −→ •X is a •Cn arrow, then we also have f : •Rz −→ •X and so f ∈•Rz

•X and locally we can
write f either as a constant function or, with the usual notations, as f(x) = •γ(p, x). For functions f : I −→ •X
defined on some set I ⊆ I0 of infinitesimals which contains 0 ∈ I, these two alternatives are globally true instead
of locally only.

We close this section enunciating the following properties of the extension functor:

1. If X ⊆ Y in Cn (see section 2.1) and |X| is open in Y , then •X ⊆ •Y in •Cn and •X is open in •Y .
2. In the same hypotheses as above, if Z ⊆ |•X| then (Z ≺ •X) = (Z ≺ •Y ).
3. Let f : X −→ Y and Z ⊆ Y in Cn, with |Z| open in Y . Moreover define •f−1(•Z) := (•f−1(|•Z|) ≺ •X)

and f−1(Z) := (f−1(|Z|) ≺ X). Then •[f−1(Z)] = •f−1(•Z) as extended spaces.
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5.5. The embedding of manifolds in •Cn

If we consider a Cn space X, we have just seen that we have the possibility to associate an extended space to any
subset Z ⊆ •X. Thus if X is separated we can put a structure of •Cn space on the set |X| of ordinary points of
X, by means of X̄ := •(|X|X) = (|X| ≺ •X). Intuitively X and X̄ seem very similar, and in fact we have

Theorem 5.3. Let X, Y be Cn separated spaces, then
1. X̄ = Ȳ =⇒ X = Y

2. X̄
f−−−→ Ȳ in •Cn ⇐⇒ X

f−−−→ Y in Cn.

Hence Cn separated spaces are fully embedded in •Cn, and so is Mann.

Proof. 1) The equality X̄ = Ȳ immediately implies the equality of support sets |X| = |Y |. We consider now a
generalized element d ∈

H
X where H is an open set of Rh. Taking the extension of d and then the restriction to

ordinary points only we obtain

(5.3) (H ≺ •H̄)
•d|H−−−−−−→ (|X| ≺ •X) = X̄ = Ȳ .

But (H ≺ •H̄) = (H ≺ •Rh) = •(HRh) = H̄, hence
•d|H = d : H̄ −→ Ȳ in •Cn

and so d ∈
H
Ȳ . Therefore for every s ∈ H either d is constant in some open neighborhood V of s defined by V ,

or, using the usual notations, we can write

d(x) = •γ(p, x) in •Y ∀x ∈ V = •V ∩H = V ∩H.

Hence for every x ∈ V ∩ H we have ◦d(x) � ◦[γ(p, x)] in Y , and so we can write d(x) = γ(p0, x) because Y is
separated and x ∈ V ∩H ⊆ Rh is standard. Therefore d|V ∩H is a Y -valued arrow of Cn defined in a neighborhood
of the fixed s. The conclusion thus follows from the sheaf property of Y .
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2) ⇒ From the proof of 1) we have seen that if d ∈
H
X then d ∈

H
X̄. Hence f(d) ∈

H
Ȳ . But once again from

the passages of 1) we have seen that this implies that f(d) ∈
H
Y .

⇐ It is sufficient to extend f , to restrict it to standard points only, and finally to consider that our spaces are
separated. �

An immediate corollary of this theorem is that the extension functor is another full embedding for separated
spaces.

Corollary 5.4. Let X,Y be Cn separated spaces, then

1. •X = •Y =⇒ X = Y

2. If •X
f−−−→ •Y in •Cn and f(|X|) ⊆ |Y | then

X
f ||X|−−−−−−→ Y in Cn

3. •X
•f−−−−→ •Y in •Cn ⇐⇒ X

f−−−→ Y in Cn

4. If f , g : X −→ Y are Cn functions, then

•f = •g =⇒ f = g.

Proof of 1. We have to prove that the support sets of X and Y are equal, but this is trivial if we take standard
parts

{◦x | x ∈ •X} = |X| = {◦x | x ∈ •Y } = |Y |.

Hence X̄ = (|X| ≺ •X) = (|Y | ≺ •Y ) = Ȳ . The other properties stated in the corollary are proved considering
the previously seen passages which use the restriction to ordinary points, in case preceded by an application of
the extension functor. �
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5.6. The generalized derivation formula in •Cn

In this section we want to explore the possibility to use the derivation formula through the use of observables
ϕ ∈UK X. Precisely we start from a generic •Cn function f : D −→ •X with f(0) ∈ •U := •(U ≺ X) (not the
extension of a classical one, that is f generally is not of the form f = •g|D) and we study the validity of the
formula for the function •ϕ(f(−)) defined in D and with values in the •R module •Rk. Note that the result is
not trivial just because the function f generally is not of the form •g|D but of a more general type. First of all
we prove that the previous composition is well defined, that is the following generalization of Theorem 1.3

Theorem 5.5. Let X be a Cn space and U ∈ τX an open set. Let f : D −→ •X be a •Cn function with
f(0) ∈ •U , then f(h) ∈ •U for every h ∈ D.

Proof. From the hypothesis on f it follows that f ∈
D
•X because D = D. Hence, considering that 0 ∈ D ⊂ I0

and the results of section 5.4, we can globally say that either f is constant, and the proof is trivial, or we can
write the equality f(h) = •γ(p, h) in •X for every h ∈ D. For the sake of clarity let y := f(h), thus taking
standard parts (that is evaluating at t = 0)

(5.4) ◦y � ◦[•γ(p, h)] = γ(p0, 0) = ◦[•γ(p, 0)] � ◦f(0).

