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INTRINSIC LINEARIZATION OF NONLINEAR REGRESSION BY PRINCIPAL
COMPONENTS METHOD

K. HORNIŠOVÁ

Abstract. Most commonly nonlinear regression models have an important parameter-effect nonlinearity but only a
small intrinsic nonlinearity. Hence it is of interest to approximate them linearly. This can be done either by retaining
the original parametrization θ, or by choosing a new parametrization β = β(θ). Under a prior weight density π(θ)
we propose criterion of optimality of intrinsically linear approximation. The optimal solution is obtained by principal
components method. The distance of the expectation surface of the new model from the expectation surface of the
original one can be considered as a measure of intrinsic nonlinearity of the original model, which is simpler to compute
than the well-known measure of Bates and Watts (1980). In the examples consequences for inference on parameters are

examined.

1. Introduction

We consider a (not necessary regular) nonlinear regression model

y = η(θ) + ε, θ ∈ Θ ⊆ Rm,

ε ∼ N(0, σ2W ),
(1)

where η(.) : Θ → RN is measurable mapping, y ∈ RN is vector of measurements, ε ∈ RN vector of random errors,
W is known (positive definite) matrix (usually W = I), σ2 is unknown.
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Since the statistical inference in linear models is much more simpler than in nonlinear models, possibility of
using some linear model instead of the model (1) and a proper choice of it is often studied. It is natural to base
the linearization on some prior information on unknown parameter θ, if it is available, and then compare efficiency
of such simplified methods with corresponding exact methods.

Situation, when it is known that the true value θ̄ of parameter θ lies in a neighbourhood of a given prior point
θ0 ∈ Θ, was treated most often. If the regression function of the original model is twice continuously differentiable,
the model (1) is then linearized by the linear part of its Taylor expansion at θ0, i.e. by the model

y = η(θ0) +
∂η(θ0)
∂θ>

(θ − θ0) + ε = Aθ + a + ε,

ε ∼ N(0, σ2W ).
(2)

Similarly can be linearized arbitrary parametric function g(θ) of interest. Properties and conditions on admissi-
bility of Taylor linearization in a prior point were studied e.g. in [4].

Sometimes, the prior distribution π on Θ is known. For this case, different ways of linearization of (1) were
proposed. For one of the methods – nonstandard linearization, see [6].

Another way how to linearize the model (1) utilizing the knowledge of prior π is linearization by smoothing,
proposed in [7]. The approximative linear model

Y = Aθ + a + ε,

ε ∼ N(0, σ2W ),
(3)
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is chosen according to the criterion

K1 := min
A∈RN×m

a∈RN

E π[‖η(θ)− (Aθ + a)‖2
W ]

= min
A∈RN×m

a∈RN

∫
Θ

‖η(θ)− (Aθ + a)‖2
W π(θ)dθ.

(4)

The solutions of the minimization problem (4), which corresponds to minimization of prior expectation of I-
divergence between the nonlinear and linear model, have the form

A = Cov π(η, θ)(Var πθ)−,

a = E πη −A E πθ,

K1 = tr W−1/2{Var πη − Cov π(η, θ)(Var πθ)− Cov π(θ, η)}W−1/2,

(5)

where the last expression is invariant with regard to the choice of pseudoinversion (Var πθ)−, if the indicated
means and covariances with regard to prior distribution π(.) on Θ exist and are finite. Parametric functions of
interest can be linearized accordingly.

The advantage of the method is that it can be used also when the response function η(θ) has no derivatives.
In the other case

Aπn
→ ∂η(θ0)

∂θ>

if
πn → π0,

where πn are nondegenerate prior distributions and π0 is distribution concentrated at θ0.
In [3], under the knowledge of joint prior π for (θ, σ), the linearization of the model is circumvented and

parametric function g(θ, σ) ∈ Rs of interest is directly estimated by explicit estimator ĝ(y), which is defined as
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linear combination AΦ(y), A ∈ Rs×u, of given functions Φ(.) : Rn → Ru of observations, such that the coefficient
A is optimal with regard to criterion (average mean square error (AMSE))

min
A∈Rs×u

E π E f(.|θ,σ)‖g(θ)−AΦ(y)‖2,(6)

where f(.|θ, σ) is conditional density of y.

For example, if Φ(y) =
(

y
1

)
, then linear explicit estimator is AΦ(y) = A>y + a, where

A = [Var πη + E π(σ2)W ]−1 Cov π(η, g),
and

a = E πg −A> E πη,

(7)

with
AMSE = tr{Var πg − Cov π(g, η)[Var πη + E π(σ2)W ]−1 Cov π(η, g)}.

2. Intrinsic linearization

Besides linear models, estimators in intrinsically linear models still have very good statistical properties. (The
model (1) is called intrinsically linear, if its expectation surface

Eη = {η(θ); θ ∈ Θ}(8)

is relatively open set of a s-dimensional plane of RN , where s ≤ m (Def. 2.2.1 in [6])). The method of [7]
parametrically linearize even intrinsically linear models, which is often not necessary from statistical point of
view. Therefore here we present another method which approximates nonlinear model by intrinsically linear one,
so that the models which are originally intrinsically linear are not modified.

In the following example we show that linearization by smoothing can indeed change expectation surface of
intrinsically linear model very much.
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Example 1. Let us consider intrinsically linear model

η(θ) = (cos2 θ, sin2 θ)>; θ ∈ Θ ⊆ R1.

Let prior π(.) is proper uniform probability distribution on Θ.
Expectation surface on the supp(π(.)) of the model is {(t, 1− t)>; t ∈< 0; 1 >} in both cases a), b) considered

below.
a) let Θ = (0; 2π)

Then the linearization by smoothing is singular:

A = 0̄, a =
(

1
2
1
2

)
, K1 =

1
4
,

so that the expectation surface of linearization by smoothing is

{Aθ + a; θ ∈ Θ} =
{(

1
2
1
2

)}
.

b) let Θ = (0; π
2 )

Then

A =
12

π(π2 − 4)

(
−1
1

)
, a =

(
1
2
1
2

)
− π

4
A, K1 =

1
4
− 12

π2(π2 − 4)
.= 0.043

and the expectation surface of linearization by smoothing is an interval

{Aθ + a; θ ∈ Θ}=
{(

t
1− t

)
: t∈

(
− 3

π2 − 4
+

1
2
;

3
π2 − 4

+
1
2

)
.= (−0.011; 1.011)

}
In contrast, the best intrinsic linearization problem can be understood as problem of best approximation of

the expectation surface of original model (1) by the expectation surface of some intrinsically linear model.
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Let

y = ξ(θ) + ε ; θ ∈ Θ,

ε ∼ N(0, σ2W )
(9)

be an intrinsically linear model. It is known, (see [6]), that for every intrinsically linear model there exists a
parametrization, in which the model is a regular linear model. Therefore expectation surface of model (9) is

Eξ = EA,a =
{
Aβ + a : β ∈ Rk

}
,

for some reparametrization β = β(θ), A ∈ RN×k, rank(A) = k, a ∈ RN , k ∈ N. The distance of a point η(θ) ∈ Eη

from Eξ in space RN with scalar product < a, b >W := a>W−1b is

d[η(θ), Eξ] := min
z∈Eξ

‖η(θ)− z‖2
W ,

and

zopt(θ) := arg min
z∈EA,a

‖η(θ)− z‖2
W

is a W -orthogonal projection of η(θ) on Eξ.
Let β(θ) ∈ Rk be such that

zopt(θ) = Aβ(θ) + a.

Then

β(θ) = (A>W−1A)−1A>W−1(η(θ)− a).(10)
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If we have some prior guess on the plausible values θ in the form of a prior weight function π(θ), the global
distance of Eξ from Eη can be measured by

dπ(Eη, Eξ) : =
∫

Θ

‖η(θ)− zopt(θ)‖2
W π(θ)dθ =

=
∫

Θ

‖η(θ)− (Aβ(θ) + a)‖2
W π(θ)dθ =

=
∫

Θ

‖η(θ)− [A(A>W−1A)−1A>W−1(η(θ)− a) + a]‖2
W π(θ)dθ.