But f(0) ∈ •U , from which ◦f(0) ∈ U and so ◦y ∈ U from the previous relation (5.4). Hence yt ∈ U for t small
and moreover y ∈ NU because y = f(h) ∈ NX and because on U = (U ≺ X) we have the induced topology. �

Theorem 5.6. Let X be a Cn space and ϕ ∈URk
X an observable. Let f be as above, then there exists one and

only one pair

a ∈ •Rk and b ∈ Rk

such that
∀h ∈ D : •ϕ(f(h)) = a+ h · b.
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Proof. Omitting as usual the trivial case in which f is constant, from the previous proof we have seen that we
can write

∀h ∈ D : f(h) = •γ(p, h) in •X.

Therefore from the definition of equality in •X

ϕ[f(h)t] = ϕ[γ(pt, ht)] + t · σ1(t) ∀0t,

with limt→0 σ1(t) = 0. But the function ψ := ϕ[γ(−,−)] is an ordinary Cn function, hence we can use the Taylor
formula (n is at least 1) to obtain

ψ(pt, ht) = ψ(pt, 0) + ht · ∂2ψ(pt, 0) + σ2(t)

lim
t→0
ht 6=0

σ2(t)
ht

= 0.

Hence if we define

a := •ϕ[•γ(p, 0)] ∈ •Rk

b := ∂2ψ(p0, 0) ∈ Rk

then substituting

ϕ[f(h)t]− at − ht · b =

= ht · [∂2ψ(pt, 0)− ∂2ψ(p0, 0)] + σ2(t) + t · σ1(t) = o(t)

This proves that •ϕ[f(h)] = a+h · b. To prove uniqueness of a is sufficient to set h = 0; for b is sufficient to note
that if

∀h ∈ D : h · b = h · β
then setting ht = t, from the equality in •Rk we quickly obtain b = β. �
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Using the generalized derivation formula we can extend Theorem 1.5 to non-standard points x ∈ •R. It suffices
to consider the function f(x+ ·) : D −→ •R which is an arrow in •Cn and to which we can apply Theorem 5.6.
We will denote with ϕ′(f) the unique b in the previous theorem so that we can formulate the following result, in
which is stated that the generalized derivation formula determine uniquely the function f .

Theorem 5.7. Let X ∈ Cn and f, g : D −→ •X in •Cn, with f(0) = g(0). Moreover we assume that
ϕ′(f) = ϕ′(g) for every ϕ ∈URk

X with f(0) ∈ •U , then f=g.

Proof. Fix an h ∈ D and for simplicity let y := f(h) and z := g(h). From the proof of a previous theorem we
have seen that ◦y � ◦f(0), but f(0) = g(0) in •X hence y0 � ◦f(0) � ◦g(0) � z0. Now we consider an observable
ϕ ∈URk

X and from y0 � z0 we deduce that

z0 ∈ U ⇐⇒ y0 ∈ U.

Hence if we assume that y0 ∈ U then f(0)t ∈ U ∀0t and f(0) ∈ •U . Thus from the hypotheses of the theorem it
follows that ϕ′(f) = ϕ′(g) and hence the generalized derivation formula implies that •ϕ(f(h)) = •ϕ(g(h)), that
is ϕ(yt) = ϕ(zt) + o(t). �

In the case that X is a manifold, to have the equality f = g is sufficient to find a chart (U,ϕ) with f(0) ∈ •U
and for which ϕ′(f) = ϕ′(g) (see the example in Section 4.2).

6. Examples

We started this article defining in a very simple way an extension •R of the real field containing nilpotent
infinitesimals. Afterwards, generalizing diffeological spaces, we introduced a cartesian closed embedding Cn of
Mann to which we generalized the definition of •R obtaining the category •Cn. The aim of this article is to
introduce the foundations of this theory of infinitesimals, leaving its full development in Differential Geometry
for future works. To perform this aim it is important to note the deep analogy between our construction and
Synthetic Differential Geometry (see [12] and references therein): frequently we only have to trivially generalize
this work.
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The elementary examples listed in the following want to show in a few rows the simplicity of the ana-
lytic/algebraic calculus using nilpotent elements. Here “simplicity” means that the dialectic with informal cal-
culations is really faithful; this is important for future developments both as a proof of the flexibility of the new
language and also for researches in artificial intelligence like automatic differentiation theories. Last but not least
it may also be important for didactical or historical researches.

Example 6.1. Commutation of differentiation and integration. Suppose we want to discover the derivative of
the function

g(x) :=
∫ β(x)

α(x)

f(x, t) dt ∀x ∈ R

where α, β and f are C1 functions. We can see g as a composition of locally lipschitzian functions hence we can
apply the derivation formula:

g(x+ h) =
∫ α(x)

α(x)+hα′(x)

f(x, t) dt+ h ·
∫ α(x)

α(x)+hα′(x)

∂f

∂x
(x, t) dt

+
∫ β(x)

α(x)

f(x, t) dt+ h ·
∫ β(x)

α(x)

∂f

∂x
(x, t) dt

+
∫ β(x)+hβ′(x)

β(x)

f(x, t) dt+ h ·
∫ β(x)+hβ′(x)

β(x)

∂f

∂x
(x, t) dt.

Now we use h2 = 0 to obtain e.g.

h ·
∫ α(x)

α(x)+hα′(x)

∂f

∂x
(x, t) dt = −h2 · α′(x) · ∂f

∂x
(x, t) = 0
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and ∫ α(x)

α(x)+hα′(x)

f(x, t) dt = −h · α′(x) · f(α(x), t).

Treating in an analogous way similar terms we finally obtain the conclusion. Note that the final formula comes
out by itself so that we have “discovered” it and not simply we have proved it.

Example 6.2. Circle of curvature. A simple application of the infinitesimal Taylor formula is the parametric
equation for the circle of curvature, that is the circle with second order osculation with a curve γ : [0, 1] −→ R3.
In fact if r ∈ (0, 1) and γ̇r is a unit vector, from the second order formula we have

(6.1) ∀h ∈ D2 : γ(r + h) = γr + h γ̇r +
h2

2
γ̈r = γr + h~tr +

h2

2
cr ~nr

where ~n is the unit normal vector, ~t is the tangent one and cr the curvature. But once again from Taylor formula
we have sin(ch) = ch and cos(ch) = 1− c2h2

2 . Now it suffices to substitute h and h2

2 from these formulas into (6.1)
to obtain the conclusion

∀h ∈ D2 : γ(r + h) =
(
γr +

~nr

cr

)
+

1
cr
·
[
sin(crh)~tr − cos(crh)~nr

]
.

In a similar way we can prove that any f ∈ C∞(R,R) can be written ∀h ∈ Dk as

f(h) =
k∑

n=0

an · cos(nh) +
k∑

n=0

bn · sin(nh).

Example 6.3. Schwarz’s theorem. Using nilpotent infinitesimals a simple and meaningful proof of Schwarz’s
theorem can be obtained. This simple example aims to show how to manage some differences between our setting
and Synthetic Differential Geometry (see [8, 12, 13]). Let f : V −→ E be a C2 function between Banach spaces
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and a ∈ V , we want to prove that d2f(a) : V × V −→ E is symmetric. Take

k ∈ D2

h, j infinitesimals
jkh ∈ D6=0

(e.g. we can take kt = |t| 12 , ht = jt = |t| 14 ). Using k ∈ D2 we have

(6.2)

j · f(x+ hu+ kv) =

= j ·
[
f(x+ hu) + k ∂vf(x+ hu) +

k2

2
∂2

vf(x+ hu)
]

= j · f(x+ hu) + jk · ∂vf(x+ hu)

where we used the fact that k2 ∈ D and j infinitesimal imply jk2 = 0. Now we consider that jkh ∈ D hence
using Theorem 1.7 we obtain

(6.3) jk · ∂vf(x+ hu) = jk · ∂vf(x) + jkh · ∂u(∂vf)(x).

But k ∈ D2 and jk2 = 0 hence
j · f(x+ kv)− j · f(x) = jk · ∂vf(x).

Substituting in (6.3) and (6.2) we obtain

(6.4)
j · [f(x+ hu+ kv)− f(x+ hu)− f(x+ kv) + f(x)] =

= jkh · ∂u(∂vf)(x).

The left side of this equality is symmetric in u, v, hence changing them we have

jkh · ∂u(∂vf)(x) = jkh · ∂v(∂uf)(x)
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and hence the conclusion because jkh 6= 0 and ∂u(∂vf)(x), ∂v(∂uf)(x) ∈ E.
From (6.4) it follows directly the classical limit relation

lim
t→0

f(x+ htu+ ktv)− f(x+ htu)− f(x+ ktv) + f(x)
htkt

= ∂u(∂vf)(x).

Example 6.4. Electric dipole. From a Physical point of view an electric dipole is usually defined as “a pair
of charges with opposite sign placed at a distance d very less than the distance r from the observer”.
Conditions like r � d are frequently used in Physic and very often we obtain a correct formalization if we ask
d ∈ •R infinitesimal but r ∈ R \ {0} i.e. r finite. Thus we can define an electric dipole as a pair (p1, p2) of electric
particles, with charges of equal intensity but with opposite sign such that their mutual distance at every time t
is a first order infinitesimal:

(6.5) ∀t : |p1(t)− p2(t)| =: |~dt| =: dt ∈ D.

In this way we can calculate the potential in the point x using the properties of D and using the hypothesis that
r is finite and not zero. In fact we have

ϕ(x) =
q

4πε0
·
(

1
r1
− 1
r2

)
~ri := x− pi

and if ~r := ~r2 −
~d
2 then

1
r2

=
(
r2 +

d2

4
+ ~r · ~d

)−1/2

= r−1 ·

(
1 +

~r · ~d
r2

)−1/2
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because for (6.5) d2 = 0. For our hypotheses on d and r we have that
~r · ~d
r2

∈ D hence from the derivation formula(
1 +

~r · ~d
r2

)−1/2

= 1− ~r · ~d
2r2

In the same way we can proceed for 1/r1, hence:

ϕ(x) =
q

4πε0
· 1
r
·

(
1 +

~r · ~d
2r2

− 1 +
~r · ~d
2r2

)
= . . .

The property d2 = 0 is also used in the calculus of the electric field and for the moment of momentum.