Let q be the dimension of manifold Eη.
In problem of intrinsic linearization of model (1) we consider as optimal such a choice of A and a which is a

solution of

min
k≤q

A∈RN×k

rank(A)=k

a∈RN

dπ(Eη, EA,a).(11)

The solution of (11) is given in the following statement.
Theorem. The optimal choice of k, A, a is equal to

k = min{q, number of nonzero eigenvalues of Var π(W−1/2η)},

A = W 1/2(u1, . . . , uk),(12)

where u1, . . . , uN are orthonormal eigenvectors corresponding to eigenvalues λ1 ≥ · · · ≥ λN ≥ 0 of the matrix

Var π(W−1/2η),
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respectively,

a ∈ E πη +Ker(I −A(A>W−1A)−1A>W−1).(12a)

There is exactly one k−dimensional affine manifold Eξ such that for every optimal choice of A, a it holds that
Eξ = EA,a.

min
k≤q

A∈RN×k

rank(A)=k

a∈RN

dπ(Eη, EA,a) =
N∑

i=k+1

λi =
N∑

i=q+1

λi.

Proof.

dπ(Eη, EA,a) = E π

{∥∥(I −A(A>W−1A)−1A>W−1)(η(θ)− a)
∥∥2

W

}
= tr

{
(I −A(A>W−1A)−1A>W−1)(a− E πη)

}>
·W−1

{
(I −A(A>W−1A)−1A>W−1)(a− E πη)

}
+ tr W−1 Var π

{
(I −A(A>W−1A)−1A>W−1)η

}
≥ tr W−1 Var π

{
(I −A(A>W−1A)−1A>W−1)η

}
,

with equality iff a ∈ E πη +Ker(I −A(A>W−1A)−1A>W−1).
Now it is sufficient to solve the minimization problem

min
k≤q

A∈RN×k

rank(A)=k

tr W−1 Var π

{
(I −A(A>W−1A)−1A>W−1)η

}
.
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Since the matrix A(A>W−1A)−1A>W−1 is idempotent, the last problem is equivalent with the following one:

max
k≤q

A∈RN×k

rank(A)=k

tr (W−1A(A>W−1A)−1A>W−1 Var πη)

or (since A is optimal solution iff AD is optimal solution for arbitrary regular Dk×k)

max
k≤q

A∈RN×k

rank(A)=k

A>W−1A=Ik

tr (A>W−1/2 Var π[W−1/2η]W−1/2A).

The last expression is a problem of principal component analysis of random quantity W−1/2η, from which it
follows that the solution has the form given in the statement of the theorem. �

The obtained intrinsically linear approximation of the original model (1) is equal to

y = A(A>W−1A)−1A>W−1(η(θ)− E πη) + E πη + ε,

ε ∼ N(0, σ2W ),
(13)

with A taken according to Theorem.
It is obvious that for arbitrary prior π, the original model (1), is intrinsically linear (with π−probability 1) iff

rank(Var πη) ≤ q.
From Theorem it also follows that the minimal squared “distance”

D1 :=
N∑

i=k+1

λi(14)
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of the linearized model (13) from the original model (1) can be understood as measure of intrinsic nonlinearity
of model (1).

Example 2 (continuing example 1). In both cases a) and b) the optimal matrices for intrinsic linearization
are

A =

(
− 1√

2
1√
2

)
, a =

(
1
2
1
2

)
, D1 = 0,

so the model (9) has the form

y =
(

cos2 θ
sin2 θ

)
+ ε,

ε ∼ N(0, σ2W ).

Example 3. Let

y =
(

θ
cθ2

)
+ ε, θ ∈ Θ = 〈−1, 1〉,

ε ∼ N(0, σ2I2×2),

where c is some known positive constant. Let θ has proper uniform prior distribution π on Θ. Then the expectation
of linearization by smoothing is

(θ, c/3)>.