Example 6.5. Newtonian limit in Relativity. Another example in which we can formalize a condition like
r � d using the previous ideas is the Newtonian limit in Relativity; in it we can suppose to have

• ∀t : vt ∈ D2 and c ∈ R
• ∀x ∈M4 : gij(x) = ηij + hij(x) with hij(x) ∈ D.

where (ηij)ij is the matrix of the Minkowski’s metric. These conditions can be interpreted as vt � c and
hij(x) � 1 (low speed with respect to the speed of light and weak gravitational field). In this way we have, e.g.
the equalities:

1√
1− v2

c2

= 1 +
v2

2c2
and

√
1− h44(x) = 1− 1

2
h44(x).

Example 6.6. Linear differential equations. Let

L(y) := A0

dNy

dtN
+ . . .+AN−1

dy
dt

+AN · y = 0
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be a linear differential equation with constant coefficients. Once again we want to discover independent solutions
in case the characteristic polynomial has multiple roots e.g.

(r − r1)2 · (r − r3) · . . . · (r − rN) = 0.

The idea is that in •R we have (r− r1)2 = 0 also if r = r1 + h with h ∈ D. Thus y(t) = e(r1+h)t is a solution too.
But e(r1+h)t = er1t + ht · er1t, hence

L
[
e(r1+h)t

]
= 0

= L
[
er1t + ht · er1t

]
= L

[
er1t
]
+ h · L

[
t · er1t

]
We obtain L [t · er1t] = 0, that is y1(t) = t · er1t must be a solution. Using k-th order infinitesimals we can deal
with other multiple roots in a similar way.

7. Tangent vectors, vector fields and infinitesimally linear spaces

The use of nilpotent infinitesimals permits to develop many concepts of Differential Geometry in an intrinsic way
without being forced to use coordinates, as we shall see in some examples below. In this way the use of charts
becomes specific of stated areas.

We can call this kind of intrinsic geometry Infinitesimal Differential Geometry.
The possibility to avoid coordinates using infinitesimal neighborhood instead permits to perform some general-
izations to more abstract spaces, like spaces of mappings. Even if the categories Cn and •Cn are very big and
not very much can be said about generic objects, in this section we shall see that the best properties can be
formulated for a restricted class of extended spaces, the infinitesimally linear ones, to which spaces of mappings
between manifolds belong to.
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We start from the fundamental idea of tangent vector. It is now natural to define a tangent vector to a space
X ∈ •Cn as an arrow (in •Cn) of type t : D −→ X. Therefore TX := XD and Tf(t) := df(t) := f ◦ t with
projection π : t ∈ TX 7→ t(0) ∈ X is the tangent bundle of X. Note that using the absolute value it is also
possible to consider “boundary tangent vectors” taking |D| := { |h| : h ∈ D} instead of D, for example at the
initial point of a curve or at a side of a closed set. In the following M ∈ Man∞ =: Man will always be a finite
dimensional smooth manifold and we will use the notation TM for T(•M).

It is important to note that with this definition of tangent vector we obtain a generalization of the classical
notion. In fact t(0) ∈ •M and hence the tangent vector t can be applied to an extended point. If we want to
study classical tangent vectors only we have to consider the following C∞ object

Definition 7.1. We call TstM the C∞ object with support set

|TstM | := {•f |D : f ∈ C∞(R,M)},
and with generalized elements of type U (open in Ru)

d ∈
U

TstM :⇐⇒ d : U −→ |TstM | and d · i ∈
Ū

TM,

where i : |TstM | ↪→ TM is the inclusion.

That is in TstM we consider only tangent vectors t = •f |D obtained as extension of ordinary smooth functions
f : R −→ M , and we take as generalized elements, functions d with values in TstM which in •C∞ verify
d∨ : Ū ×D −→ •M (here U ∈ S•R∞ 7→ Ū ∈ C∞ is the general passage from an object H ∈ F to H̄ ∈ F̄). Note
that, intuitively speaking, d takes standard elements u ∈ U ⊆ Rk to standard elements d(u) ∈ TstM .

Theorem 7.1. Let t ∈ TM be a tangent vector, then

t ∈ TstM ⇐⇒ t(0) ∈M.

Proof. If t = •f |D then t(0) = f(0) ∈ M . Vice versa if t(0) ∈ M then take a chart (U,ϕ) on t(0) and
apply the generalized derivation formula (Theorem 5.6) obtaining •ϕ(t(h)) = a + h · b for any h ∈ D and with
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a ∈ •Rk, b ∈ Rk. But •ϕ(t(0)) = ϕ(t(0)) = a because t(0) ∈ M . Hence a ∈ Rk is standard and we can write
t(h) = •ϕ−1(a+ h · b) =: •f |D(h). �

In the following result we prove that the definition of standard tangent vector t ∈ TstM is equivalent to the
classical one.

Theorem 7.2. In the category C∞ the object TstM is isomorphic to the usual tangent bundle of M .

Sketch of the proof. We have to prove that Tm
st := {t ∈ TstM | t(0) = m} ' Tm where here Tm := {f ∈

C∞(R,M) | f(0) = m}/ ∼ is the usual tangent space ofM atm ∈M . Note that Tm ∈ C∞ because of completeness
and co-completeness.