The expectation of intrinsic linearization is{
(θ, c/3)>, if c <

√
5/3,

(0, c θ2)>, if c >
√

5/3,
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i.e. in the latter case the expectation surface of intrinsic linearization is orthogonal to that of linearization by
smoothing. If c =

√
5/3, the matrix Var πη has two identical eigenvalues, so that intrinsic linearization is not

uniquely determined.

Example 4. In [8] two three-parameter sigmoidal models are considered for data set 1 from Appendix 4A on
a vegetative growth process. The models are

yi = η(θ, xi) + εi = θ1 exp[− exp(θ2 − θ3xi)] + εi , i = 1, . . . , N,

ε = (ε1, . . . , εN )> ∼ N(0, σ2W ) (Gompertz model),

and

yi = η(θ, xi) + εi =
θ1

1 + exp(θ2 − θ3xi)
+ εi, i = 1, . . . , N,

ε = (ε1, . . . , εN )> ∼ N(0, σ2W ), (logistic model),

with σ2 unknown, W = I. We consider here two normal prior distributions – N(θ̂ML, s2(y)M(θ̂ML)) (1), and
N(θ̂ML, 25s2(y)M(θ̂ML)) (2), where θ̂ML is maximum likelihood estimate in model (1),

s2(y) :=
‖y − η(θ̂ML)‖2

W

N −m
,

and

M(θ) :=
∂η>(θ)

∂θ
W−1 ∂η(θ)

∂θ>
.

Then the results based on 10000 simulations from prior distribution are (Kint and Kpar are intrinsic and para-
metric nonlinearity measures from [1]):
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Nonlinearity measure Prior Gompertz Logistic
Kint 9.010·10−2 7.300·10−2

Kpar 2.324·100 6.440·10−1

K1 1 3.000·100 1.000·10−1

2 1.000·103 1.000·102

D1 1 4.000·10−3 1.000·10−3

2 1.500·100 4.000·10−1

AMSE 1 2.000·101 1.600·100

2 3.000·102 1.500·101

3. Nonlinear regression inference using intrinsically linear approximation

Merits and shortcomings of the above described linearization methods will be compared at examples of point
estimation and construction of confidence regions for parameter θ. However, since computation of ML-estimate
in intrinsically linearized model is no easier than in original model, the importance of intrinsic linearization is
greater in interval estimation and prediction.

Example 5 (continuing Example 4). For data y from [8] and for 10000 simulations from prior distribution
we get ML-estimates in original model (i), in linearization by smoothing (ii), in intrinsic linearization (iii), and
linear explicit estimate (iv) of parameter θ:
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Nonlinearity measure Prior Method Gompertz Logistic
θ1 1 (i) 8.283 ·101 7.246 ·101

(ii) 8.360 ·101 7.254 ·101

(iii) 8.290 ·101 7.245 ·101

(iv) 8.300 ·101 7.249 ·101

2 (ii) 1.100 ·102 7.500 ·101

(iii) 8.400 ·101 7.260 ·101

(iv) 8.700 ·101 7.250 ·101

θ2 1 (i) 1.224 ·100 2.618 ·100

(ii) 1.230 ·100 2.623 ·100

(iii) 1.223 ·100 2.619 ·100

(iv) 1.227 ·100 2.621 ·100

2 (ii) 1.400 ·100 2.720 ·100

(iii) 1.200 ·100 2.610 ·100

(iv) 1.300 ·100 2.660 ·100

θ3 1 (i) 3.710 ·10−2 6.740 ·10−2

(ii) 3.720 ·10−2 6.750 ·10−2

(iii) 3.700 ·10−2 6.740 ·10−2

(iv) 3.710 ·10−2 6.730 ·10−2

2 (ii) 3.400 ·10−2 6.940 ·10−2

(iii) 3.600 ·10−2 6.720 ·10−2

(iv) 3.600 ·10−2 6.830 ·10−2

There are several kinds of (1−α)-confidence regions for parameter θ used in nonlinear regression (see discussion
in [5]). Here we compare the following ones:

regions based on likelihood ratio (exact only in intrinsically linear models)