Let d be the dimension of M . Firstly we prove that

α : [f ]∼ ∈ Tm 7→ d(ϕ ◦ f)
dt

(0) ∈ Rd

α−1 : v ∈ Rd 7→ [r 7→ ϕ−1(ϕm+ r · v)]∼ ∈ Tm

are arrows of C∞, where ϕ : U −→ Rd is a chart on m with ϕ(U) = Rd.
Secondly we prove that

β : t ∈ Tm
st 7→ ϕ′(t) ∈ Rd

β−1 : v ∈ Rd 7→ •[r 7→ ϕ−1(ϕm+ r · v)]|D ∈ Tm
st

are arrows of C∞. We give some details for β. If d ∈
U

Tm
st then d∨ : Ū×D −→ •M in •C∞. But Ū×D = Ū×D̄ =

U ×D hence d∨ ∈
U×D

•M . Thus we can locally write d∨|V = •γ(p,−,−)|V where V is an open neighborhood of
(u, 0) defined by A×B, u ∈ U and γ ∈ C∞(Ū ×A×B,M). But V = •(A×B)∩ (U ×D) = (A∩U)×D because
U ⊆ Ru. As in the proof of Theorem 5.6 we can prove that

β[d(x)] = ϕ′[d(x)] =
d
dt
{ϕ[γ(p0, x, t)]}|t=0 ∀x ∈ A ∩ U.
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Hence (d ·β)|A∩U ∈ C∞(A∩U,Rd) is an ordinary smooth function. Note the importance to have as U a standard
open set in the last passage: this is a strong motivation for the definition we gave of TstM . �

For any object X ∈ •Cn the multiplication of a tangent vector t by a scalar r ∈ •R can be defined simply
“increasing its speed” by a factor r:

(r · t)(h) := t(r · h).
As we already noted, in the category •Cn we have spaces with singular points too, like algebraic curves with double
points. Because of this reason we cannot always define the sum of tangent vectors, but we need to introduce a
class of objects in which this operation is possible. The following definition simply affirms that in these spaces
there always exists the infinitesimal parallelogram generated by a finite number of given vectors.

Definition 7.2. Let X ∈ •Cn, then we say that X is infinitesimally linear iff for any k ∈ N greater than 1
and for any ti ∈ TxX, i = 1, . . . , k, there exists one and only one p : Dk −→ X such that

∀i = 1, . . . , k : p(0, i−1. . . . . . , 0, h, 0, . . . , 0) = ti(h) ∀h ∈ D.

The following theorem gives meaningful examples of infinitesimally linear objects.

Theorem 7.3. The extension of any manifold •M is infinitesimally linear. If Mi ∈ Mann for i = 1, . . . , s
then

•M
•M ...

2
•Ms

1 ' •M
•(M2×···×Ms)
1

is infinitesimally linear too.

Proof. Given any chart (U,ϕ) on ◦m we can define the infinitesimal parallelogram p as

(7.1) p(h1, . . . , hk) = •ϕ−1

(
•ϕ(m) +

k∑
i=1

hi · ϕ′(ti)

)
.
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If fact if τ(h) := p(0, i−1. . . . . . , 0, h, 0, . . . , 0) then ϕ(τ(h)) = ϕ(m) + h · ϕ′(ti); this implies that t(0) = τ(0) and
ϕ′(τ) = ϕ′(ti), hence ti = τ . To prove uniqueness consider that if p : Dk −→ •M then p ∈

Dk
•M and we can

write p(h) = γ(q, h), where γ ∈ Cn(U × V,M) and q is the usual extended parameter. Hence

ϕ[γ(q, 0, i−1. . . . . . , 0, h, 0, . . . , 0)] = ϕ[ti(h)] = ϕ(m) + h · ϕ′(ti)

and so

ϕ[γ(q, h)] = ϕ(m) +
k∑

i=1

hi · ϕ′(ti)

from the first order infinitesimal Taylor formula.
Because

•M
•M ...

2
•Ms

1 ' •M
•M2×···×•Ms
1 ' •M

•(M2×···×Ms)
1

it suffices to prove the conclusion for s = 2. First of all we note that, because of the previously proved uniqueness,
the definition 7.1 of the infinitesimal parallelogram doesn’t depend on the chart ϕ on ◦m. Now let t1, . . . , tk be
k tangent vectors at f ∈ •N

•M . We shall define their parallelogram p : •M −→ •NDk

patching together smooth
functions defined on open subsets, and using the sheaf property of •NDk

. Indeed for every m ∈ •M we can find
a chart (Um, ϕm) of N on ◦f(m) with ϕm(Um) = Rn. Now m ∈ Vm := f−1(•Um) ∈ τ •M and for every x ∈ Vm

we have t∨i (0, x) = f(x) ∈ •Um. Hence t∨i (h, x) ∈ •Um for any h ∈ D by theorem 5.5. Therefore we can define

p∨m(x, h) := ϕ−1
m

{
k∑

i=1

ϕm[t∨i (hi, x)]− (k − 1) · ϕm(fx)

}
∀x ∈ Vm,∀h ∈ Dk

and we have that p∨m : (Vm ≺ •M) × Dk −→ •N is smooth, because it is composition of smooth functions.
If x ∈ Vm ∩ Vm′ then p∨m(x,−) = p∨m′(x,−), in fact from the generalized derivation formula ϕm[t∨i (hi, x)] =
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ϕm(fx) + hi · ϕ′m[t∨i (−, x)] and hence we can write

(7.2) p∨m(x, h) = ϕ−1
m

{
ϕm(fx) +

k∑
i=1

hi · ϕ′m[t∨i (−, x)]

}
∀x ∈ Vm,∀h ∈ Dk.

But (Um, ϕm) is a chart on ◦f(x), so p∨m(x,−) is the infinitesimal parallelogram generated by the tangent vectors
t∨i (−, x) at f(x), and we know that (7.2) doesn’t depend on ϕm, so pm = pm′ . From (7.2) is also easy to prove
that p : Dk −→ •N

•M verifies the desired properties. Uniqueness follows noting that p∨(m,−) is the infinitesimal
parallelogram generated by t∨i (−,m). �

If X is infinitesimally linear then we can define the sum of tangent vectors t1, t2 ∈ TxX simply taking the
diagonal of the parallelogram p generated by these vectors

(t1 + t2)(h) := p(h, h) ∀h ∈ D.

With these operations TxX becomes a •R module. To prove e.g. that the sum is associative see [8, 12] for a
similar theorem.
Vector fields on a generic object X ∈ •Cn are naturally defined as

V : X −→ TX such that V (m)(0) = m.

In the case of manifolds, X = •M , this implies that V (m)(0) ∈M for every m ∈M , hence from (7.1)

V |M : (M ≺ •M) −→ ({•f |D : f ∈ Cn(R,M)} ≺ TM).

From this, using the definition of arrow in Cn and the embedding Theorem 5.3, it follows that

V |M : M −→ Tst(M) in Cn,

that is the standard notion of vector field on M . Vice versa if we have

W : M −→ Tst(M) in Cn
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then we can extend it to •M . In fact fix m ∈ •M,h ∈ D and choose a chart (U, x) on ◦m. Then we can write

W |U =
d∑

i=1

Ai ·
∂

∂xi
,

with Ai ∈ Cn(U,R). But m ∈ •U because ◦m ∈ U and hence we can define

W̃ (m,h) :=
d∑

i=1

•Ai(m) · ∂

∂xi
(m)(h).

This definition doesn’t depend on the chart (U, x) and, for the sheaf property of •M provides a •Cn function

W̃ : •M ×D −→ •M such that W̃ (m, 0) = m

and with (W̃∧)|M = V .
Finally we can easily see that any vector field can equivalently be seen as an infinitesimal transformation of the
space into itself. In fact using cartesian closedness we have

V ∈ (XD)X ' XX×D ' XD×X ' (XX)D.

If W corresponds to V in this isomorphism then W : D −→ XX and V (x)(0) = x is equivalent to say that
W (0) = 1X , that is W is the tangent vector at 1X to the space of transformations XX , that is an infinitesimal
path traced from 1X .

8. A first comparison with other theories of infinitesimals

It is not easy to clarify in a few rows the relationships between our Infinitesimal Differential Geometry (IDG) and
other, more developed and well established theories of actual infinitesimals. Nevertheless here we want to sketch
a first comparison, and to state some open problems, mostly underlining the conceptual differences instead of the
technical ones, hoping in this way to clarify the foundational and philosophical choices we made.
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8.1. Nonstandard Analysis (NSA)

As a consequence of the will to have a field which extends the reals, in NSA every non zero infinitesimal is
invertible and so we cannot have nilpotent elements. On the contrary in IDG we aim to obtain a ring as an
extension, and, as a result of our choices, we cannot have non-nilpotent infinitesimals, in particular they cannot
be invertible. In IDG our first aim was to obtain a meaningful theory from the intuitive point of view, to the
disadvantage of some formal property, only partially inherited from the real field. Vice versa any constructions
of the hyperreals ∗R has, as one of its primary aims, to obtain the inheritance of all the properties of the reals
through the transfer principle. This way of thinking implies that in NSA we want to be free to extend every
function f : R −→ R from R to ∗R, and that any sequence of standard reals (xn)n∈N ∈ RN, even the more
strange, represents one and only one hyperreal. Of course in this article we followed a completely different way:
to define •R we restrict ourselves to nilpotent functions (xt)t∈R ∈ N ⊂ RR, and hence we can only extend locally
lipschitzian functions from R to •R. Obviously we have in mind that in Differential Geometry we shall work with
Cn functions only. In exchange not every property is transferred to •R, e.g. we have partial order relations only.
In NSA this attention to formally inherit every property of the reals implies that on the one hand we have the
greatest logical strength, but on the other hand we need a higher formal control (some background of Logic is
necessary e.g. to apply the transfer principle) and sometimes we lose the intuitive point of view. E.g. what
is the intuitive meaning and usefulness of ◦[sin(I)] ∈ R, the standard part of the sine of an infinite number
I ∈ ∗R? These, together with very strong but scientifically unjustified cultural reasons, may be some motivations
for the not so high success of NSA in Mathematics, and consequently in its didactics. Anyway NSA is essentially
the only theory of actual infinitesimals with a discrete diffusion and a sufficiently great community of working
mathematicians and published results, even if few of them concern Differential Geometry. Two open problems
concerning the relationships between IDG and NSA are the following.
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Problem. It is possible to define •R so as to include the hyperreals of NSA. It suffices to consider sequences
of elements of N and to define

x ∼ y :⇐⇒
{
n ∈ N | lim

t→0

xn(t)− yn(t)
t

= 0
}
∈ U∞.

Where U∞ is an ultrafilter which contains the filter of cofinite sets. In this way almost all the results that we
presented here, but not every, can be rightly reformulated. Is it possible to obtain a construction which follows the
ideas presented in this article, but with a good theory of invertible infinitesimals?