ΘLR :={
θ ∈ Θ;

(N −m)(‖y − η(θ)‖2
W − ‖y − η(θ̂)‖2

W )

m‖y − η(θ̂)‖2
W

≤ Fm,M−m(1− α)

}
,

(15)
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where θ̂ is ML-estimate in model (1),
and regions based on projections

ΘP :=
{

θ ∈ Θ;
(N − p)‖P (y − η(θ))‖2

W

p‖(I − P )(y − η(θ))‖2
W

≤ Fp,N−p(1− α)
}

(16)

where P is W−orthogonal projector, p = rank(P ). If P does not depend on y, region (16) is exact in arbitrary
model.

Note, It can happen that no region of the form (16) is good, since the set MP of points µ ∈ RN which satisfy
definition inequality of region (16) is a cone (differently from the set MLR which is a ball), and intersections of
expectation surfaces of some models with such cones may be unbounded, too large, or, on the contrary, void sets.
See Figure 6.19 in [2].

For above given linearization methods it is natural to construct confidence regions for θ of the form (16) with

P = A(A>W−1A)−1A>W−1,

where A is optimal matrix from (2) (with θ0 = θ̂ML), (5), (7) (with g(θ) := η(θ)) or (12). Corresponding P will
be denoted PML, PSM , PEX , PIN , respectively. (Region for PML without parts due to overlapping is almost
exact in flat models (see [5]). Among this class of confidence regions the confidence regions based on intrinsic
linearization, i.e. on projector PIN should violate the objection from the Note against confidence regions of type
(16) in the most vigorous degree possible since (I − P ) in this case corresponds to the “direction” of apriori
shortest diameter of expectation surface. If the prior used is subjective, then intersection of such confidence
region with the support of prior can be used.

Example 6 (continuing Example 3). Point estimates of θ:
Linearization by smoothing: θ̂ = y1.
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Intrinsic linearization:

θ̂ =


y1, if c <

√
5/3,√

y2/c, if c >
√

5/3 and y2 ≥ 0,

0, if c >
√

5/3 and y2 < 0.

Linear explicit estimation: θ̂ = 1/(1 + 3 E π2(σ
2)) y1 < y1, where π2 is a prior distribution for σ2, which is assumed

to be independent of θ.
Since the prior π is uniform, ML-estimator of θ equals to posterior modus estimator justified from the bayesian

point of view. Therefore, quality of estimators from various linearizations can be assessed by their closeness to
ML-estimator. Expressions for estimators of θ give an idea which linearization is suitable for different values of
y. It can be roughly recommended to use

linearization by smoothing, if y2 is small and y is above the parabola,
linear explicit estimation, if y2 is small and y is under the parabola,
intrinsic linearization, if y2 is large.

Let us consider the case favorable to intrinsic linearization with c = 10, E π2(σ
2) = 0.32, and y = (0.87; 8.4)>.

Then we get point estimates:

θ̂ =


9.16377 · 10−1, (ML-estimate),
8.70000 · 10−1, (linearization by smoothing),
9.16515 · 10−1, (intrinsic linearization),
6.85000 · 10−1, (linear explicit estimation)

and 0.9-confidence intervals for θ
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〈9.005 · 10−1 ; 9.320 · 10−1〉,
LR conf. region,

〈−1.000 · 101 ; −4.669 · 10−1〉 ∪ 〈9.003 · 10−1 ; 9.321 · 10−1〉,
LR conf. region (16) with P = PML,

〈−1.000 · 101 ; −9.320 · 10−1〉 ∪ 〈−9.010 · 10−1 ; 9.161 · 10−1〉 ∪ 〈9.169 · 10−1 ; 1.000 · 101〉,
conf. region (16) with P = PSM = PEX ,

〈−1.000 · 101 ; −3.095 · 10−1〉 ∪ 〈9.046 · 10−1 ; 9.404 · 10−1〉,
conf. region (16)with P = PIN .

First parts of regions for P = PML and P = PIN and first and third part of region for P = PSM = PEX are
due to overlapping.
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