Problem. Our partial order relations are not an order, but we can fix an ultrafilter U0 which contains the
filter of neighborhoods at t = 0 and define ≥ substituting ∀0t in the definition of � with

{t |xt ≥ yt + zt} ∈ U0,

then we can simply prove that we obtain an order. Modifying in a similar way the equality in •R is it possible to
prove a general transfer theorem?

8.2. Synthetic Differential Geometry (SDG)

There are many analogies between SDG and IDG, so that sometimes proofs remain almost unchanged. But the
differences are so important that, in spite of the similarities, these theories can be said to describe “different kind
of infinitesimals”.

One of the most important differences is that in IDG we have h · k = 0 if h2 = k2 = 0. This is not the case
in SDG, where infinitesimals h, k ∈ ∆ := {d | d2 = 0} with h · k not necessarily equal zero, sometimes play an
important role. Note that, as shown in the proof of Schwarz theorem using infinitesimals, to bypass this difference,
sometimes requires completely new ideas. Because of these diversities, in our derivation formula we are forced to
state ∃!m ∈ R and not ∃!m ∈ •R. This is essentially the only important difference between this formula and the
Kock-Lawvere axiom. Indeed to differentiate a generic smooth map f : •R −→ •R we need “smooth incremental
ratios” (the analogous of the Fermat-Reyes axiom in SDG; these results of IDG will be presented in a next work.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A first approach to this problem, previous to the introduction of the useful sheaf property in the definition of F̄
spaces, can be seen in [7]).

Another point of view of the relationships between these two theories can be introduced starting from a sentence
of [13], pag. 385: “These structures [convenient vector spaces] are in a way simpler than the sheaves considered in
this book, but one should notice that the theory of convenient vector spaces does not include an attempt to develop
an appropriate framework for infinitesimal structures, which is one of the main motivations of our approach...”.
We want to think that this thought could also be applied to diffeological spaces, and so IDG may be a possible
solution. Indeed models of SDG are not so easy to construct Topos, so that we are almost compelled to work
with the internal language of the Topos itself, that is in intuitionistic logic. If on the one hand this implies that
“all our spaces and functions are smooth”, and so we don’t have to prove this after every definition, on the other
hand it requires a more strong formal control of the Mathematics you are doing.

Everyone can be in agreement or not with the above cited sentence of [13], or if it is difficult or easy to learn
to work in intuitionistic logic and after to translate the results using Topos models. Anyway we think undeniable
that the formal beauty achieved by SDG can be reached with difficulty using a theory in classical logic. It
suffices to say, as a simple example, that to prove the infinitesimal linearity of MN (starting from M , N generic
infinitesimally linear spaces), it suffices to fix n ∈ N , to note that ti(−, n) are tangent vectors at f(n), to consider
their parallelogram p(−, n), and automatically, thanks to the use of intuitionistic logic, p is smooth without any
need to use directly the sheaf property to prove it.

On the other hand if we need a partition of unity, we are forced to assume a suitable axiom for the existence
of bump functions (whose definition, in the models, necessarily uses the law of the excluded middle).

From the intuitive, classical, point of view, it is a little strange that we don’t have “examples” of infinitesimals
in SDG (it is only possible to prove that ¬¬∃d ∈ ∆), so that, e.g., we cannot construct a physical theory containing
a fixed infinitesimal parameter; moreover any d ∈ ∆ is at the same time d ≤ 0 and d ≥ 0; finally the definition of
the Lie brackets using h · k for h, k ∈ ∆

[X,Y ]h·k = Y−k ◦X−h ◦ Yk ◦Xh
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is very far to the usual definitions given on manifolds.

Problem. Is it possible to construct a theory of nilpotent infinitesimals useful for several construction in
Differential Geometry and with:

• meaningful and useful examples of first order infinitesimals h2 = k2 = 0 with h · k 6= 0;
• models simpler than Topos models of SDG so that classical logic suffices to work in it;
• ∃!m ∈ •R in the derivation formula?

8.3. Weil functors (WF)

Weil functors (see [9] and [10]) represent, as far as we know, the only way to introduce some kind of useful
infinitesimal method without the need to possess a non-trivial background in mathematical logic. They don’t
arrive to the construction of a whole “infinitesimal universe” like in IDG or in the previously cited theories, but
to define functors TA : Man −→ Man, related to the geometrical constructions we are interested in and starting
from a Weil algebra A = R · 1 ⊕ N (N is a finite dimensional ideal of nilpotent elements). The flexibility of its
input A gives a corresponding flexibility to the construction of these functors. But, generally speaking, if one
change the geometrical problem, one has also to change the algebra A and so the corresponding functor TA. E.g. if
A = R[x]/〈x2〉, then TA is the ordinary tangent bundle functor, whereas if B = R[x, y]/〈x2, y2〉, then TB = TA◦TA

is the second tangent bundle. Note that x, y ∈ B verify x2 = y2 = 0 but x · y 6= 0. This provides us with the
first difference between WF and IDG. In fact although •R = R · 1⊕ I0 and dimR I0 = ∞, using the infinitesimals
of •R we can generate a large family of Weil algebras (e.g. any A = R · 1 ⊕ N ⊂ R · 1 ⊕ Dk which represents
kth order infinitesimal Taylor formula) but not every algebra can be generated in this way, e.g. the previous B.
But using exponential objects of C∞ and •C∞ we can give a simple infinitesimal representation of a large class
of WF. We will use the common multi-index notations, e.g. if α = (α1, . . . , αn) ∈ Nn, h = (h1, . . . , hn) ∈ •Rn,
then hα = hα1

1 · . . . · hαn

n ∈ •R. For α1, . . . , αc ∈ Nn, c ≥ n, let

Dα := {h ∈ •Rn |hαi ∈ D ∀i = 1, . . . , c} .
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Using this notation we will always suppose that α verifies

α1 = (k1, 0, . . . , 0)

α2 = (0, k2, 0, . . . , 0)
. . .

αn = (0, . . . , 0, kn)

αj
i ≤ kj ∀i = n+ 1, . . . , c.

Hence Dα ⊆ Dk1 × . . . × Dkn . E.g. if α1 = (3, 0), α2 = (0, 2) and α3 = (1, 1), then Dα = {(h, k) ∈ D3 ×
D2 |h · k ∈ D}. To any infinitesimal object Dα is associated a corresponding Taylor formula: let f = •g|Dα , with
g ∈ C∞(Rn,R), then

f(h) =
∑

r∈ι(α)

hr

r!
·mr ∀h ∈ Dα.

Where ι(α) := {r ∈ Nn | ∃h ∈ Dα : hr 6= 0, |r| < k}, k := max(k1, . . . , kn). Coefficients mr = ∂rg
∂xr (0) ∈ R are

uniquely determined by this formula. Here r ≤ αi means rj ≤ αj
i for every j = 1, . . . , n. We can therefore proceed

generalizing the definition 7.1 of standard tangent functor.

Definition 8.1. We call MDα the C∞ object with support set∣∣MDα
∣∣ := {•f |Dα

: f ∈ C∞(Rn,M)},

and with generalized elements of type U (open in Ru)

d ∈
U
MDα :⇐⇒ d : U −→

∣∣MDα
∣∣ and d · i ∈

Ū

•MDα ,

where i :
∣∣MDα

∣∣ ↪→ •MDα is the inclusion.
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We can extend this definition to the arrows of Man with fDα(t) := t · f ∈ NDα , where t ∈ MDα and
f ∈ Man(M,N). With these definitions we obtain a product preserving functor (−)Dα : Man −→ Man. Finally
we have a natural transformation e0 : (−)Dα −→ 1Man defined by evaluation at 0 ∈ Rn: e0(M)(t) := t(0). The
functor (−)Dα and the natural transformation e0 verify the “locality condition” of theorem 1.36.1 in [9]: if U is
open in M and i : U ↪→ M is the inclusion, then UDα = e0(M)−1(U) and iDα is the inclusion of UDα in MDα .
We can thus apply the above cited theorem to obtain that (−)Dα is a Weil functor, whose algebra is

Al
(
(−)Dα

)
= RDα ' R[x1, . . . , xn]/〈xβ1

1 · . . . · xβn

n 〉β∈I .

Where I := {β ∈ Nn | ∃i∃j : β > αi, β
j > αj

i}; here β > αi means βj > αj
i for every j = 1, . . . , n.

Not every Weil functor has this simple infinitesimal representation. E.g. the second tangent bundle (−)D ◦ (−)D

is not of type (−)Dα ; indeed it is easy to prove that the only possible candidate could be Dα = D × D, but
(RD)D is a four dimensional manifold, whereas RD×D has dimension three. We don’t have this kind of problems
with the functor (−)Dα = •C∞(Dα,−) : •C∞ −→ •C∞ which generalizes the previous one as well as TM = •MD

generalizes the standard tangent functor. In fact because of cartesian closedness we have(
XDα

)Dβ ' XDα×Dβ

and Dα ×Dβ is again of type Dα.
Weil functors has another more general, but less simple, infinitesimal representation using exponential objects.

We sketch here the case of the second tangent bundle for M = R only. Let

D(10) :=
{
(h, k) ∈ D2

2 |h2 = 0 = k
}

D(01) :=
{
(h, k) ∈ D2

2 |h = 0 = k2
}

D(11) :=
{
(h, k) ∈ D2

2 |h2 · k = 0 = h · k2
}

D̄ := D(10)×D(01)×D(11).
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Now we consider the incremental differences corresponding to these objects, that is

f10[−] : (h, k) ∈ D(10) 7→ f(h, k)− f(0) ∈ •R
f01[−] : (h, k) ∈ D(01) 7→ f(h, k)− f(0) ∈ •R
f11[−] : (h, k) ∈ D(11) 7→ f(h, k)− f(h, 0)− f(0, k) + f(0) ∈ •R.

Finally let
RD̄ :=

{
(f(0), p1 · f10[−], p2 · f01[−], p3 · f11[−]) | f ∈ C∞(R2,R)

}
where pi are projections, e.g. p1 : D̄ −→ D(10). If g ∈ RD̄ then

g(h) = (f(0), h1 · ∂1f(0), h4 · ∂2f(0), h5 · h6 · ∂12f(0)) ∀h ∈ D̄

and RD̄ is an algebra isomorphic to (RD)D. To generalize this representation to a generic manifold M ∈ Man
we have to use infinitesimal incremental differences of functions f ∈ C∞(Rn,M). This could also be performed
in an intrinsic way using affine structures definable on the infinitesimals neighborhood of any point, which will
be presented in a next work.
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